organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 2-(4-nitro­benzamido)­benzoate, a non-merohedral twin

aDepartment of Chemistry, Research Complex, Allama Iqbal Open University, Islamabad 44000, Pakistan, bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, and cDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA
*Correspondence e-mail: sohail262001@yahoo.com

(Received 13 December 2010; accepted 14 January 2011; online 22 January 2011)

In the title compound, C16H14N2O5, a non-merohedral twin, the dihedral angle between the mean planes of the two benzene rings is 4.0 (9)°. The ethyl group is disordered [0.643 (14) and 0.357 (14) occupancy]. The nitro group is twisted by 16.4 (4)° from the mean plane of the benzene ring and the mean plane of the carbonyl group is twisted from the mean planes of the two benzene rings by 4.5 (0) and 4.7 (9)°. An intra­molecular N—H⋯O hydrogen bond occurs. The crystal packing is stabilized by weak inter­molecular C—H⋯O hydrogen-bond inter­actions.

Related literature

For applications of amides and amide derivatives in the pharmaceutical industry, see: Banihashemi & Firoozifar (2003[Banihashemi, A. & Firoozifar, H. (2003). Eur. Polym. J. 39, 281-289.]); Mallakpour & Kowsari (2005[Mallakpour, S. & Kowsari, E. (2005). Polym. Adv. Technol. 16, 732-737.]); Saxena et al. (2003[Saxena, A., Rao, V. L., Prabhakaran, P. V. & Ninan, K. N. (2003). Eur. Polym. J. 39, 401-405.]); Wang et al. (2008[Wang, X.-J., Yang, Q., Liu, F. & You, Q.-D. (2008). Synth. Commun. 38, 1028-1035.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C16H14N2O5

  • Mr = 314.29

  • Triclinic, [P \overline 1]

  • a = 6.9802 (3) Å

  • b = 9.3570 (4) Å

  • c = 12.5779 (5) Å

  • α = 102.833 (4)°

  • β = 94.296 (4)°

  • γ = 107.567 (4)°

  • V = 754.68 (6) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.88 mm−1

  • T = 295 K

  • 0.52 × 0.48 × 0.24 mm

Data collection
  • Oxford Diffraction Xcalibur Ruby Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.825, Tmax = 1.000

  • 10410 measured reflections

  • 10410 independent reflections

  • 9282 reflections with I > 2σ(I)

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.157

  • S = 1.04

  • 10410 reflections

  • 218 parameters

  • 25 restraints

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O4 0.86 1.95 2.6638 (9) 139
C2—H2A⋯O3i 0.93 2.50 3.4069 (11) 166
C10—H10A⋯O2ii 0.93 2.56 3.3716 (14) 146
C12—H12A⋯O1iii 0.93 2.50 3.2554 (12) 138
Symmetry codes: (i) -x, -y, -z+1; (ii) x, y, z+1; (iii) x+1, y+1, z+1.

Data collection: CrysAlis PRO (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The development of heat-resistant, high performance polymers in the past decades has been quite dramatic and has drawn the attention of many polymer scientists all over the world. Wholly aromatic polymers such as polyamides and polyimides have already been noted for high temperature resistance and excellent physico-mechanical properties. Amides and amide derivatives have extensive applications in the pharmaceutical industry (Wang et al., 2008) and in polymer chemistry (Saxena et al., 2003; Banihashemi & Firoozifar, 2003; Mallakpour et al., 2005).

In the title compound, C16H14N2O5, a nonmerohedral twin, the dihedral angle between the mean planes of the two benzene rings is 4.0 (9)° (Fig. 1). The ethyl group is disordered (0.643 (14) & 0.357 (14) occupancy). The nitro group is twisted by 16.4 (4)° from the mean plane of the benzene ring and the mean plane of the carbonyl group is twisted from the mean planes of the two benzene rings by 4.5 (0)° and 4.7 (9)°, respectively. Bond distances and angles are in normal ranges (Allen et al., 1987). Crystal packing is stabilized by intramolecular N—H···O, and weak C—H···O intermolecular hydrogen bond interactions (Fig. 2).

Related literature top

For the applications of amides and amide derivatives in the pharmaceutical industry, see: Banihashemi & Firoozifar (2003); Mallakpour & Kowsari (2005); Saxena et al. (2003); Wang et al. (2008). For standard bond lengths, see: Allen et al. (1987).

Experimental top

A mixture of 4-nitrobenzoyl chloride (0.01 mol) and ethyl-p-aminobenzoate (0.01 mol) was refluxed in anhydrous acetone (70 ml) for three hours. After cooling to room temperature, the mixture was poured into acidified cold water. The resulting yellow solid product was filtered and washed with cold acetone. Single crystals of the title compound suitable for single-crystal x-ray analysis were obtained by recrystallization of the yellow solid from ethyl acetate.

Refinement top

This structure has been refined as a nonmerohedral twin and the nonmerohedral twin matrix has been identified. The ethyl group carbon atoms are disordered with occupancies 0.643 (14) (C15A & C16A) and 0.357 (14) (C15B & C16B), respectively. All of the other H atoms were placed in their calculated positions and then refined using the riding model with Atom–H lengths of 0.93Å (CH), 0.97Å (CH2), or 0.96Å (CH3) or 0.86Å (NH). Isotropic displacement parameters for these atoms were set to 1.19–1.20 (CH), 1.20 (CH2), 1.49 (CH3) or 1.20 (NH) times Ueq of the parent atom.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of C16H14N2O5, showing the atom labeling scheme and 50% probability displacement ellipsoids. Dashed lines indicate N—H···O intramolecular hydrogen bonding. C15A & C16A represent the major component (0.643 (14)) of the disordered ethyl group.
[Figure 2] Fig. 2. Packing diagram of the title compound viewed down the b axis. Dashed lined indicate N—H···O intramolecular hydrogen bonding.
Ethyl 2-(4-nitrobenzamido)benzoate top
Crystal data top
C16H14N2O5Z = 2
Mr = 314.29F(000) = 328
Triclinic, P1Dx = 1.383 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54178 Å
a = 6.9802 (3) ÅCell parameters from 4228 reflections
b = 9.3570 (4) Åθ = 5.1–73.9°
c = 12.5779 (5) ŵ = 0.88 mm1
α = 102.833 (4)°T = 295 K
β = 94.296 (4)°Block, yellow
γ = 107.567 (4)°0.52 × 0.48 × 0.24 mm
V = 754.68 (6) Å3
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini
diffractometer
10410 measured reflections
Radiation source: Enhance (Cu) X-ray Source10410 independent reflections
Graphite monochromator9282 reflections with I > 2σ(I)
Detector resolution: 10.5081 pixels mm-1θmax = 74.5°, θmin = 5.1°
ω scansh = 88
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
k = 1111
Tmin = 0.825, Tmax = 1.000l = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.157H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0935P)2 + 0.0632P]
where P = (Fo2 + 2Fc2)/3
10410 reflections(Δ/σ)max < 0.001
218 parametersΔρmax = 0.20 e Å3
25 restraintsΔρmin = 0.21 e Å3
Crystal data top
C16H14N2O5γ = 107.567 (4)°
Mr = 314.29V = 754.68 (6) Å3
Triclinic, P1Z = 2
a = 6.9802 (3) ÅCu Kα radiation
b = 9.3570 (4) ŵ = 0.88 mm1
c = 12.5779 (5) ÅT = 295 K
α = 102.833 (4)°0.52 × 0.48 × 0.24 mm
β = 94.296 (4)°
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini
diffractometer
10410 measured reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
10410 independent reflections
Tmin = 0.825, Tmax = 1.0009282 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.05325 restraints
wR(F2) = 0.157H-atom parameters constrained
S = 1.04Δρmax = 0.20 e Å3
10410 reflectionsΔρmin = 0.21 e Å3
218 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.18667 (13)0.04273 (9)0.01289 (7)0.1014 (3)
O20.02489 (16)0.25940 (11)0.00650 (7)0.1088 (3)
O30.12371 (18)0.20254 (8)0.56742 (8)0.1132 (3)
O40.40086 (11)0.74605 (7)0.55727 (5)0.06973 (19)
O50.52758 (10)0.93554 (6)0.71099 (5)0.06630 (18)
N10.05477 (14)0.16683 (10)0.05611 (8)0.0793 (3)
N20.24927 (11)0.45878 (8)0.57997 (6)0.06052 (19)
H20.27330.52410.54010.073*
C10.11370 (12)0.27848 (8)0.40099 (8)0.0583 (2)
C20.01013 (15)0.12590 (9)0.34180 (9)0.0697 (3)
H2A0.02320.04830.37890.084*
C30.04350 (15)0.08854 (10)0.22924 (9)0.0725 (3)
H3A0.11310.01340.19000.087*
C40.00737 (13)0.20403 (10)0.17595 (8)0.0637 (2)
C50.11309 (14)0.35587 (10)0.23110 (8)0.0653 (2)
H5A0.14880.43230.19300.078*
C60.16450 (14)0.39178 (9)0.34375 (8)0.0634 (2)
H6A0.23470.49400.38220.076*
C70.16219 (14)0.30877 (9)0.52350 (8)0.0657 (2)
C80.30613 (12)0.52356 (9)0.69344 (7)0.0574 (2)
C90.26962 (16)0.43559 (12)0.77040 (9)0.0753 (3)
H9A0.20680.32870.74640.090*
C100.32558 (18)0.50539 (14)0.88137 (10)0.0870 (3)
H10A0.29800.44500.93150.104*
C110.42132 (18)0.66243 (14)0.91963 (9)0.0817 (3)
H11A0.46100.70790.99490.098*
C120.45786 (14)0.75151 (11)0.84562 (8)0.0656 (2)
H12A0.52150.85810.87140.079*
C130.40165 (12)0.68549 (9)0.73274 (7)0.0541 (2)
C140.44109 (12)0.78829 (9)0.65684 (7)0.0544 (2)
C15A0.5896 (13)1.0482 (9)0.6489 (8)0.0698 (11)0.643 (14)
H15A0.47161.05110.60460.084*0.643 (14)
H15B0.68051.02020.59970.084*0.643 (14)
C16A0.6954 (13)1.2037 (5)0.7264 (5)0.0928 (12)0.643 (14)
H16A0.74931.27760.68500.139*0.643 (14)
H16B0.80431.19780.77470.139*0.643 (14)
H16C0.60051.23590.76930.139*0.643 (14)
C15B0.550 (2)1.0505 (18)0.6437 (16)0.0698 (11)0.357 (14)
H15C0.65081.04480.59530.084*0.357 (14)
H15D0.42161.03580.60010.084*0.357 (14)
C16B0.6185 (17)1.1998 (11)0.7309 (9)0.0928 (12)0.357 (14)
H16D0.65361.28470.69700.139*0.357 (14)
H16E0.73521.20450.77880.139*0.357 (14)
H16F0.51081.20620.77290.139*0.357 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0958 (5)0.0834 (5)0.0877 (5)0.0130 (4)0.0132 (4)0.0212 (4)
O20.1291 (7)0.1025 (6)0.0697 (5)0.0111 (5)0.0051 (5)0.0127 (5)
O30.1821 (9)0.0505 (4)0.0854 (5)0.0055 (4)0.0053 (5)0.0245 (4)
O40.0973 (5)0.0501 (3)0.0505 (3)0.0120 (3)0.0030 (3)0.0100 (2)
O50.0821 (4)0.0482 (3)0.0557 (3)0.0088 (3)0.0018 (3)0.0079 (3)
N10.0766 (5)0.0723 (5)0.0714 (5)0.0212 (4)0.0004 (4)0.0088 (4)
N20.0725 (4)0.0454 (3)0.0590 (4)0.0133 (3)0.0046 (3)0.0141 (3)
C10.0556 (4)0.0421 (4)0.0717 (5)0.0131 (3)0.0071 (4)0.0085 (4)
C20.0723 (6)0.0429 (4)0.0849 (7)0.0114 (4)0.0083 (5)0.0103 (4)
C30.0699 (5)0.0444 (4)0.0846 (7)0.0095 (4)0.0019 (5)0.0045 (4)
C40.0564 (5)0.0568 (5)0.0677 (5)0.0178 (4)0.0045 (4)0.0015 (4)
C50.0690 (5)0.0524 (4)0.0646 (5)0.0122 (4)0.0055 (4)0.0075 (4)
C60.0684 (5)0.0415 (4)0.0670 (5)0.0073 (3)0.0039 (4)0.0048 (3)
C70.0742 (5)0.0443 (4)0.0740 (6)0.0128 (4)0.0091 (4)0.0159 (4)
C80.0570 (4)0.0561 (4)0.0608 (5)0.0187 (3)0.0059 (4)0.0190 (4)
C90.0854 (6)0.0668 (5)0.0742 (6)0.0189 (5)0.0047 (5)0.0303 (5)
C100.1013 (8)0.0948 (8)0.0730 (7)0.0277 (6)0.0080 (5)0.0454 (6)
C110.0959 (7)0.0933 (7)0.0550 (5)0.0294 (6)0.0004 (5)0.0236 (5)
C120.0678 (5)0.0696 (5)0.0558 (5)0.0210 (4)0.0006 (4)0.0137 (4)
C130.0517 (4)0.0554 (4)0.0550 (4)0.0185 (3)0.0043 (3)0.0137 (3)
C140.0551 (4)0.0501 (4)0.0532 (4)0.0144 (3)0.0038 (3)0.0092 (3)
C15A0.084 (3)0.0519 (5)0.0668 (10)0.0134 (15)0.0017 (19)0.0182 (6)
C16A0.114 (3)0.0528 (6)0.0912 (10)0.0040 (19)0.005 (2)0.0139 (6)
C15B0.084 (3)0.0519 (5)0.0668 (10)0.0134 (15)0.0017 (19)0.0182 (6)
C16B0.114 (3)0.0528 (6)0.0912 (10)0.0040 (19)0.005 (2)0.0139 (6)
Geometric parameters (Å, º) top
O1—N11.2210 (11)C8—C131.4116 (12)
O2—N11.2042 (12)C9—C101.3735 (16)
O3—C71.2126 (11)C9—H9A0.9300
O4—C141.2099 (10)C10—C111.3720 (17)
O5—C141.3214 (10)C10—H10A0.9300
O5—C15A1.431 (12)C11—C121.3705 (14)
O5—C15B1.49 (2)C11—H11A0.9300
N1—C41.4694 (13)C12—C131.3899 (13)
N2—C71.3497 (11)C12—H12A0.9300
N2—C81.3955 (12)C13—C141.4833 (12)
N2—H20.8600C15A—C16A1.492 (6)
C1—C61.3851 (12)C15A—H15A0.9700
C1—C21.3926 (12)C15A—H15B0.9700
C1—C71.4963 (13)C16A—H16A0.9600
C2—C31.3742 (15)C16A—H16B0.9600
C2—H2A0.9300C16A—H16C0.9600
C3—C41.3670 (14)C15B—C16B1.490 (12)
C3—H3A0.9300C15B—H15C0.9700
C4—C51.3773 (12)C15B—H15D0.9700
C5—C61.3743 (14)C16B—H16D0.9600
C5—H5A0.9300C16B—H16E0.9600
C6—H6A0.9300C16B—H16F0.9600
C8—C91.3943 (13)
C14—O5—C15A118.5 (3)C8—C9—H9A119.7
C14—O5—C15B116.1 (5)C11—C10—C9121.27 (9)
O2—N1—O1123.88 (10)C11—C10—H10A119.4
O2—N1—C4118.86 (8)C9—C10—H10A119.4
O1—N1—C4117.26 (10)C12—C11—C10119.23 (10)
C7—N2—C8129.57 (7)C12—C11—H11A120.4
C7—N2—H2115.2C10—C11—H11A120.4
C8—N2—H2115.2C11—C12—C13121.24 (9)
C6—C1—C2118.55 (9)C11—C12—H12A119.4
C6—C1—C7124.29 (7)C13—C12—H12A119.4
C2—C1—C7117.16 (8)C12—C13—C8119.45 (8)
C3—C2—C1120.87 (9)C12—C13—C14118.76 (8)
C3—C2—H2A119.6C8—C13—C14121.78 (7)
C1—C2—H2A119.6O4—C14—O5122.72 (7)
C4—C3—C2118.78 (8)O4—C14—C13125.49 (7)
C4—C3—H3A120.6O5—C14—C13111.79 (7)
C2—C3—H3A120.6O5—C15A—C16A109.2 (7)
C3—C4—C5122.19 (9)O5—C15A—H15A109.8
C3—C4—N1119.44 (8)C16A—C15A—H15A109.8
C5—C4—N1118.36 (9)O5—C15A—H15B109.8
C6—C5—C4118.41 (8)C16A—C15A—H15B109.8
C6—C5—H5A120.8H15A—C15A—H15B108.3
C4—C5—H5A120.8C16B—C15B—O5101.6 (13)
C5—C6—C1121.18 (8)C16B—C15B—H15C111.4
C5—C6—H6A119.4O5—C15B—H15C111.4
C1—C6—H6A119.4C16B—C15B—H15D111.4
O3—C7—N2123.20 (9)O5—C15B—H15D111.4
O3—C7—C1120.67 (8)H15C—C15B—H15D109.3
N2—C7—C1116.13 (7)C15B—C16B—H16D109.5
C9—C8—N2122.86 (8)C15B—C16B—H16E109.5
C9—C8—C13118.22 (8)H16D—C16B—H16E109.5
N2—C8—C13118.91 (7)C15B—C16B—H16F109.5
C10—C9—C8120.58 (9)H16D—C16B—H16F109.5
C10—C9—H9A119.7H16E—C16B—H16F109.5
C6—C1—C2—C31.00 (14)C13—C8—C9—C100.03 (15)
C7—C1—C2—C3178.82 (9)C8—C9—C10—C111.01 (18)
C1—C2—C3—C40.25 (15)C9—C10—C11—C121.36 (18)
C2—C3—C4—C51.01 (15)C10—C11—C12—C130.66 (17)
C2—C3—C4—N1177.99 (8)C11—C12—C13—C80.36 (14)
O2—N1—C4—C3164.54 (10)C11—C12—C13—C14178.66 (9)
O1—N1—C4—C315.94 (13)C9—C8—C13—C120.70 (13)
O2—N1—C4—C516.42 (14)N2—C8—C13—C12179.60 (8)
O1—N1—C4—C5163.10 (9)C9—C8—C13—C14178.29 (8)
C3—C4—C5—C61.46 (15)N2—C8—C13—C140.62 (12)
N1—C4—C5—C6177.55 (8)C15A—O5—C14—O44.7 (4)
C4—C5—C6—C10.66 (14)C15B—O5—C14—O47.5 (7)
C2—C1—C6—C50.53 (14)C15A—O5—C14—C13175.3 (4)
C7—C1—C6—C5179.27 (8)C15B—O5—C14—C13172.6 (7)
C8—N2—C7—O31.98 (17)C12—C13—C14—O4179.61 (8)
C8—N2—C7—C1177.96 (8)C8—C13—C14—O41.39 (14)
C6—C1—C7—O3175.60 (10)C12—C13—C14—O50.37 (11)
C2—C1—C7—O34.60 (15)C8—C13—C14—O5178.63 (7)
C6—C1—C7—N24.46 (14)C14—O5—C15A—C16A176.2 (3)
C2—C1—C7—N2175.34 (8)C15B—O5—C15A—C16A104 (5)
C7—N2—C8—C93.14 (15)C14—O5—C15B—C16B171.2 (6)
C7—N2—C8—C13178.00 (8)C15A—O5—C15B—C16B83 (4)
N2—C8—C9—C10178.89 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O40.861.952.6638 (9)139
C2—H2A···O3i0.932.503.4069 (11)166
C10—H10A···O2ii0.932.563.3716 (14)146
C12—H12A···O1iii0.932.503.2554 (12)138
Symmetry codes: (i) x, y, z+1; (ii) x, y, z+1; (iii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC16H14N2O5
Mr314.29
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)6.9802 (3), 9.3570 (4), 12.5779 (5)
α, β, γ (°)102.833 (4), 94.296 (4), 107.567 (4)
V3)754.68 (6)
Z2
Radiation typeCu Kα
µ (mm1)0.88
Crystal size (mm)0.52 × 0.48 × 0.24
Data collection
DiffractometerOxford Diffraction Xcalibur Ruby Gemini
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2007)
Tmin, Tmax0.825, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
10410, 10410, 9282
Rint?
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.157, 1.04
No. of reflections10410
No. of parameters218
No. of restraints25
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.21

Computer programs: CrysAlis PRO (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O40.861.952.6638 (9)139
C2—H2A···O3i0.932.503.4069 (11)166
C10—H10A···O2ii0.932.563.3716 (14)146
C12—H12A···O1iii0.932.503.2554 (12)138
Symmetry codes: (i) x, y, z+1; (ii) x, y, z+1; (iii) x+1, y+1, z+1.
 

Acknowledgements

RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase an X-ray diffractometer.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBanihashemi, A. & Firoozifar, H. (2003). Eur. Polym. J. 39, 281–289.  Web of Science CrossRef CAS Google Scholar
First citationMallakpour, S. & Kowsari, E. (2005). Polym. Adv. Technol. 16, 732–737.  Web of Science CrossRef CAS Google Scholar
First citationOxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSaxena, A., Rao, V. L., Prabhakaran, P. V. & Ninan, K. N. (2003). Eur. Polym. J. 39, 401–405.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, X.-J., Yang, Q., Liu, F. & You, Q.-D. (2008). Synth. Commun. 38, 1028–1035.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds