metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[aqua­bromidocopper(II)]-μ3-(picolinato N-oxide)]

aCollege of Materials Science and Engineering, Huaqiao University, Xiamen, Fujian 361021, People's Republic of China
*Correspondence e-mail: wws@hqu.edu.cn

(Received 23 December 2010; accepted 12 January 2011; online 22 January 2011)

The title complex, [CuBr(C6H4NO3)(H2O)]n, exhibits a layered structure which is stabilized by inter­molecular O—H⋯O and O—H⋯Br hydrogen bonds, van der Waals forces and ππ inter­actions [centroid–centroid distance = 3.747(4) Å] between the parallel pyridine rings from two neighboring layers.

Related literature

For the isotypic chlorido complex, see: Yang et al. (2004[Yang, B. P., Mao, J. G. & Dong, Z. C. (2004). Inorg. Chem. Commun. 7, 104-106.]). For the synthesis, see: Wu et al. (2007[Wu, W. S., Wu, D. S., Cheng, W. D., Zhang, H. & Dai, J. C. (2007). Cryst. Growth Des. 7, 2316-2323.]).

[Scheme 1]

Experimental

Crystal data
  • [CuBr(C6H4NO3)(H2O)]

  • Mr = 299.57

  • Monoclinic, P 21 /c

  • a = 9.7116 (3) Å

  • b = 10.0302 (2) Å

  • c = 9.4984 (3) Å

  • β = 110.821 (2)°

  • V = 864.81 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 7.12 mm−1

  • T = 173 K

  • 0.52 × 0.35 × 0.22 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.095, Tmax = 0.241

  • 2584 measured reflections

  • 1515 independent reflections

  • 1420 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.127

  • S = 1.00

  • 1515 reflections

  • 118 parameters

  • H-atom parameters constrained

  • Δρmax = 1.09 e Å−3

  • Δρmin = −0.93 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4B2⋯O2i 0.85 1.97 2.738 (5) 149
O4—H4B2⋯Br1i 0.85 3.07 3.741 (4) 137
O4—H4B1⋯Br1ii 0.85 2.59 3.377 (4) 155
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1999[Bruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title complex, [(C6H4NO3)(H2O)BrCu]n, is isomorphous with the chloro complex (Yang et al., 2004). The atoms of C1,C2,C3,C4,C5,C6,N1 and O1 lie in a plane with r.m.s. of 0.0095Å (Figure 1). The Cu(II) ion is 6-coordinated by a bidentate picolinate N-oxide chelating ligand (O1 and O2), a N-oxide oxygen atom and a carboxylate oxygen atom from two other ligands, an aqua ligand and a bromine anion (Figure 2). The two axial Cu—O bond lengths Cu-O1 and Cu-O3 are 2.449 (4) and 2.499 (4)Å and are longer than those reported for the chloride complex (Yang et al., 2004), while the Cu—O4 bond length of 1.990 (4)Å is shorter. The distance of Cu—Br is 2.403 (8)Å.

The complex exhibits a layered crystal structure which is stabilized by intermolecular O—H···O and O—H···Br- hydrogen bonds, van der Waals forces and π-π interactions between parallel pyridine rings from two neighboring layers (Figure 2). The distances between the layers are 3.318 (2) Å. The title complex forms Cu2O2 units interconnected via 2-carboxylic acid-pyridine-N-oxide ligands, and such unit formed a parallelogram (Figure 2).

Related literature top

For the isostructural chloro complex, see: Yang et al. (2004). For the synthesis, see: Wu et al. (2007).

Experimental top

The title complex was synthesized according to the method of Wu et al., (2007). The CuBr2 (0.1 g, 0.5 mmol) was dissolved in 20 ml methanol(20 ml), then 2-carboxylic acid-pyridine-N-oxide (0.07 g, 0.5 mmol) in THF (20 ml) was added slowly. The mixture was then stirred for a few hours. Brown crystals of the title complex were grown from the mother liquor by slow evapovation after three weeks.

Refinement top

The position of the water H atoms were located in a difference Fourier map. However, during refinement, they were restrained to O—H=0.85 Å. The Uiso of each H atom = 1.5Ueq(O). The C-bound H atoms were included in the riding model approximation with C—H = 0.95 Å. The Uiso of each H atom = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP drawing (at 30% probability) of the compound structure. [Symmetry code: (A) 1-x, 1-y, 1-z (B) x, 0.5-y, -0.5+z (C) 1-x, 0.5+y, 1.5-z].
[Figure 2] Fig. 2. Crystal Packing diagram of the title compound, showing the H-bonded interactions (dashed lines),π-π interactions diagram. [Symmetry code: (A) 1-x, -0.5+y, 0.5-z (B) x, 0.5-y, -0.5+z].
[Figure 3] Fig. 3. Packing diagram.
[Figure 4] Fig. 4. Packing diagram.
Poly[[aquabromidocopper(II)]- µ3-(picolinato N-oxide)] top
Crystal data top
[CuBr(C6H4NO3)(H2O)]F(000) = 580
Mr = 299.57Dx = 2.301 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1539 reflections
a = 9.7116 (3) Åθ = 2.2–25.1°
b = 10.0302 (2) ŵ = 7.12 mm1
c = 9.4984 (3) ÅT = 173 K
β = 110.821 (2)°Prism, brown
V = 864.81 (4) Å30.52 × 0.35 × 0.22 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
1515 independent reflections
Radiation source: fine-focus sealed tube1420 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 0 pixels mm-1θmax = 25.1°, θmin = 2.2°
ϕ and ω scansh = 811
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1111
Tmin = 0.095, Tmax = 0.241l = 1011
2584 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.081P)2 + 5.867P]
where P = (Fo2 + 2Fc2)/3
1515 reflections(Δ/σ)max = 0.012
118 parametersΔρmax = 1.09 e Å3
0 restraintsΔρmin = 0.93 e Å3
Crystal data top
[CuBr(C6H4NO3)(H2O)]V = 864.81 (4) Å3
Mr = 299.57Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.7116 (3) ŵ = 7.12 mm1
b = 10.0302 (2) ÅT = 173 K
c = 9.4984 (3) Å0.52 × 0.35 × 0.22 mm
β = 110.821 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1515 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1420 reflections with I > 2σ(I)
Tmin = 0.095, Tmax = 0.241Rint = 0.027
2584 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.127H-atom parameters constrained
S = 1.00Δρmax = 1.09 e Å3
1515 reflectionsΔρmin = 0.93 e Å3
118 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.49099 (7)0.34456 (6)0.41130 (7)0.0175 (2)
N10.2180 (5)0.4606 (4)0.3842 (5)0.0152 (9)
O10.3577 (4)0.4929 (4)0.4067 (4)0.0184 (8)
O20.4245 (4)0.2618 (4)0.5602 (4)0.0256 (9)
O30.2807 (5)0.2489 (5)0.6967 (5)0.0294 (10)
C10.1845 (6)0.3627 (6)0.4668 (6)0.0193 (12)
C20.0387 (7)0.3350 (6)0.4398 (7)0.0238 (13)
H2A0.01400.26910.49870.029*
C30.0713 (6)0.4001 (7)0.3300 (7)0.0315 (15)
H3A0.17150.37710.30920.038*
C40.0343 (7)0.5010 (7)0.2490 (8)0.0338 (15)
H4A0.10920.54960.17440.041*
C50.1116 (7)0.5293 (6)0.2782 (7)0.0259 (13)
H5A0.13770.59780.22320.031*
C60.3066 (6)0.2862 (5)0.5851 (6)0.0180 (11)
Br10.67758 (6)0.17677 (6)0.45034 (7)0.0260 (2)
O40.5513 (4)0.4396 (4)0.2586 (4)0.0216 (8)
H4B20.53280.39040.18120.032*
H4B10.47630.47640.19450.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0175 (4)0.0176 (4)0.0202 (4)0.0022 (2)0.0101 (3)0.0019 (2)
N10.013 (2)0.015 (2)0.018 (2)0.0020 (16)0.0062 (18)0.0016 (17)
O10.0139 (19)0.0198 (19)0.023 (2)0.0029 (14)0.0085 (16)0.0027 (15)
O20.023 (2)0.030 (2)0.028 (2)0.0079 (18)0.0140 (19)0.0088 (18)
O30.031 (2)0.037 (2)0.027 (2)0.0078 (19)0.0185 (19)0.0154 (19)
C10.023 (3)0.018 (3)0.018 (3)0.001 (2)0.009 (2)0.002 (2)
C20.019 (3)0.025 (3)0.028 (3)0.003 (2)0.009 (3)0.002 (2)
C30.015 (3)0.042 (4)0.034 (4)0.005 (3)0.005 (3)0.004 (3)
C40.024 (3)0.039 (4)0.033 (3)0.008 (3)0.003 (3)0.007 (3)
C50.023 (3)0.028 (3)0.024 (3)0.004 (2)0.005 (2)0.007 (2)
C60.019 (3)0.016 (3)0.019 (3)0.000 (2)0.006 (2)0.001 (2)
Br10.0240 (4)0.0251 (4)0.0299 (4)0.0071 (2)0.0110 (3)0.0003 (2)
O40.021 (2)0.025 (2)0.018 (2)0.0014 (16)0.0058 (16)0.0016 (16)
Geometric parameters (Å, º) top
Cu1—O21.938 (4)C1—C61.520 (8)
Cu1—O11.963 (4)C2—C31.365 (9)
Cu1—O41.990 (4)C2—H2A0.9500
Cu1—Br12.4034 (8)C3—C41.393 (10)
N1—O11.336 (6)C3—H3A0.9500
N1—C51.348 (7)C4—C51.373 (9)
N1—C11.366 (7)C4—H4A0.9500
O2—C61.272 (7)C5—H5A0.9500
O3—C61.232 (7)O4—H4B20.8500
C1—C21.375 (8)O4—H4B10.8500
O2—Cu1—O187.31 (16)C1—C2—H2A119.3
O2—Cu1—O4176.34 (17)C2—C3—C4119.0 (6)
O1—Cu1—O489.04 (16)C2—C3—H3A120.5
O2—Cu1—Br190.90 (12)C4—C3—H3A120.5
O1—Cu1—Br1171.71 (12)C5—C4—C3119.3 (6)
O4—Cu1—Br192.68 (12)C5—C4—H4A120.4
O1—N1—C5117.5 (4)C3—C4—H4A120.4
O1—N1—C1121.2 (4)N1—C5—C4120.5 (6)
C5—N1—C1121.4 (5)N1—C5—H5A119.8
N1—O1—Cu1116.3 (3)C4—C5—H5A119.8
C6—O2—Cu1127.5 (4)O3—C6—O2125.1 (5)
N1—C1—C2118.5 (5)O3—C6—C1116.4 (5)
N1—C1—C6120.3 (5)O2—C6—C1118.5 (5)
C2—C1—C6121.1 (5)Cu1—O4—H4B2109.1
C3—C2—C1121.3 (6)Cu1—O4—H4B1109.3
C3—C2—H2A119.3H4B2—O4—H4B176.6
C5—N1—O1—Cu1131.2 (4)C1—C2—C3—C43.0 (10)
C1—N1—O1—Cu149.5 (5)C2—C3—C4—C52.1 (10)
O2—Cu1—O1—N152.2 (3)O1—N1—C5—C4179.8 (5)
O4—Cu1—O1—N1128.0 (3)C1—N1—C5—C40.9 (9)
O1—Cu1—O2—C620.4 (5)C3—C4—C5—N10.1 (10)
Br1—Cu1—O2—C6167.7 (5)Cu1—O2—C6—O3166.6 (4)
O1—N1—C1—C2179.2 (5)Cu1—O2—C6—C115.8 (7)
C5—N1—C1—C20.0 (8)N1—C1—C6—O3147.3 (5)
O1—N1—C1—C61.1 (7)C2—C1—C6—O333.0 (8)
C5—N1—C1—C6179.6 (5)N1—C1—C6—O234.8 (8)
N1—C1—C2—C32.0 (9)C2—C1—C6—O2144.8 (6)
C6—C1—C2—C3177.7 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4B2···O2i0.851.972.738 (5)149
O4—H4B2···Br1i0.853.073.741 (4)137
O4—H4B1···Br1ii0.852.593.377 (4)155
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[CuBr(C6H4NO3)(H2O)]
Mr299.57
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)9.7116 (3), 10.0302 (2), 9.4984 (3)
β (°) 110.821 (2)
V3)864.81 (4)
Z4
Radiation typeMo Kα
µ (mm1)7.12
Crystal size (mm)0.52 × 0.35 × 0.22
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.095, 0.241
No. of measured, independent and
observed [I > 2σ(I)] reflections
2584, 1515, 1420
Rint0.027
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.127, 1.00
No. of reflections1515
No. of parameters118
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.09, 0.93

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4B2···O2i0.851.972.738 (5)149
O4—H4B2···Br1i0.853.073.741 (4)137
O4—H4B1···Br1ii0.852.593.377 (4)155
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y+1/2, z+1/2.
 

Acknowledgements

We are grateful for financial support from the National Science Foundation of Fujian Province of China (No. 2010 J01288, E0610017).

References

First citationBruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, W. S., Wu, D. S., Cheng, W. D., Zhang, H. & Dai, J. C. (2007). Cryst. Growth Des. 7, 2316–2323.  Web of Science CSD CrossRef CAS Google Scholar
First citationYang, B. P., Mao, J. G. & Dong, Z. C. (2004). Inorg. Chem. Commun. 7, 104–106.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds