organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 2| February 2011| Pages o303-o304

N-{4-[(2-Meth­­oxy­phen­yl)sulfamo­yl]phen­yl}acetamide

aDepartment of Chemistry, Government College University, Lahore 54000, Pakistan, and bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey
*Correspondence e-mail: akkurt@erciyes.edu.tr

(Received 28 December 2010; accepted 5 January 2011; online 8 January 2011)

In the title compound, C15H16N2O4S, the S atom has a distorted tetra­hedral geometry [maximum deviation: O—S—O = 118.25 (7)°]. The two aromatic rings make a dihedral angle of 62.67 (10)° with each other. An intra­molecular N—H⋯O hydrogen bond forms an S(6) ring motif. In the crystal, mol­ecules form centrosymmetric dimers via pairwise N—H⋯O inter­actions, forming an R22(8) ring motif, and these dimers are connected by N—H⋯O hydrogen bonds, generating a three-dimensional network. Furthermore, a weak C—H⋯π inter­action helps to reinforce the crystal structure. The O atom in the acetamide group is disordered over two positions with major and minor occupancies of 0.52 (5) and 0.48 (5), respectively.

Related literature

For background and the biological activity of sulfonamide and its derivatives, see: Korolkovas (1988[Korolkovas, A. (1988). Essentials of Medicinal Chemistry, 2nd ed., pp. 699-716. New York: Wiley.]); Mandell & Sande (1992[Mandell, G. L. & Sande, M. A. (1992). Goodman and Gilman, The Pharmacological Basis of Therapeutics 2, edited by A. Gilman, T. W. Rall, A. S. Nies & P. Taylor, 8th ed., pp. 1047-1057. Singapore: McGraw-Hill.]); Pandya et al. (2003[Pandya, R., Murashima, T., Tedeschi, L. & Barrett, A. G. M. (2003). J. Org. Chem. 68, 8274-8276.]); Supuran & Scozzafava (2001[Supuran, C. T. & Scozzafava, A. (2001). Curr. Med. Chem. Imm. Endoc. Metab. Agents, 1, 61-97.]). For related structures, see: Aziz-ur-Rehman et al. (2010a[Aziz-ur-Rehman, Rafique, H., Akkurt, M., Dilber, N., Abbasi, M. A. & Khan, I. U. (2010a). Acta Cryst. E66, o1728.],b[Aziz-ur-Rehman, Sajjad, M. A., Akkurt, M., Sharif, S., Abbasi, M. A. & Khan, I. U. (2010b). Acta Cryst. E66, o1769.],c[Aziz-ur-Rehman, Shahzaman,, Akkurt, M., Abbasi, M. A. & Khan, I. U. (2010c). Acta Cryst. E66, o2855.]); Khan et al. (2010[Khan, I. U., Sharif, S., Akkurt, M., Sajjad, A. & Ahmad, J. (2010). Acta Cryst. E66, o786.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C15H16N2O4S

  • Mr = 320.37

  • Orthorhombic, P b c a

  • a = 15.7277 (4) Å

  • b = 11.8351 (3) Å

  • c = 16.5247 (4) Å

  • V = 3075.89 (13) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 296 K

  • 0.24 × 0.18 × 0.09 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • 15586 measured reflections

  • 3788 independent reflections

  • 2800 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.118

  • S = 1.03

  • 3788 reflections

  • 220 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C9–C14 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—HN1⋯O3i 0.811 (19) 2.191 (19) 2.995 (2) 171.0 (19)
N2—HN2⋯O4 0.823 (18) 2.359 (19) 2.6551 (19) 102.0 (15)
N2—HN2⋯O2ii 0.823 (18) 2.259 (18) 3.0482 (18) 160.6 (18)
C5—H5⋯Cg2iii 0.93 2.90 3.715 (2) 148
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+1, -y, -z; (iii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Sulfonamides are very important because of their antibacterial and enzyme inhibitor properties as well as their extensive use in medicine (Pandya et al., 2003). Sulfonamides also exhibit antimicrobial activity (Korolkovas, 1988; Mandell & Sande, 1992) and have their properties to inhibit the growth of tumor cells (Supuran & Scozzafava, 2001). As a contribution to a structural study of sulfonamide derivatives (Khan et al., 2010; Aziz-ur-Rehman et al., 2010a,b,c), we report here the title compound, N-{4-[(2-methoxyphenyl)sulfamoyl]phenyl}acetamide, (I).

In the title molecule (I), (Fig. 1), the S atom has a distorted tetrahedral geometry [maximum deviation: O1—S1—O2 = 118.25 (7) °]. The molecule is twisted at the S atom, with a C1—S1—N2—C9 torsion angle of 56.88 (14) °. The dihedral angle formed between the benzene (C1–C6) and phenyl (C9–C14) rings in (I) is 62.67 (10)°.

An intramolecular N2—HN2···O4 hydrogen bond contribute to the stabilization of the molecular conformation, forming an S(6) ring motif (Table 1; Bernstein et al., 1995). In the crystal structure, the molecules of (I) are dimerized due to the intermolecular N—H···O hydrogen bonding (Table 1, Fig. 2) forming an R22(8) ring motif (Table 1; Bernstein et al., 1995) and these dimers are connected by N—H···O hydrogen bonds, generating a three-dimensional network (Table 1, Fig. 2).

Related literature top

For background and the biological activity of sulfonamide and its derivatives, see: Korolkovas (1988); Mandell & Sande (1992); Pandya et al. (2003); Supuran & Scozzafava (2001). For related structures, see: Aziz-ur-Rehman et al. (2010a,b,c); Khan et al. (2010). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

5 mmol of 2-methoxyaniline was dissolved in 20 ml of distilled water then 5 mmol of 4-acetamidobenzenesulfonyl chloride was addedd. The reaction mixture was stirred for about 2–3 h while the pH of the reaction mixture was maintained between 8–10 using 3% Na2CO3. The reaction was monitored by TLC. The precipitate formed was filtered, washed with distilled water, dried and recrystallized by using methanol.

Refinement top

The amino H atoms are located in a difference Fourier map and refined freely. The remaining H atoms were positioned geometrically with C—H = 0.93 for aromatic H and C—H = 0.96 Å for methyl H and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(Caromatic) or 1.5Ueq(Cmethyl). The oxygen atom in the acetamide group is disordered over two positions with a major and minor occupancy of 0.52 (5) and 0.48 (5), respectively.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level. Only the major component of the disorder is shown.
[Figure 2] Fig. 2. View of the dimeric N—H···O interactions between the molecules and the other hydrogen bonding interactions in the unit cell. H atoms not involved in hydrogen bonds (dashed lines) have been omitted for clarity and only the major component of the disorder is shown.
N-{4-[(2-Methoxyphenyl)sulfamoyl]phenyl}acetamide top
Crystal data top
C15H16N2O4SF(000) = 1344
Mr = 320.37Dx = 1.384 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 4792 reflections
a = 15.7277 (4) Åθ = 2.5–27.6°
b = 11.8351 (3) ŵ = 0.23 mm1
c = 16.5247 (4) ÅT = 296 K
V = 3075.89 (13) Å3Block, colourless
Z = 80.24 × 0.18 × 0.09 mm
Data collection top
Bruker APEXII CCD
diffractometer
2800 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.035
Graphite monochromatorθmax = 28.3°, θmin = 3.4°
ϕ and ω scansh = 1720
15586 measured reflectionsk = 1415
3788 independent reflectionsl = 2219
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0648P)2 + 0.4113P]
where P = (Fo2 + 2Fc2)/3
3788 reflections(Δ/σ)max < 0.001
220 parametersΔρmax = 0.35 e Å3
2 restraintsΔρmin = 0.28 e Å3
Crystal data top
C15H16N2O4SV = 3075.89 (13) Å3
Mr = 320.37Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 15.7277 (4) ŵ = 0.23 mm1
b = 11.8351 (3) ÅT = 296 K
c = 16.5247 (4) Å0.24 × 0.18 × 0.09 mm
Data collection top
Bruker APEXII CCD
diffractometer
2800 reflections with I > 2σ(I)
15586 measured reflectionsRint = 0.035
3788 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0422 restraints
wR(F2) = 0.118H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.35 e Å3
3788 reflectionsΔρmin = 0.28 e Å3
220 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.56431 (2)0.08868 (3)0.10743 (2)0.0342 (1)
O1A0.1823 (9)0.3615 (19)0.1605 (11)0.071 (3)0.52 (5)
O20.52415 (8)0.01701 (9)0.09026 (8)0.0464 (4)
O30.63163 (8)0.09054 (10)0.16600 (8)0.0464 (4)
O40.52707 (9)0.29215 (11)0.06451 (9)0.0603 (5)
N10.30275 (9)0.40934 (13)0.22401 (10)0.0439 (5)
N20.60326 (9)0.13213 (11)0.02165 (8)0.0354 (4)
C10.48747 (10)0.18646 (13)0.13933 (9)0.0336 (5)
C20.50585 (11)0.26178 (14)0.20091 (11)0.0436 (5)
C30.44366 (11)0.33454 (15)0.22693 (12)0.0472 (6)
C40.36276 (10)0.33370 (13)0.19280 (10)0.0367 (5)
C50.34562 (11)0.25968 (15)0.12988 (11)0.0462 (6)
C60.40841 (12)0.18647 (16)0.10356 (11)0.0453 (6)
C70.21664 (12)0.40990 (17)0.21306 (12)0.0521 (6)
C80.17075 (13)0.49861 (19)0.26052 (14)0.0639 (8)
C90.64089 (10)0.24249 (13)0.01705 (10)0.0374 (5)
C100.60126 (13)0.32392 (14)0.03012 (12)0.0474 (6)
C110.64036 (18)0.42861 (17)0.03904 (15)0.0696 (9)
C120.71585 (18)0.4507 (2)0.00053 (17)0.0790 (10)
C130.75310 (15)0.3717 (2)0.04807 (14)0.0687 (8)
C140.71651 (12)0.26592 (17)0.05603 (12)0.0511 (6)
C150.4802 (2)0.3729 (2)0.10987 (18)0.0967 (13)
O1B0.1793 (9)0.326 (2)0.1809 (15)0.083 (3)0.48 (5)
HN10.3247 (12)0.4533 (16)0.2553 (11)0.055 (6)*
HN20.5717 (11)0.1143 (16)0.0160 (11)0.047 (6)*
H30.455800.385500.268200.0570*
H50.292300.259200.105500.0550*
H60.397100.136800.061300.0540*
H8A0.201000.568900.256600.0960*
H8B0.167400.476000.316200.0960*
H8C0.114400.507900.239200.0960*
H10D0.468600.437600.076600.1450*
H10E0.427600.339900.127500.1450*
H10F0.512900.395800.156200.1450*
H110.615700.483600.071600.0840*
H120.741500.520900.005600.0950*
H130.803200.388600.075400.0820*
H140.742700.210900.087500.0610*
H20.559600.263100.224300.0520*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0362 (2)0.0288 (2)0.0376 (2)0.0018 (2)0.0030 (2)0.0035 (2)
O1A0.037 (4)0.095 (7)0.082 (5)0.008 (3)0.019 (3)0.040 (5)
O20.0568 (8)0.0291 (6)0.0532 (7)0.0046 (5)0.0027 (6)0.0050 (5)
O30.0457 (7)0.0455 (7)0.0480 (7)0.0078 (5)0.0120 (6)0.0032 (5)
O40.0614 (9)0.0490 (8)0.0704 (10)0.0066 (7)0.0070 (7)0.0153 (7)
N10.0383 (8)0.0469 (9)0.0464 (8)0.0019 (6)0.0032 (6)0.0141 (7)
N20.0367 (7)0.0320 (7)0.0374 (7)0.0013 (6)0.0001 (6)0.0036 (6)
C10.0340 (8)0.0343 (8)0.0325 (8)0.0002 (6)0.0015 (6)0.0006 (6)
C20.0345 (8)0.0467 (9)0.0497 (10)0.0020 (7)0.0064 (7)0.0103 (8)
C30.0407 (9)0.0509 (10)0.0499 (10)0.0020 (8)0.0048 (8)0.0192 (8)
C40.0359 (8)0.0394 (8)0.0348 (8)0.0011 (7)0.0014 (6)0.0026 (6)
C50.0377 (9)0.0560 (11)0.0449 (9)0.0068 (8)0.0111 (7)0.0119 (8)
C60.0431 (9)0.0524 (11)0.0403 (9)0.0058 (8)0.0092 (7)0.0143 (8)
C70.0390 (9)0.0689 (13)0.0483 (10)0.0050 (9)0.0014 (8)0.0119 (9)
C80.0514 (12)0.0760 (14)0.0644 (13)0.0240 (11)0.0038 (10)0.0101 (11)
C90.0393 (8)0.0345 (8)0.0384 (8)0.0053 (7)0.0122 (7)0.0070 (7)
C100.0567 (11)0.0363 (9)0.0493 (10)0.0026 (8)0.0133 (9)0.0009 (8)
C110.1000 (19)0.0387 (11)0.0702 (14)0.0098 (11)0.0275 (13)0.0028 (10)
C120.102 (2)0.0542 (13)0.0809 (17)0.0404 (14)0.0384 (16)0.0221 (13)
C130.0634 (14)0.0780 (15)0.0647 (13)0.0357 (12)0.0228 (11)0.0303 (13)
C140.0432 (10)0.0601 (12)0.0499 (10)0.0109 (9)0.0097 (8)0.0145 (9)
C150.128 (3)0.0751 (16)0.087 (2)0.0394 (18)0.0316 (18)0.0058 (14)
O1B0.050 (3)0.091 (7)0.109 (7)0.021 (4)0.023 (4)0.047 (5)
Geometric parameters (Å, º) top
S1—O21.4297 (12)C9—C141.381 (2)
S1—O31.4347 (13)C9—C101.387 (2)
S1—N21.6276 (14)C10—C111.391 (3)
S1—C11.7543 (16)C11—C121.380 (4)
O1A—C71.172 (19)C12—C131.355 (4)
O1B—C71.27 (2)C13—C141.384 (3)
O4—C151.421 (3)C2—H20.9300
O4—C101.351 (2)C3—H30.9300
N1—C41.399 (2)C5—H50.9300
N1—C71.366 (2)C6—H60.9300
N2—C91.436 (2)C8—H8A0.9600
N1—HN10.811 (19)C8—H8B0.9600
N2—HN20.823 (18)C8—H8C0.9600
C1—C21.383 (2)C11—H110.9300
C1—C61.377 (2)C12—H120.9300
C2—C31.372 (2)C13—H130.9300
C3—C41.392 (2)C14—H140.9300
C4—C51.386 (2)C15—H10D0.9600
C5—C61.384 (3)C15—H10E0.9600
C7—C81.496 (3)C15—H10F0.9600
S1···H143.1700C8···H10Eix3.0800
S1···H3i3.1800C11···H10F2.8100
S1···H13ii3.2000C11···H10D2.7700
O1A···C52.882 (16)C11···H10Dxii3.0200
O1A···C10iii3.33 (2)C13···H8Bxiii2.8900
O1A···N2iii3.257 (18)C13···H5vii3.0400
O1A···C9iii3.248 (19)C13···H6vii2.9000
O1B···C52.858 (16)C14···H5vii2.9400
O1B···C10iii3.30 (2)C15···H112.5800
O2···N2iv3.0482 (18)HN1···H8A2.3800
O2···O2iv3.1045 (19)HN1···O3vi2.191 (19)
O3···N1i2.995 (2)HN1···H32.2200
O3···C143.065 (2)H2···O1Bxiii2.5600
O4···N22.6551 (19)H2···O32.5300
O1A···H52.3000HN2···O42.359 (19)
O1B···H2v2.5600HN2···O2iv2.259 (18)
O1B···H52.3100H3···S1vi3.1800
O2···H3i2.6300H3···O2vi2.6300
O2···HN2iv2.259 (18)H3···HN12.2200
O2···H62.7500H5···O1A2.3000
O3···H142.6000H5···C72.7800
O3···H22.5300H5···O1B2.3100
O3···HN1i2.191 (19)H5···C13iii3.0400
O4···HN22.359 (19)H5···C14iii2.9400
N1···O3vi2.995 (2)H6···C13iii2.9000
N2···O1Avii3.257 (18)H6···O22.7500
N2···O2iv3.0482 (18)H8A···HN12.3800
N2···O42.6551 (19)H8B···C13v2.8900
N2···H12ii2.8100H10D···C11xii3.0200
C2···C15viii3.533 (3)H10D···C112.7700
C5···O1A2.882 (16)H10D···H112.3800
C5···O1B2.858 (16)H10E···C8xi3.0800
C6···C13iii3.566 (3)H10F···H112.3800
C8···C15ix3.541 (4)H10F···C2x3.0100
C9···O1Avii3.248 (19)H10F···C112.8100
C10···O1Avii3.33 (2)H11···C152.5800
C10···O1Bvii3.30 (2)H11···H10D2.3800
C13···C6vii3.566 (3)H11···H10F2.3800
C14···O33.065 (2)H11···C4xii2.9700
C15···C2x3.533 (3)H12···N2xiv2.8100
C15···C8xi3.541 (4)H13···S1xiv3.2000
C2···H10Fviii3.0100H14···S13.1700
C4···H11xii2.9700H14···O32.6000
C7···H52.7800
O2—S1—O3118.25 (7)C9—C10—C11118.66 (19)
O2—S1—N2105.66 (7)C10—C11—C12119.9 (2)
O2—S1—C1109.42 (7)C11—C12—C13121.1 (2)
O3—S1—N2107.75 (7)C12—C13—C14120.0 (2)
O3—S1—C1107.19 (7)C9—C14—C13119.70 (18)
N2—S1—C1108.21 (7)C1—C2—H2120.00
C10—O4—C15118.87 (16)C3—C2—H2120.00
C4—N1—C7128.52 (16)C2—C3—H3119.00
S1—N2—C9119.25 (11)C4—C3—H3119.00
C4—N1—HN1111.0 (13)C4—C5—H5120.00
C7—N1—HN1120.2 (13)C6—C5—H5120.00
S1—N2—HN2110.5 (13)C1—C6—H6120.00
C9—N2—HN2116.2 (13)C5—C6—H6120.00
S1—C1—C6119.55 (13)C7—C8—H8A109.00
C2—C1—C6120.30 (15)C7—C8—H8B109.00
S1—C1—C2120.14 (12)C7—C8—H8C109.00
C1—C2—C3119.07 (16)H8A—C8—H8B109.00
C2—C3—C4121.34 (17)H8A—C8—H8C109.00
N1—C4—C3117.56 (15)H8B—C8—H8C109.00
C3—C4—C5119.10 (15)C10—C11—H11120.00
N1—C4—C5123.34 (15)C12—C11—H11120.00
C4—C5—C6119.52 (16)C11—C12—H12119.00
C1—C6—C5120.64 (17)C13—C12—H12120.00
O1B—C7—C8123.0 (8)C12—C13—H13120.00
O1A—C7—N1123.5 (8)C14—C13—H13120.00
O1A—C7—C8120.6 (9)C9—C14—H14120.00
N1—C7—C8114.34 (17)C13—C14—H14120.00
O1B—C7—N1120.7 (8)O4—C15—H10D109.00
N2—C9—C14120.87 (15)O4—C15—H10E109.00
C10—C9—C14120.64 (16)O4—C15—H10F109.00
N2—C9—C10118.45 (15)H10D—C15—H10E110.00
O4—C10—C9115.53 (15)H10D—C15—H10F109.00
O4—C10—C11125.81 (18)H10E—C15—H10F110.00
O2—S1—N2—C9173.98 (12)S1—C1—C6—C5177.38 (14)
O3—S1—N2—C958.72 (13)C6—C1—C2—C31.4 (3)
C1—S1—N2—C956.88 (14)C1—C2—C3—C40.2 (3)
O2—S1—C1—C2141.15 (13)C2—C3—C4—C51.7 (3)
O3—S1—C1—C211.77 (15)C2—C3—C4—N1178.84 (16)
N2—S1—C1—C2104.20 (14)C3—C4—C5—C61.5 (3)
O2—S1—C1—C637.82 (16)N1—C4—C5—C6179.03 (16)
O3—S1—C1—C6167.20 (13)C4—C5—C6—C10.1 (3)
N2—S1—C1—C676.84 (15)N2—C9—C10—C11175.85 (18)
C15—O4—C10—C9176.41 (19)C14—C9—C10—O4179.16 (17)
C15—O4—C10—C114.5 (3)N2—C9—C14—C13177.52 (17)
C7—N1—C4—C515.0 (3)C10—C9—C14—C130.1 (3)
C4—N1—C7—C8175.71 (18)C14—C9—C10—C111.7 (3)
C4—N1—C7—O1A18.4 (13)N2—C9—C10—O43.3 (2)
C7—N1—C4—C3165.53 (18)O4—C10—C11—C12179.1 (2)
S1—N2—C9—C1468.93 (19)C9—C10—C11—C121.8 (3)
S1—N2—C9—C10113.58 (16)C10—C11—C12—C130.2 (4)
C2—C1—C6—C51.6 (3)C11—C12—C13—C141.6 (4)
S1—C1—C2—C3177.52 (13)C12—C13—C14—C91.7 (3)
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+3/2, y1/2, z; (iii) x1/2, y+1/2, z; (iv) x+1, y, z; (v) x1/2, y, z+1/2; (vi) x+1, y+1/2, z+1/2; (vii) x+1/2, y+1/2, z; (viii) x, y+1/2, z+1/2; (ix) x+1/2, y+1, z+1/2; (x) x, y+1/2, z1/2; (xi) x+1/2, y+1, z1/2; (xii) x+1, y+1, z; (xiii) x+1/2, y, z+1/2; (xiv) x+3/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C9–C14 ring.
D—H···AD—HH···AD···AD—H···A
N1—HN1···O3vi0.811 (19)2.191 (19)2.995 (2)171.0 (19)
N2—HN2···O40.823 (18)2.359 (19)2.6551 (19)102.0 (15)
N2—HN2···O2iv0.823 (18)2.259 (18)3.0482 (18)160.6 (18)
C2—H2···O30.932.532.890 (2)104
C5—H5···O1A0.932.302.882 (16)120
C5—H5···Cg2iii0.932.903.715 (2)148
Symmetry codes: (iii) x1/2, y+1/2, z; (iv) x+1, y, z; (vi) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC15H16N2O4S
Mr320.37
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)296
a, b, c (Å)15.7277 (4), 11.8351 (3), 16.5247 (4)
V3)3075.89 (13)
Z8
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.24 × 0.18 × 0.09
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
15586, 3788, 2800
Rint0.035
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.118, 1.03
No. of reflections3788
No. of parameters220
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.35, 0.28

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C9–C14 ring.
D—H···AD—HH···AD···AD—H···A
N1—HN1···O3i0.811 (19)2.191 (19)2.995 (2)171.0 (19)
N2—HN2···O40.823 (18)2.359 (19)2.6551 (19)102.0 (15)
N2—HN2···O2ii0.823 (18)2.259 (18)3.0482 (18)160.6 (18)
C5—H5···Cg2iii0.932.903.715 (2)148
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y, z; (iii) x1/2, y+1/2, z.
 

Footnotes

Additional correspondence author, e-mail: akhyar@gcu.edu.pk.

Acknowledgements

The authors are grateful to the Higher Education Commission (HEC), Pakistan, for providing funds for the single-crystal XRD facilities at GC University, Lahore.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAziz-ur-Rehman, Rafique, H., Akkurt, M., Dilber, N., Abbasi, M. A. & Khan, I. U. (2010a). Acta Cryst. E66, o1728.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAziz-ur-Rehman, Sajjad, M. A., Akkurt, M., Sharif, S., Abbasi, M. A. & Khan, I. U. (2010b). Acta Cryst. E66, o1769.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAziz-ur-Rehman, Shahzaman,, Akkurt, M., Abbasi, M. A. & Khan, I. U. (2010c). Acta Cryst. E66, o2855.  Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKhan, I. U., Sharif, S., Akkurt, M., Sajjad, A. & Ahmad, J. (2010). Acta Cryst. E66, o786.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKorolkovas, A. (1988). Essentials of Medicinal Chemistry, 2nd ed., pp. 699–716. New York: Wiley.  Google Scholar
First citationMandell, G. L. & Sande, M. A. (1992). Goodman and Gilman, The Pharmacological Basis of Therapeutics 2, edited by A. Gilman, T. W. Rall, A. S. Nies & P. Taylor, 8th ed., pp. 1047–1057. Singapore: McGraw–Hill.  Google Scholar
First citationPandya, R., Murashima, T., Tedeschi, L. & Barrett, A. G. M. (2003). J. Org. Chem. 68, 8274–8276.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSupuran, C. T. & Scozzafava, A. (2001). Curr. Med. Chem. Imm. Endoc. Metab. Agents, 1, 61–97.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 2| February 2011| Pages o303-o304
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds