organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(4-Chloro­butano­yl)-N′-phenyl­thio­urea

aSchool of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, UKM 43600 Bangi Selangor, Malaysia, and bDepartment of Chemical Sciences, Faculty of Science and Technology, Universiti Malaysia Terengganu, Menggabang Telipot, 21030 Kuala Terengganu, Malaysia
*Correspondence e-mail: bohari@ukm.my

(Received 29 December 2010; accepted 11 January 2011; online 15 January 2011)

The asymmetric unit of the title compound, C11H13ClN2OS, contains two independent mol­ecules. Both mol­ecules maintain a transcis configuration with respect to the position of the carbonyl group and the benzene ring against the thione group across the C—N bonds. The mol­ecules are stabilized by intra­molecular N—H⋯O hydrogen bonds. In the crystal, the mol­ecules are linked by inter­molecular N—H⋯S, N—H⋯O and C—H⋯S hydrogen bonds into chains along the c axis. C—H⋯π inter­actions further stabilize the crystal structure.

Related literature

For the biological properties of thiourea derivatives, see; Sun et al. (2006[Sun, C., Huang, H., Feng, M., Shi, X., Zhang, X. & Zhaou, P. (2006). Bioorg. Med. Chem. Lett. 16, 162-166.]); Figueiredo et al. (2006[Figueiredo, I. M., Santos, L. V., Costa, W. F., Carvalho, J. E., Silva, C. C., Sacoman, J. L., Kohn, L. K. & Sarragiotto, M. H. (2006). J. Braz. Chem. Soc. 17, 954-960.]). For a related structure, see: Othman et al. (2010[Othman, E. A., Soh, S. K. C. & Yamin, B. M. (2010). Acta Cryst. E66, o628.]); For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C11H13ClN2OS

  • Mr = 256.74

  • Monoclinic, P 21 /c

  • a = 14.610 (3) Å

  • b = 10.244 (2) Å

  • c = 18.230 (4) Å

  • β = 112.408 (4)°

  • V = 2522.5 (9) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.45 mm−1

  • T = 298 K

  • 0.50 × 0.49 × 0.09 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.807, Tmax = 0.961

  • 14531 measured reflections

  • 4706 independent reflections

  • 3195 reflections with I > 2/s(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.131

  • S = 1.02

  • 4706 reflections

  • 289 parameters

  • H-atom parameters constrained

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C17–C22 and C6–C11 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O1 0.86 2.04 2.701 (3) 134
N4—H4⋯O2 0.86 2.03 2.692 (3) 133
N1—H1⋯S2i 0.86 2.53 3.382 (2) 173
N2—H2⋯O2ii 0.86 2.40 3.142 (3) 144
N3—H3⋯S1iii 0.86 2.58 3.439 (2) 175
N4—H4⋯O1ii 0.86 2.32 3.057 (3) 143
C14—H14A⋯S2iv 0.97 2.73 3.676 (3) 166
C2—H2ACg2ii 0.97 2.80 3.419 (4) 123
C13—H13ACg1ii 0.97 2.83 3.417 (3) 153
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+1, -y+1, -z+1; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) -x, -y+1, -z.

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The continuing work on the synthesis of thiourea derivatives is driven by their chemical and biological properties (Sun et al. ,2006). Some thiourea derivatives such as N-[1-(4R)-(4-isopropyl-1-methylcyclohexenyl)]-N'-[2 - (butyl)]thiourea is known to possess anticancer activity (Figueiredo et al., 2006). The title compound (I), is analogous to the previously reported N-(3-chloropropionyl)-N'-(phenyl)thiourea (Othman et al., 2010) except the terminal chlorine atom is attached at the γ position, 3 (C—C) bonds away from the carbonyl group. The asymmetric unit consists of two independent molecules (Fig.1). Unlike its 3-chloropropionyl analog, the butanoyl group is not planar. However, the thiourea C4/N1/C5/S1/N2/C6, C15/N3/C16/S2/N4/C17 fragments and the benzene rings, (C6—C11) and (C17—C22) are each planar with maximum deviation of 0.059 (2)Å for N3 atom from the least square plane. In each molecule, the benzene ring is vertical to the thiourea fragment with dihedral angle of 72.98 (12)° and 81.47 (14)°, respectively. The bond lengths and angles are in normal ranges (Allen et al., 1987) and comparable to those in the N-(3-chloropropionyl)-N'-(phenyl)thiourea. Both molecules maintain the trans-cis configuration with respect to the position of the carbonoyl and phenyl groups against the thiono C=S bond across their C—N bonds. Such configuration allows the formation of intramolecular hydrogen bonds between the carbonyl oxygen atom and thioamide hydrogen atom, C4—O1···H2- and C15—O2···H4, in both molecules. In the crystal stucture, the molecules are linked by N1—H1···S2, N2—H2···O2, N3—H3···S1, N4—H4···O1 and C14—H14A···S2 intermolecular hydrogen bonds (symmetry codes as in Table 2) forming infinite one-dimensional chains along the c axis (Fig.2).The molecule is also stablized by C2—H2A···π and C13—H13A···π with the centroid benzene ring Cg2,(C6—C11) and Cg1,(C17—C22) respectively (Table 2).

Related literature top

For the biological properties of thiurea derivatives, see; Sun et al. (2006); Figueiredo et al. (2006). For a related structure, see: Othman et al. (2010); For standard bond lengths, see: Allen et al. (1987).

Experimental top

30 ml acetone solution of aniline (1.33 g, 14 mmol) was added into 30 ml acetone containing 4-chlorobutanoy chloride (2.00 g, 14 mmol) and ammonium thiocyanate (1.09 g, 14 mmol). The mixture was refluxed for 2 h. The solution was filtered and left to evaporate at room temperature. The yellowish precipitate obtained after a few days, was washed with water and cold ethanol. The colourless crytals were obtained by recrystallization from ethanol. Yield 90%; m.p 392.3–393.2 K.

Refinement top

All H atoms attached to C and N atoms were fixed geometrically and treated as riding with C—H= 0.93–0.97 Å(aromatic and methylene) and N—H= 0.82 Å(amino) with Uiso(H)=1.2Ueq(C or N).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with displacement ellipsods are drawn at the 50% probability level. the dashed line denote the intramolecular hydrogen bonds.
[Figure 2] Fig. 2. The molecular packing of (I) viewed down the b-axis. The dashed line denote the intermolecular hydrogen bonds.
N-(4-Chlorobutanoyl)-N'-phenylthiourea top
Crystal data top
C11H13ClN2OSF(000) = 1072
Mr = 256.74Dx = 1.352 Mg m3
Monoclinic, P21/cMelting point = 392.3–393.2 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 14.610 (3) ÅCell parameters from 3372 reflections
b = 10.244 (2) Åθ = 2.3–25.5°
c = 18.230 (4) ŵ = 0.45 mm1
β = 112.408 (4)°T = 298 K
V = 2522.5 (9) Å3Slab, colourless
Z = 80.50 × 0.49 × 0.09 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4706 independent reflections
Radiation source: fine-focus sealed tube3195 reflections with I > 2/s(I)
Graphite monochromatorRint = 0.043
Detector resolution: 83.66 pixels mm-1θmax = 25.5°, θmin = 2.3°
ω scansh = 1716
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
k = 1211
Tmin = 0.807, Tmax = 0.961l = 2220
14531 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.131H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0595P)2 + 0.9697P]
where P = (Fo2 + 2Fc2)/3
4706 reflections(Δ/σ)max < 0.001
289 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C11H13ClN2OSV = 2522.5 (9) Å3
Mr = 256.74Z = 8
Monoclinic, P21/cMo Kα radiation
a = 14.610 (3) ŵ = 0.45 mm1
b = 10.244 (2) ÅT = 298 K
c = 18.230 (4) Å0.50 × 0.49 × 0.09 mm
β = 112.408 (4)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4706 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
3195 reflections with I > 2/s(I)
Tmin = 0.807, Tmax = 0.961Rint = 0.043
14531 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.131H-atom parameters constrained
S = 1.02Δρmax = 0.48 e Å3
4706 reflectionsΔρmin = 0.29 e Å3
289 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.49537 (8)0.21955 (15)0.48980 (7)0.1177 (5)
Cl20.21432 (6)0.81829 (9)0.21567 (5)0.0734 (3)
S11.01893 (5)0.02943 (8)0.66961 (4)0.0505 (2)
S20.24956 (5)0.47421 (8)0.02400 (4)0.0479 (2)
O10.79636 (14)0.1555 (2)0.75863 (12)0.0602 (6)
O20.07429 (14)0.80422 (18)0.07521 (11)0.0540 (5)
N10.84965 (15)0.0558 (2)0.67035 (12)0.0433 (5)
H10.82980.03320.62130.052*
N20.98310 (15)0.0728 (2)0.79027 (12)0.0444 (6)
H20.94290.11000.80800.053*
N30.09962 (14)0.6311 (2)0.00710 (12)0.0411 (5)
H30.07290.58770.03630.049*
N40.23236 (15)0.6444 (2)0.12761 (13)0.0457 (6)
H40.20070.70650.13930.055*
C10.4980 (2)0.1639 (4)0.5816 (2)0.0839 (12)
H1A0.45210.21540.59660.101*
H1B0.47560.07390.57600.101*
C20.5993 (2)0.1718 (4)0.6469 (2)0.0709 (10)
H2A0.62140.26190.65280.085*
H2B0.59460.14520.69650.085*
C30.67435 (19)0.0891 (3)0.63244 (17)0.0539 (8)
H3A0.67470.11040.58070.065*
H3B0.65510.00170.63130.065*
C40.77790 (19)0.1056 (3)0.69406 (16)0.0449 (7)
C50.94940 (18)0.0371 (2)0.71449 (15)0.0394 (6)
C61.08327 (18)0.0522 (3)0.84386 (15)0.0415 (6)
C71.1446 (2)0.1570 (3)0.87086 (18)0.0564 (8)
H71.12200.24080.85380.068*
C81.2406 (2)0.1375 (4)0.9236 (2)0.0721 (10)
H81.28270.20870.94230.087*
C91.2743 (2)0.0148 (4)0.9486 (2)0.0752 (11)
H91.33940.00260.98360.090*
C101.2127 (2)0.0904 (4)0.9225 (2)0.0722 (10)
H101.23550.17380.94040.087*
C111.1162 (2)0.0724 (3)0.86907 (18)0.0570 (8)
H111.07410.14360.85050.068*
C120.2044 (2)0.8804 (3)0.12092 (18)0.0609 (8)
H12A0.22820.96970.12710.073*
H12B0.24620.82910.10150.073*
C130.09988 (19)0.8768 (3)0.06106 (17)0.0489 (7)
H13A0.09780.91520.01180.059*
H13B0.05830.92910.08030.059*
C140.05878 (19)0.7394 (3)0.04492 (18)0.0488 (7)
H14A0.10290.68610.02900.059*
H14B0.05760.70310.09370.059*
C150.04357 (19)0.7319 (3)0.01824 (16)0.0418 (6)
C160.19336 (17)0.5905 (3)0.05662 (15)0.0382 (6)
C170.32572 (19)0.6032 (3)0.18617 (16)0.0446 (7)
C180.4123 (2)0.6520 (3)0.18414 (19)0.0616 (8)
H180.41110.71050.14480.074*
C190.5016 (2)0.6125 (4)0.2418 (2)0.0790 (11)
H190.56080.64490.24130.095*
C200.5028 (3)0.5265 (4)0.2990 (2)0.0837 (12)
H200.56290.50040.33750.100*
C210.4155 (3)0.4778 (4)0.3003 (2)0.0798 (11)
H210.41680.41890.33950.096*
C220.3259 (2)0.5167 (3)0.2432 (2)0.0610 (8)
H220.26660.48430.24370.073*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0732 (7)0.1601 (12)0.0867 (8)0.0387 (7)0.0065 (6)0.0182 (8)
Cl20.0749 (6)0.0718 (6)0.0519 (5)0.0005 (4)0.0002 (4)0.0018 (4)
S10.0404 (4)0.0708 (5)0.0381 (4)0.0070 (3)0.0125 (3)0.0009 (3)
S20.0404 (4)0.0594 (5)0.0391 (4)0.0100 (3)0.0101 (3)0.0034 (3)
O10.0449 (11)0.0779 (14)0.0470 (13)0.0125 (10)0.0053 (9)0.0161 (11)
O20.0520 (12)0.0504 (12)0.0459 (12)0.0108 (9)0.0031 (9)0.0066 (10)
N10.0356 (12)0.0581 (14)0.0299 (11)0.0061 (10)0.0054 (9)0.0013 (10)
N20.0354 (12)0.0555 (14)0.0364 (13)0.0069 (10)0.0071 (10)0.0072 (11)
N30.0345 (11)0.0463 (13)0.0336 (12)0.0036 (10)0.0031 (9)0.0036 (10)
N40.0383 (12)0.0511 (13)0.0381 (13)0.0097 (10)0.0039 (10)0.0053 (11)
C10.0357 (17)0.118 (3)0.091 (3)0.0003 (19)0.0159 (17)0.035 (2)
C20.0382 (16)0.105 (3)0.062 (2)0.0053 (17)0.0103 (15)0.021 (2)
C30.0397 (15)0.068 (2)0.0451 (17)0.0045 (14)0.0066 (13)0.0058 (15)
C40.0390 (14)0.0520 (17)0.0382 (16)0.0057 (13)0.0084 (12)0.0012 (13)
C50.0374 (14)0.0400 (14)0.0369 (15)0.0003 (11)0.0098 (11)0.0044 (12)
C60.0345 (14)0.0529 (17)0.0332 (14)0.0032 (12)0.0086 (11)0.0041 (12)
C70.0450 (16)0.0573 (19)0.060 (2)0.0001 (14)0.0126 (15)0.0051 (15)
C80.0425 (18)0.088 (3)0.073 (2)0.0110 (18)0.0077 (16)0.019 (2)
C90.0387 (17)0.114 (3)0.055 (2)0.016 (2)0.0019 (15)0.011 (2)
C100.063 (2)0.079 (2)0.059 (2)0.028 (2)0.0061 (17)0.0068 (19)
C110.0519 (18)0.0562 (18)0.0532 (19)0.0038 (15)0.0093 (14)0.0026 (15)
C120.0498 (17)0.068 (2)0.056 (2)0.0158 (15)0.0109 (15)0.0062 (16)
C130.0448 (15)0.0491 (17)0.0470 (17)0.0048 (13)0.0110 (13)0.0001 (13)
C140.0381 (15)0.0448 (16)0.0534 (18)0.0024 (12)0.0061 (13)0.0022 (13)
C150.0399 (14)0.0410 (15)0.0404 (16)0.0015 (12)0.0106 (12)0.0044 (13)
C160.0349 (13)0.0425 (15)0.0356 (14)0.0009 (11)0.0116 (11)0.0033 (12)
C170.0398 (15)0.0471 (16)0.0371 (15)0.0030 (12)0.0038 (12)0.0082 (13)
C180.0460 (17)0.078 (2)0.0545 (19)0.0024 (16)0.0128 (15)0.0066 (17)
C190.0416 (18)0.112 (3)0.073 (3)0.0035 (19)0.0094 (17)0.021 (2)
C200.054 (2)0.094 (3)0.073 (3)0.025 (2)0.0097 (19)0.011 (2)
C210.081 (3)0.067 (2)0.064 (2)0.017 (2)0.002 (2)0.0118 (18)
C220.0537 (18)0.0553 (19)0.061 (2)0.0008 (15)0.0074 (16)0.0025 (16)
Geometric parameters (Å, º) top
Cl1—C11.755 (4)C7—C81.379 (4)
Cl2—C121.794 (3)C7—H70.9300
S1—C51.673 (3)C8—C91.363 (5)
S2—C161.679 (3)C8—H80.9300
O1—C41.216 (3)C9—C101.368 (5)
O2—C151.214 (3)C9—H90.9300
N1—C41.375 (3)C10—C111.387 (4)
N1—C51.383 (3)C10—H100.9300
N1—H10.8600C11—H110.9300
N2—C51.329 (3)C12—C131.501 (4)
N2—C61.432 (3)C12—H12A0.9700
N2—H20.8600C12—H12B0.9700
N3—C151.381 (3)C13—C141.514 (4)
N3—C161.386 (3)C13—H13A0.9700
N3—H30.8600C13—H13B0.9700
N4—C161.320 (3)C14—C151.502 (4)
N4—C171.438 (3)C14—H14A0.9700
N4—H40.8600C14—H14B0.9700
C1—C21.507 (4)C17—C221.366 (4)
C1—H1A0.9700C17—C181.374 (4)
C1—H1B0.9700C18—C191.387 (5)
C2—C31.487 (4)C18—H180.9300
C2—H2A0.9700C19—C201.360 (6)
C2—H2B0.9700C19—H190.9300
C3—C41.511 (4)C20—C211.378 (6)
C3—H3A0.9700C20—H200.9300
C3—H3B0.9700C21—C221.385 (4)
C6—C71.365 (4)C21—H210.9300
C6—C111.380 (4)C22—H220.9300
C4—N1—C5129.0 (2)C9—C10—C11119.8 (3)
C4—N1—H1115.5C9—C10—H10120.1
C5—N1—H1115.5C11—C10—H10120.1
C5—N2—C6123.1 (2)C6—C11—C10119.3 (3)
C5—N2—H2118.5C6—C11—H11120.4
C6—N2—H2118.5C10—C11—H11120.4
C15—N3—C16128.5 (2)C13—C12—Cl2112.2 (2)
C15—N3—H3115.7C13—C12—H12A109.2
C16—N3—H3115.7Cl2—C12—H12A109.2
C16—N4—C17122.5 (2)C13—C12—H12B109.2
C16—N4—H4118.7Cl2—C12—H12B109.2
C17—N4—H4118.7H12A—C12—H12B107.9
C2—C1—Cl1113.2 (3)C12—C13—C14112.5 (2)
C2—C1—H1A108.9C12—C13—H13A109.1
Cl1—C1—H1A108.9C14—C13—H13A109.1
C2—C1—H1B108.9C12—C13—H13B109.1
Cl1—C1—H1B108.9C14—C13—H13B109.1
H1A—C1—H1B107.8H13A—C13—H13B107.8
C3—C2—C1113.4 (3)C15—C14—C13113.7 (2)
C3—C2—H2A108.9C15—C14—H14A108.8
C1—C2—H2A108.9C13—C14—H14A108.8
C3—C2—H2B108.9C15—C14—H14B108.8
C1—C2—H2B108.9C13—C14—H14B108.8
H2A—C2—H2B107.7H14A—C14—H14B107.7
C2—C3—C4113.7 (2)O2—C15—N3122.4 (2)
C2—C3—H3A108.8O2—C15—C14124.1 (2)
C4—C3—H3A108.8N3—C15—C14113.5 (2)
C2—C3—H3B108.8N4—C16—N3117.6 (2)
C4—C3—H3B108.8N4—C16—S2123.88 (19)
H3A—C3—H3B107.7N3—C16—S2118.51 (19)
O1—C4—N1123.1 (2)C22—C17—C18121.5 (3)
O1—C4—C3123.8 (2)C22—C17—N4118.8 (3)
N1—C4—C3113.1 (2)C18—C17—N4119.7 (3)
N2—C5—N1117.2 (2)C17—C18—C19118.9 (3)
N2—C5—S1124.53 (19)C17—C18—H18120.6
N1—C5—S1118.25 (19)C19—C18—H18120.6
C7—C6—C11120.7 (3)C20—C19—C18120.3 (3)
C7—C6—N2119.3 (2)C20—C19—H19119.9
C11—C6—N2120.0 (2)C18—C19—H19119.9
C6—C7—C8119.4 (3)C19—C20—C21120.4 (3)
C6—C7—H7120.3C19—C20—H20119.8
C8—C7—H7120.3C21—C20—H20119.8
C9—C8—C7120.5 (3)C20—C21—C22120.0 (4)
C9—C8—H8119.7C20—C21—H21120.0
C7—C8—H8119.7C22—C21—H21120.0
C8—C9—C10120.3 (3)C17—C22—C21119.0 (3)
C8—C9—H9119.9C17—C22—H22120.5
C10—C9—H9119.9C21—C22—H22120.5
Cl1—C1—C2—C362.3 (4)Cl2—C12—C13—C1461.6 (3)
C1—C2—C3—C4175.0 (3)C12—C13—C14—C15176.6 (3)
C5—N1—C4—O18.8 (5)C16—N3—C15—O23.3 (4)
C5—N1—C4—C3170.0 (3)C16—N3—C15—C14174.7 (2)
C2—C3—C4—O116.7 (5)C13—C14—C15—O233.0 (4)
C2—C3—C4—N1164.5 (3)C13—C14—C15—N3149.0 (2)
C6—N2—C5—N1176.3 (2)C17—N4—C16—N3175.2 (2)
C6—N2—C5—S13.1 (4)C17—N4—C16—S23.5 (4)
C4—N1—C5—N21.0 (4)C15—N3—C16—N47.5 (4)
C4—N1—C5—S1178.5 (2)C15—N3—C16—S2173.7 (2)
C5—N2—C6—C7110.5 (3)C16—N4—C17—C2297.0 (3)
C5—N2—C6—C1171.0 (4)C16—N4—C17—C1883.5 (3)
C11—C6—C7—C80.3 (5)C22—C17—C18—C190.4 (5)
N2—C6—C7—C8178.8 (3)N4—C17—C18—C19179.1 (3)
C6—C7—C8—C90.2 (5)C17—C18—C19—C200.3 (5)
C7—C8—C9—C101.0 (6)C18—C19—C20—C210.0 (6)
C8—C9—C10—C111.3 (6)C19—C20—C21—C220.1 (6)
C7—C6—C11—C100.1 (5)C18—C17—C22—C210.2 (5)
N2—C6—C11—C10178.5 (3)N4—C17—C22—C21179.3 (3)
C9—C10—C11—C60.8 (5)C20—C21—C22—C170.0 (5)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C17–C22 and C6–C11 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N2—H2···O10.862.042.701 (3)134
N4—H4···O20.862.032.692 (3)133
C3—H3A···Cl10.972.753.194 (3)109
C14—H14B···Cl20.972.773.180 (3)106
N1—H1···S2i0.862.533.382 (2)173
N2—H2···O2ii0.862.403.142 (3)144
N3—H3···S1iii0.862.583.439 (2)175
N4—H4···O1ii0.862.323.057 (3)143
C14—H14A···S2iv0.972.733.676 (3)166
C2—H2A···Cg2ii0.972.803.419 (4)123
C13—H13A···Cg1ii0.972.833.417 (3)153
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y+1, z+1; (iii) x+1, y+1/2, z+1/2; (iv) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC11H13ClN2OS
Mr256.74
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)14.610 (3), 10.244 (2), 18.230 (4)
β (°) 112.408 (4)
V3)2522.5 (9)
Z8
Radiation typeMo Kα
µ (mm1)0.45
Crystal size (mm)0.50 × 0.49 × 0.09
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.807, 0.961
No. of measured, independent and
observed [I > 2/s(I)] reflections
14531, 4706, 3195
Rint0.043
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.131, 1.02
No. of reflections4706
No. of parameters289
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.48, 0.29

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C17–C22 and C6–C11 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N2—H2···O10.862.042.701 (3)134
N4—H4···O20.862.032.692 (3)133
N1—H1···S2i0.862.533.382 (2)173
N2—H2···O2ii0.862.403.142 (3)144
N3—H3···S1iii0.862.583.439 (2)175
N4—H4···O1ii0.862.323.057 (3)143
C14—H14A···S2iv0.972.733.676 (3)166
C2—H2A···Cg2ii0.972.803.419 (4)123
C13—H13A···Cg1ii0.972.833.417 (3)153
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y+1, z+1; (iii) x+1, y+1/2, z+1/2; (iv) x, y+1, z.
 

Acknowledgements

The authors thank the Ministry of Higher Education of Malaysia and both Universiti Kebangsaan Malaysia and Universiti Malaysia Terengganu for the research grants UKM-GUP-NBT-08–27-110 and 59166, respectively.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFigueiredo, I. M., Santos, L. V., Costa, W. F., Carvalho, J. E., Silva, C. C., Sacoman, J. L., Kohn, L. K. & Sarragiotto, M. H. (2006). J. Braz. Chem. Soc. 17, 954–960.  Web of Science CrossRef CAS Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationOthman, E. A., Soh, S. K. C. & Yamin, B. M. (2010). Acta Cryst. E66, o628.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, C., Huang, H., Feng, M., Shi, X., Zhang, X. & Zhaou, P. (2006). Bioorg. Med. Chem. Lett. 16, 162–166.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds