organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-1-{2-Hy­dr­oxy-5-[(4-methyl­phen­yl)diazen­yl]phen­yl}ethanone

aOndokuz Mayıs University, Arts and Sciences Faculty, Department of Physics, 55139 Samsun, Turkey, and bOndokuz Mayıs University, Arts and Sciences Faculty, Department of Chemistry, 55139 Samsun, Turkey
*Correspondence e-mail: yasemincapan@gmail.com

(Received 31 December 2010; accepted 12 January 2011; online 15 January 2011)

The structure of the title compound, C15H14N2O2, an azo dye, displays a trans configuration with respect to the N=N bridge. The dihedral angle between the aromatic rings is 5.06 (8)°. The mol­ecular conformation is stabilized by a strong intra­molecular O—H⋯O hydrogen bond. In the crystal, inter­molecular C—H⋯O hydrogen bonds occur.

Related literature

For general backgrond to azo compounds, see: Klaus (2003[Klaus, H. (2003). Industrial Dyes, Chemistry, Properties, Applications, pp. 20-35. New York: Wiley-VCH.]); Bahatti & Seshadri (2004[Bahatti, H. S. & Seshadri, S. (2004). Coloration Technol. 120, 151-155.]); Catino & Farris (1985[Catino, S. C. & Farris, R. E. (1985). Concise Encyclopedia of Chemical Technology, pp. 142-144. New York: John Wiley and Sons.]); Fadda et al. (1994[Fadda, A. A., Etmen, H. A., Amer, F. A., Barghout, M. & Mohammed, K. S. (1994). J. Chem. Technol. Biotechnol. 61, 343-349.]);Taniike et al. (1996[Taniike, K., Matsumoto, T., Sato, T., Ozaki, Y., Nakashima, K. & Iriyama, K. (1996). J. Phys. Chem. 100, 15508-15516.]); Zollinger (2003[Zollinger, H. (2003). Color Chemistry, 3rd revised ed. New York: Wiley-VCH.]); For bond-length data, see: El-Ghamry et al. 2008[El-Ghamry, H., Issa, R., El-Baradie, K., Isagai, K., Masaoka, S. & Sakai, K. (2008). Acta Cryst. E64, o1673-o1674.]; Petek et al. 2006[Petek, H., Erşahin, F., Albayrak, Ç., Ağar, E. & Şenel, İ. (2006). Acta Cryst. E62, o5874-o5875.].

[Scheme 1]

Experimental

Crystal data
  • C15H14N2O2

  • Mr = 254.28

  • Triclinic, [P \overline 1]

  • a = 7.0919 (7) Å

  • b = 7.0842 (7) Å

  • c = 13.4094 (13) Å

  • α = 92.722 (8)°

  • β = 93.045 (8)°

  • γ = 101.926 (9)°

  • V = 657.04 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.42 × 0.34 × 0.19 mm

Data collection
  • Stoe IPDS 2 diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.974, Tmax = 0.991

  • 8340 measured reflections

  • 2542 independent reflections

  • 791 reflections with I > 2σ(I)

  • Rint = 0.090

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.100

  • S = 0.82

  • 2542 reflections

  • 173 parameters

  • H-atom parameters constrained

  • Δρmax = 0.10 e Å−3

  • Δρmin = −0.11 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H16⋯O2 0.82 1.80 2.533 (4) 147
C14—H14C⋯O1i 0.96 2.53 3.318 (4) 139
Symmetry code: (i) x+1, y, z.

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Azo compounds are very important in the field of dyes, pigments and advanced materials (Klaus, 2003). It has been known for many years that the azo compounds are the most widely used class of dyes, due to their versatile applications in various field such as dyeing of textile fibers, the coloring of different meterials, colored plastic and polymers, biological-medical studies and advanced applications in organic synthesis (Bahatti & Seshadri, 2004; Catino & Farris, 1985; Fadda et al. 1994; Taniike et al. 1996; Zollinger 2003).

In the structure of (I) (Fig. 1) the two aromatic rings are in a trans configuration with respect to a azo double bond. The dihedral angel between mean planes of the benzene ring A(C1—C6), azo bridge B (C3—N1N2—C7) and other benzene ring C(C7—C12)are 2.15 (13)° (A/C), 3.64 (10)° (B/C), respectively. The N1—C3 [1.431 (4) Å] and N2—C7 [1.425 (4) Å] bond distances are of single bonds character, whereas, N1N2 (1.251 (2) Å) bond distance is double bond character and compare with literature values of 1.439 (3), 1.428 (2) and 1.248 (2)Å, respectively (Petek et al. 2006). All the other bond lenghts are in aggrement with reported for other azo compounds (El-Ghamry et al. 2008). Crystals of I were found to be twinned that the twinned cell can be obtained by the unit-celltransformation atwinvector = –avector, btwinvector = bvector, ctwinvector = –cvector, indicating a twofold twinning axis along [010] direction.

The crystal structure is stabilized by one intramolecular O1—H···O2 (Fig. 1, Table 1) and intermolecular C14—H···O1 hydrogen bonds (Fig. 2).

Related literature top

For general backgrond to azo compounds, see: Klaus (2003); Bahatti & Seshadri (2004); Catino & Farris (1985); Fadda et al. (1994);Taniike et al. (1996); Zollinger (2003); For bond-length data, see: El-Ghamry et al. 2008; Petek et al. 2006.

Experimental top

A mixture of p-tolidune (10 mmol, 1.07 g) water (10 ml) and conc. HCl (2.8 ml) was stirred until clear solution was obtained. This solution was cooled down to 0–5°C and a solution in water of NaNO2 (0.74 g, 15 mmol) was added dropwise and stirred for 1 h below 5°C. The solution of 2-hydroxyacetophenone (1.45 g, 10.7 mmol) was added to a cooled solution of benzenediazoniumchloride and stirred at 0–5 ° C for 1 h. (E)-1-(2-hydroxy-4-(p-tolydiazenyl)phenylethanone was recrystallized from ethanol (Yield 78%; m.p. = 420–423K).

Refinement top

All H-atoms were refined using a riding model with d(O—H)= 0.82 Å and d(C—H)= 0.96 Å (Uiso = 1.2 Ueq of the parent atom) for aromatic C atoms.

The crystal used for the intensity data collection was a non-merohedral twin with two reciprocal lattices differently oriented according to the twofold rotation axis (010), giving rise to double diffraction spot sets. The two data sets of the twin parts were integrated separately and then scaled to give the combined data set. However, because the partially overlapped reflections could not be satisfactorily integrated separately, they were discarded leading to a data completeness of only slightly over 31%

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. An ORTEP view of (I), with the atom-numbering scheme and 30% probability displacement ellipsoids. Dashed lines indicate H-bonds.
[Figure 2] Fig. 2. Part of the crystal structure of the title compound, showing the O—H···O and C—H···O interactions. For clarity, only H atoms involved in hydrogen bonding have been included. For symmetry codes, see Table 1.
(E)-1-{2-Hydroxy-5-[(4-methylphenyl)diazenyl]phenyl}ethanone top
Crystal data top
C15H14N2O2Z = 2
Mr = 254.28F(000) = 268
Triclinic, P1Dx = 1.285 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.0919 (7) ÅCell parameters from 4309 reflections
b = 7.0842 (7) Åθ = 2.9–27.7°
c = 13.4094 (13) ŵ = 0.09 mm1
α = 92.722 (8)°T = 296 K
β = 93.045 (8)°Prism, brown
γ = 101.926 (9)°0.42 × 0.34 × 0.19 mm
V = 657.04 (11) Å3
Data collection top
Stoe IPDS 2
diffractometer
2542 independent reflections
Radiation source: fine-focus sealed tube791 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.090
Detector resolution: 6.67 pixels mm-1θmax = 27.6°, θmin = 2.9°
rotation method scansh = 99
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 99
Tmin = 0.974, Tmax = 0.991l = 1717
8340 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H-atom parameters constrained
S = 0.82 w = 1/[σ2(Fo2) + (0.0254P)2]
where P = (Fo2 + 2Fc2)/3
2542 reflections(Δ/σ)max = 0.002
173 parametersΔρmax = 0.10 e Å3
0 restraintsΔρmin = 0.11 e Å3
Crystal data top
C15H14N2O2γ = 101.926 (9)°
Mr = 254.28V = 657.04 (11) Å3
Triclinic, P1Z = 2
a = 7.0919 (7) ÅMo Kα radiation
b = 7.0842 (7) ŵ = 0.09 mm1
c = 13.4094 (13) ÅT = 296 K
α = 92.722 (8)°0.42 × 0.34 × 0.19 mm
β = 93.045 (8)°
Data collection top
Stoe IPDS 2
diffractometer
2542 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
791 reflections with I > 2σ(I)
Tmin = 0.974, Tmax = 0.991Rint = 0.090
8340 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.100H-atom parameters constrained
S = 0.82Δρmax = 0.10 e Å3
2542 reflectionsΔρmin = 0.11 e Å3
173 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5890 (6)0.1644 (5)0.6539 (3)0.0626 (10)
H10.53390.13310.58920.075*
C20.4713 (5)0.1621 (5)0.7323 (3)0.0613 (10)
H20.33800.12680.72010.074*
C30.5494 (5)0.2116 (5)0.8289 (2)0.0498 (9)
C40.7472 (5)0.2595 (5)0.8461 (3)0.0565 (10)
H40.80210.29110.91080.068*
C50.8635 (5)0.2602 (5)0.7668 (3)0.0615 (10)
H50.99690.29390.77880.074*
C60.7860 (5)0.2119 (5)0.6695 (3)0.0569 (9)
C70.3481 (5)0.2497 (5)1.0644 (3)0.0513 (9)
C80.1491 (5)0.2170 (5)1.0434 (3)0.0637 (10)
H80.09910.19910.97730.076*
C90.0274 (5)0.2111 (5)1.1187 (3)0.0699 (11)
H90.10530.18791.10400.084*
C110.3008 (5)0.2802 (4)1.2409 (2)0.0455 (9)
C120.4198 (5)0.2828 (4)1.1621 (3)0.0535 (10)
H120.55290.30791.17590.064*
C130.3760 (5)0.3186 (5)1.3452 (3)0.0553 (9)
C140.5883 (5)0.3741 (5)1.3698 (3)0.0698 (10)
H14A0.61300.39401.44100.105*
H14B0.64030.49131.33870.105*
H14C0.64840.27281.34560.105*
C150.9185 (6)0.2152 (5)0.5837 (3)0.0842 (13)
H15A1.02520.15790.60310.126*
H15B0.96600.34640.56760.126*
H15C0.84770.14340.52620.126*
C100.1004 (5)0.2396 (5)1.2172 (3)0.0604 (10)
N10.4117 (4)0.2099 (4)0.9032 (2)0.0546 (8)
N20.4863 (4)0.2508 (4)0.9904 (2)0.0511 (8)
O10.0261 (3)0.2310 (3)1.2899 (2)0.0836 (8)
H160.03340.24941.34480.125*
O20.2651 (4)0.3054 (4)1.41403 (18)0.0814 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.066 (3)0.076 (3)0.044 (2)0.015 (2)0.003 (2)0.0022 (18)
C20.053 (2)0.074 (3)0.055 (2)0.0093 (19)0.0023 (19)0.0057 (19)
C30.065 (3)0.047 (2)0.041 (2)0.0192 (19)0.0056 (19)0.0092 (17)
C40.047 (2)0.074 (3)0.049 (2)0.0155 (19)0.0025 (18)0.0000 (18)
C50.049 (2)0.071 (3)0.065 (3)0.0132 (18)0.008 (2)0.0025 (19)
C60.068 (3)0.060 (2)0.045 (2)0.0181 (19)0.0076 (19)0.0055 (17)
C70.044 (2)0.056 (3)0.053 (2)0.0100 (18)0.0088 (18)0.0016 (19)
C80.056 (2)0.080 (3)0.054 (2)0.0128 (19)0.0020 (19)0.0057 (19)
C90.043 (2)0.098 (3)0.067 (3)0.0132 (19)0.002 (2)0.006 (2)
C110.046 (2)0.049 (2)0.043 (2)0.0108 (18)0.0100 (18)0.0006 (16)
C120.050 (2)0.051 (3)0.060 (3)0.0096 (18)0.003 (2)0.0026 (19)
C130.058 (2)0.059 (2)0.050 (2)0.0145 (18)0.0114 (19)0.0050 (16)
C140.068 (2)0.087 (3)0.053 (2)0.0194 (19)0.0019 (17)0.0088 (18)
C150.088 (3)0.108 (3)0.065 (3)0.031 (2)0.031 (2)0.013 (2)
C100.050 (2)0.065 (3)0.067 (3)0.0109 (18)0.022 (2)0.0025 (19)
N10.060 (2)0.062 (2)0.0427 (18)0.0132 (15)0.0040 (15)0.0017 (15)
N20.053 (2)0.0559 (19)0.046 (2)0.0132 (15)0.0055 (16)0.0022 (14)
O10.0542 (17)0.119 (2)0.0733 (18)0.0082 (14)0.0229 (14)0.0091 (14)
O20.078 (2)0.109 (2)0.0548 (17)0.0120 (15)0.0216 (15)0.0074 (14)
Geometric parameters (Å, º) top
C1—C61.370 (5)C9—C101.383 (5)
C1—C21.375 (5)C9—H90.9300
C1—H10.9300C11—C121.385 (5)
C2—C31.382 (4)C11—C101.406 (4)
C2—H20.9300C11—C131.463 (4)
C3—C41.377 (4)C12—H120.9300
C3—N11.430 (4)C13—O21.239 (4)
C4—C51.380 (5)C13—C141.490 (4)
C4—H40.9300C14—H14A0.9600
C5—C61.386 (4)C14—H14B0.9600
C5—H50.9300C14—H14C0.9600
C6—C151.522 (5)C15—H15A0.9600
C7—C121.371 (5)C15—H15B0.9600
C7—C81.393 (4)C15—H15C0.9600
C7—N21.431 (4)C10—O11.354 (4)
C8—C91.360 (5)N1—N21.253 (3)
C8—H80.9300O1—H160.8200
C6—C1—C2121.1 (4)C12—C11—C10117.3 (3)
C6—C1—H1119.4C12—C11—C13122.6 (3)
C2—C1—H1119.4C10—C11—C13120.1 (3)
C1—C2—C3120.6 (4)C7—C12—C11122.2 (4)
C1—C2—H2119.7C7—C12—H12118.9
C3—C2—H2119.7C11—C12—H12118.9
C4—C3—C2119.1 (4)O2—C13—C11120.8 (3)
C4—C3—N1125.8 (3)O2—C13—C14119.2 (3)
C2—C3—N1115.1 (3)C11—C13—C14120.1 (3)
C3—C4—C5119.7 (4)C13—C14—H14A109.5
C3—C4—H4120.2C13—C14—H14B109.5
C5—C4—H4120.2H14A—C14—H14B109.5
C4—C5—C6121.5 (4)C13—C14—H14C109.5
C4—C5—H5119.3H14A—C14—H14C109.5
C6—C5—H5119.3H14B—C14—H14C109.5
C1—C6—C5118.0 (4)C6—C15—H15A109.5
C1—C6—C15121.8 (4)C6—C15—H15B109.5
C5—C6—C15120.1 (4)H15A—C15—H15B109.5
C12—C7—C8119.0 (4)C6—C15—H15C109.5
C12—C7—N2116.6 (3)H15A—C15—H15C109.5
C8—C7—N2124.4 (3)H15B—C15—H15C109.5
C9—C8—C7120.5 (4)O1—C10—C9118.2 (3)
C9—C8—H8119.7O1—C10—C11121.1 (4)
C7—C8—H8119.7C9—C10—C11120.7 (3)
C8—C9—C10120.2 (4)N2—N1—C3113.8 (3)
C8—C9—H9119.9N1—N2—C7113.7 (3)
C10—C9—H9119.9C10—O1—H16109.5
C6—C1—C2—C31.3 (5)C13—C11—C12—C7178.9 (3)
C1—C2—C3—C41.4 (5)C12—C11—C13—O2176.3 (4)
C1—C2—C3—N1177.9 (4)C10—C11—C13—O24.0 (5)
C2—C3—C4—C51.1 (5)C12—C11—C13—C143.6 (4)
N1—C3—C4—C5178.2 (4)C10—C11—C13—C14176.1 (3)
C3—C4—C5—C60.6 (5)C8—C9—C10—O1179.5 (4)
C2—C1—C6—C50.8 (5)C8—C9—C10—C111.8 (5)
C2—C1—C6—C15180.0 (4)C12—C11—C10—O1178.9 (3)
C4—C5—C6—C10.5 (5)C13—C11—C10—O11.4 (5)
C4—C5—C6—C15179.7 (4)C12—C11—C10—C92.5 (5)
C12—C7—C8—C92.3 (5)C13—C11—C10—C9177.2 (3)
N2—C7—C8—C9177.4 (4)C4—C3—N1—N22.4 (4)
C7—C8—C9—C100.7 (5)C2—C3—N1—N2178.4 (3)
C8—C7—C12—C111.6 (5)C3—N1—N2—C7179.7 (3)
N2—C7—C12—C11178.2 (3)C12—C7—N2—N1176.5 (3)
C10—C11—C12—C70.8 (5)C8—C7—N2—N13.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H16···O20.821.802.533 (4)147
C14—H14C···O1i0.962.533.318 (4)139
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC15H14N2O2
Mr254.28
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)7.0919 (7), 7.0842 (7), 13.4094 (13)
α, β, γ (°)92.722 (8), 93.045 (8), 101.926 (9)
V3)657.04 (11)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.42 × 0.34 × 0.19
Data collection
DiffractometerStoe IPDS 2
diffractometer
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.974, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
8340, 2542, 791
Rint0.090
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.100, 0.82
No. of reflections2542
No. of parameters173
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.10, 0.11

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H16···O20.821.802.533 (4)147
C14—H14C···O1i0.962.533.318 (4)139
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer.

References

First citationBahatti, H. S. & Seshadri, S. (2004). Coloration Technol. 120, 151–155.  Google Scholar
First citationCatino, S. C. & Farris, R. E. (1985). Concise Encyclopedia of Chemical Technology, pp. 142–144. New York: John Wiley and Sons.  Google Scholar
First citationEl-Ghamry, H., Issa, R., El-Baradie, K., Isagai, K., Masaoka, S. & Sakai, K. (2008). Acta Cryst. E64, o1673–o1674.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFadda, A. A., Etmen, H. A., Amer, F. A., Barghout, M. & Mohammed, K. S. (1994). J. Chem. Technol. Biotechnol. 61, 343–349.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKlaus, H. (2003). Industrial Dyes, Chemistry, Properties, Applications, pp. 20–35. New York: Wiley–VCH.  Google Scholar
First citationPetek, H., Erşahin, F., Albayrak, Ç., Ağar, E. & Şenel, İ. (2006). Acta Cryst. E62, o5874–o5875.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationTaniike, K., Matsumoto, T., Sato, T., Ozaki, Y., Nakashima, K. & Iriyama, K. (1996). J. Phys. Chem. 100, 15508–15516.  CrossRef CAS Web of Science Google Scholar
First citationZollinger, H. (2003). Color Chemistry, 3rd revised ed. New York: Wiley-VCH.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds