organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,3-Bis{[5-(pyridin-2-yl)-1,3,4-oxa­diazol-2-yl]sulfan­yl}propan-2-one

aDepartment of Chemistry, Zhengzhou University, Zhengzhou 450052, People's Republic of China, and bHenan Vocational College of Chemical Technology, Zhengzhou 450052, People's Republic of China
*Correspondence e-mail: wbl@zzu.edu.cn

(Received 1 January 2011; accepted 8 January 2011; online 15 January 2011)

In the distorted W-shaped mol­ecule of the title compound, C17H12N6O3S2, a twofold axis passes through the carbonyl group. The mol­ecules stack in the crystal through ππ inter­actions [centroid—centroid distance = 3.883 Å] and weak C—H⋯N hydrogen-bonding inter­actions, forming a three-dimensional architecture.

Related literature

For the use of oxadiazole-containing compounds with symmetrical or asymmetrical structures in coordination chemistry, see: Du et al. (2006[Du, M., Li, C.-P. & Guo, J.-H. (2006). Inorg. Chim. Acta, 359, 2575-2582.]); Fang et al. (2002[Fang, Y.-Y., Liu, H., Du, M., Guo, Y.-M. & Bu, X.-H. (2002). J. Mol. Struct. 608, 229-233.]); Wu et al. (2010[Wu, B.-L., Wang, R.-Y., Ye, E., Zhang, H.-Y. & Hou, H.-W. (2010). Inorg. Chem. Commun. 13, 157-159.]); Ye et al. (2007[Ye, E., Wu, B.-L., Niu, Y.-Y., Zhang, H.-Y. & Hou, H.-W. (2007). Acta Cryst. C63, m484-m486.]). For a similar propanone-bridged dithio­ether compound, see: Wu et al. (2005[Wu, B.-L., Lou, B.-Y., Han, L. & Hong, M.-C. (2005). Acta Cryst. E61, o594-o595.]).

[Scheme 1]

Experimental

Crystal data
  • C17H12N6O3S2

  • Mr = 412.45

  • Monoclinic, C 2/c

  • a = 14.266 (3) Å

  • b = 7.8342 (16) Å

  • c = 16.703 (3) Å

  • β = 100.25 (3)°

  • V = 1837.0 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.32 mm−1

  • T = 293 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Siemens SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.913, Tmax = 1.000

  • 8929 measured reflections

  • 1607 independent reflections

  • 1448 reflections with I > 2σ(I)

  • Rint = 0.050

Refinement
  • R[F2 > 2σ(F2)] = 0.076

  • wR(F2) = 0.134

  • S = 1.24

  • 1607 reflections

  • 128 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2B⋯N3i 0.99 2.51 3.388 (4) 148
C9—H9⋯N1ii 0.95 2.54 3.449 (5) 161
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, y-{\script{1\over 2}}, z].

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1994[Siemens (1994). SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

1,3,4-Oxadiazole and its derivatives exhibits good luminous properties, biological activity, and as well as flexibility in crystal engineering. So far, a great deal of oxadiazole-containing compounds with symmetrical or asymmetrical structures has been prepared and especially used in coordination chemistry (Du et al., 2006; Fang, et al., 2002; Ye, et al., 2007; Wu, et al., 2010). We herein describe the structure of the title compound, (I), which is a new oxadiazole-containing thioethers ligand with a propan-2-one moiety at the linkage.

In (I), there is a twofold rotation axis passing through the C1—O1 carbonyl group of the propanone moiety (Fig. 1). Two 5-(pyridin-2-yl)-1,3,4-oxadiazole-2-thio groups are oriented anti to bind the propanone moiety, and thus form the compound (I) with a distorted "W-shaped" configuration, being similar to another propanone-bridged dithioether compound ( Wu, et al., 2005). The S1 atom deviates from the least-squares plane of C2/C2i/C1/O1 by 0.387 (7) Å [(i) 1 - x, y, -z + 1/2]. The dihedral angle of pyridin-2-yl and oxadiazole group is 2.8 (1)°, indicating that pyridin-2-yl and oxadiazole group are almost coplanar in 5-(pyridin-2-yl)-1,3,4-oxadiazole-2-thio group.The dihedral angle of two 5-(pyridin-2-yl)-1,3,4-oxadiazole-2-thio is 68.8 (1)°, while that of the propanone moiety and the pyrimidine ring is 70.7 (1)°. Notably, the molecules stack in the crystal lattice through intermolecular ππ interactions of pyridyl and oxadiazole groups with center-to-center distance of 3.883 Å and weaker C—H···N hydrogen-bonding interactions to form a three-dimensional architecture (Fig. 2).

Related literature top

For the use of oxadiazole-containing compounds with symmetrical or asymmetrical structures in coordination chemistry, see: Du et al. (2006); Fang et al. (2002); Wu et al. (2010); Ye et al. (2007). For a similar propanone-bridged dithioether compound, see: Wu et al. (2005).

Experimental top

Sodium methylate (0.540 g, 10 mmol) and 5-(2-pyridyl)-2-mercapto-1,3,4- oxadiazole (1.79 g, 10 mmol) were vigorously stirred in MeOH (50 ml) for 1 h, before quantitative 1,3-dichloro-2-propanone (0.635 g, 5 mmol) was added. The resulting solution was heated at 373 K for 12 h and then filtered after cooled to room temperature. Removal of the solvent from the yellow filtrate created yellow powder which was washed with water and recrystallized from methanol to produce yellow crystals of (I) (yield 2.572 g, 64%; m.p. 174–175 °C). Slow evaporation of methanol solution of (I) for two weeks created block yellow crystals suitable for X-ray diffraction.

Refinement top

All H atoms were positioned geometrically and constrained to ride on their parent atoms.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1994); data reduction: SAINT (Siemens, 1994); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Perspective view of (I) with atom numbering scheme. Atom displacement ellipsoids are shown at 30% probability level. Symmetry codes, as in Table 1.
[Figure 2] Fig. 2. Packing diagram of (I), showing intermolecular ππ interactions and weaker C—H···N hydrogen-bonding interactions.
1,3-Bis{[5-(pyridin-2-yl)-1,3,4-oxadiazol-2-yl]sulfanyl}propan-2-one top
Crystal data top
C17H12N6O3S2F(000) = 848
Mr = 412.45Dx = 1.491 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2643 reflections
a = 14.266 (3) Åθ = 2.5–29.1°
b = 7.8342 (16) ŵ = 0.32 mm1
c = 16.703 (3) ÅT = 293 K
β = 100.25 (3)°Block, yellow
V = 1837.0 (6) Å30.20 × 0.20 × 0.20 mm
Z = 4
Data collection top
Siemens SMART CCD
diffractometer
1607 independent reflections
Radiation source: fine-focus sealed tube1448 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
ω scansθmax = 25.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1616
Tmin = 0.913, Tmax = 1.000k = 99
8929 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.076Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.134H-atom parameters constrained
S = 1.24 w = 1/[σ2(Fo2) + (0.0357P)2 + 3.0521P]
where P = (Fo2 + 2Fc2)/3
1607 reflections(Δ/σ)max < 0.001
128 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C17H12N6O3S2V = 1837.0 (6) Å3
Mr = 412.45Z = 4
Monoclinic, C2/cMo Kα radiation
a = 14.266 (3) ŵ = 0.32 mm1
b = 7.8342 (16) ÅT = 293 K
c = 16.703 (3) Å0.20 × 0.20 × 0.20 mm
β = 100.25 (3)°
Data collection top
Siemens SMART CCD
diffractometer
1607 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1448 reflections with I > 2σ(I)
Tmin = 0.913, Tmax = 1.000Rint = 0.050
8929 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0760 restraints
wR(F2) = 0.134H-atom parameters constrained
S = 1.24Δρmax = 0.33 e Å3
1607 reflectionsΔρmin = 0.21 e Å3
128 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.19304 (8)0.68102 (19)0.24214 (6)0.0785 (5)
O10.00000.5351 (5)0.25000.0640 (11)
O20.28820 (16)0.5281 (3)0.37180 (14)0.0525 (7)
N10.1587 (2)0.6557 (4)0.39768 (17)0.0485 (8)
N20.2056 (2)0.5752 (4)0.46924 (17)0.0488 (8)
N30.4202 (2)0.3330 (4)0.46674 (18)0.0549 (8)
C10.00000.6876 (7)0.25000.0453 (12)
C20.0834 (2)0.7944 (5)0.2358 (2)0.0531 (10)
H2A0.09280.88790.27630.064*
H2B0.06750.84710.18120.064*
C30.2100 (2)0.6238 (5)0.3439 (2)0.0472 (9)
C40.2798 (2)0.5024 (4)0.45132 (19)0.0394 (8)
C50.3528 (2)0.4016 (4)0.5029 (2)0.0431 (8)
C60.3488 (3)0.3797 (5)0.5839 (2)0.0500 (9)
H60.29930.43040.60700.060*
C70.4183 (3)0.2824 (5)0.6308 (2)0.0587 (10)
H70.41720.26350.68680.070*
C80.4890 (3)0.2137 (5)0.5952 (3)0.0610 (11)
H80.53820.14750.62630.073*
C90.4878 (3)0.2419 (5)0.5144 (3)0.0637 (11)
H90.53750.19420.49050.076*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0624 (7)0.1289 (11)0.0478 (6)0.0273 (7)0.0196 (5)0.0245 (7)
O10.076 (3)0.053 (3)0.056 (2)0.0000.0065 (19)0.000
O20.0435 (14)0.0728 (18)0.0427 (14)0.0122 (12)0.0115 (11)0.0052 (12)
N10.0445 (17)0.059 (2)0.0407 (16)0.0085 (14)0.0045 (13)0.0009 (14)
N20.0510 (18)0.058 (2)0.0365 (16)0.0064 (15)0.0064 (13)0.0037 (14)
N30.0491 (18)0.066 (2)0.0516 (18)0.0100 (16)0.0151 (15)0.0038 (16)
C10.060 (3)0.047 (3)0.024 (2)0.0000.006 (2)0.000
C20.052 (2)0.064 (3)0.041 (2)0.0022 (19)0.0029 (16)0.0107 (18)
C30.0380 (19)0.059 (2)0.044 (2)0.0037 (17)0.0061 (16)0.0031 (18)
C40.0417 (19)0.044 (2)0.0327 (17)0.0036 (15)0.0077 (14)0.0048 (15)
C50.0433 (19)0.042 (2)0.0431 (19)0.0034 (16)0.0068 (16)0.0051 (16)
C60.054 (2)0.054 (2)0.042 (2)0.0065 (18)0.0084 (17)0.0068 (18)
C70.067 (3)0.060 (3)0.047 (2)0.005 (2)0.0047 (19)0.0036 (19)
C80.054 (2)0.058 (3)0.067 (3)0.006 (2)0.000 (2)0.017 (2)
C90.049 (2)0.070 (3)0.074 (3)0.015 (2)0.017 (2)0.012 (2)
Geometric parameters (Å, º) top
S1—C31.732 (4)C2—H2A0.9900
S1—C21.785 (4)C2—H2B0.9900
O1—C11.195 (6)C4—C51.460 (5)
O2—C31.356 (4)C5—C61.374 (5)
O2—C41.369 (4)C6—C71.379 (5)
N1—C31.281 (4)C6—H60.9500
N1—N21.411 (4)C7—C81.369 (5)
N2—C41.283 (4)C7—H70.9500
N3—C51.336 (4)C8—C91.365 (6)
N3—C91.341 (5)C8—H80.9500
C1—C21.507 (5)C9—H90.9500
C1—C2i1.507 (5)
C3—S1—C298.92 (17)N2—C4—C5129.3 (3)
C3—O2—C4101.9 (2)O2—C4—C5118.4 (3)
C3—N1—N2105.2 (3)N3—C5—C6123.6 (3)
C4—N2—N1106.7 (3)N3—C5—C4116.5 (3)
C5—N3—C9116.4 (3)C6—C5—C4119.9 (3)
O1—C1—C2123.7 (2)C5—C6—C7118.5 (3)
O1—C1—C2i123.7 (2)C5—C6—H6120.8
C2—C1—C2i112.6 (5)C7—C6—H6120.8
C1—C2—S1115.0 (3)C8—C7—C6118.8 (4)
C1—C2—H2A108.5C8—C7—H7120.6
S1—C2—H2A108.5C6—C7—H7120.6
C1—C2—H2B108.5C9—C8—C7119.0 (4)
S1—C2—H2B108.5C9—C8—H8120.5
H2A—C2—H2B107.5C7—C8—H8120.5
N1—C3—O2113.9 (3)N3—C9—C8123.7 (4)
N1—C3—S1129.8 (3)N3—C9—H9118.2
O2—C3—S1116.3 (2)C8—C9—H9118.2
N2—C4—O2112.3 (3)
C3—N1—N2—C40.3 (4)C3—O2—C4—C5179.9 (3)
O1—C1—C2—S113.9 (3)C9—N3—C5—C61.6 (5)
C2i—C1—C2—S1166.1 (3)C9—N3—C5—C4179.3 (3)
C3—S1—C2—C164.4 (3)N2—C4—C5—N3176.6 (3)
N2—N1—C3—O20.1 (4)O2—C4—C5—N33.8 (5)
N2—N1—C3—S1178.8 (3)N2—C4—C5—C62.5 (6)
C4—O2—C3—N10.2 (4)O2—C4—C5—C6177.1 (3)
C4—O2—C3—S1178.8 (2)N3—C5—C6—C70.4 (6)
C2—S1—C3—N10.5 (4)C4—C5—C6—C7179.4 (3)
C2—S1—C3—O2178.3 (3)C5—C6—C7—C80.9 (6)
N1—N2—C4—O20.5 (4)C6—C7—C8—C90.8 (6)
N1—N2—C4—C5179.8 (3)C5—N3—C9—C81.7 (6)
C3—O2—C4—N20.4 (4)C7—C8—C9—N30.5 (7)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2B···N3ii0.992.513.388 (4)148
C9—H9···N1iii0.952.543.449 (5)161
Symmetry codes: (ii) x+1/2, y+1/2, z+1/2; (iii) x+1/2, y1/2, z.

Experimental details

Crystal data
Chemical formulaC17H12N6O3S2
Mr412.45
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)14.266 (3), 7.8342 (16), 16.703 (3)
β (°) 100.25 (3)
V3)1837.0 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.32
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerSiemens SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.913, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
8929, 1607, 1448
Rint0.050
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.076, 0.134, 1.24
No. of reflections1607
No. of parameters128
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.21

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1994), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2B···N3i0.992.513.388 (4)148
C9—H9···N1ii0.952.543.449 (5)161
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1/2, y1/2, z.
 

Acknowledgements

This work was supported by the Natural Science Foundation of China.

References

First citationDu, M., Li, C.-P. & Guo, J.-H. (2006). Inorg. Chim. Acta, 359, 2575–2582.  Web of Science CrossRef CAS Google Scholar
First citationFang, Y.-Y., Liu, H., Du, M., Guo, Y.-M. & Bu, X.-H. (2002). J. Mol. Struct. 608, 229–233.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1994). SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSiemens (1996). SMART. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationWu, B.-L., Lou, B.-Y., Han, L. & Hong, M.-C. (2005). Acta Cryst. E61, o594–o595.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWu, B.-L., Wang, R.-Y., Ye, E., Zhang, H.-Y. & Hou, H.-W. (2010). Inorg. Chem. Commun. 13, 157–159.  Web of Science CSD CrossRef CAS Google Scholar
First citationYe, E., Wu, B.-L., Niu, Y.-Y., Zhang, H.-Y. & Hou, H.-W. (2007). Acta Cryst. C63, m484–m486.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds