organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

trans-2,3-Bis(2,4,5-tri­methyl-3-thien­yl)but-2-enedi­nitrile

aDepartment of Oral Biology, State University of New York at Buffalo, Buffalo, NY 14214, USA, bDepartment of Pharmaceutical Sciences, School of Pharmacy, State University of New York at Buffalo, Buffalo, NY 14260, USA, and cDepartment of Biology, Taiyuan Normal University, Taiyuan 030012, People's Republic of China
*Correspondence e-mail: sxyxy2010@yahoo.cn

(Received 4 January 2011; accepted 8 January 2011; online 15 January 2011)

In title compound, C18H18N2S2, the dihedral angle between two thio­phene rings is 61.83 (8)°.

Related literature

For related structures, see: Munakata et al. (1996[Munakata, M., Wu, L. P., Kuroda-Sowa, T., Maekawa, M., Suenaga, Y. & Furuichi, K. (1996). J. Am. Chem. Soc. 118, 3305-3306.]); Han et al. (2006[Han, J., Nabei, A., Suenaga, Y., Maekawa, M., Isihara, H., Kuroda-Sowa, T. & Munakata, M. (2006). Polyhedron, 25, 2483-2490.]).

[Scheme 1]

Experimental

Crystal data
  • C18H18N2S2

  • Mr = 326.46

  • Triclinic, [P \overline 1]

  • a = 8.8368 (10) Å

  • b = 9.1785 (10) Å

  • c = 11.4160 (12) Å

  • α = 85.271 (2)°

  • β = 71.058 (2)°

  • γ = 77.171 (2)°

  • V = 853.88 (16) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 273 K

  • 0.40 × 0.32 × 0.28 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.886, Tmax = 0.918

  • 5025 measured reflections

  • 3686 independent reflections

  • 2264 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.175

  • S = 1.06

  • 3686 reflections

  • 199 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In the crystal structure of the title compound, two substituted thiophene rings are trans positioned with respect to the dicyano group. The ring skeleton of the molecule is not planar. This diarylethene with thiophene rings is prepared in an attempt to construct thermally irreversible photochromic systems. The dicyano group was selected to shift the absorption maxima of the dihydro-type isomers to longer wavelengths.

All bond lengths and angles in title compound are normal and good agreement with those previously reported. (Munakata, et al., 1996; Han et al., 2006). The dihedral angles between the two thiophene (S1/C12—C15 and S2/C1—C4) rings is 61.83 °. No classical hydrogen bonds were found, the crystal structure was mainly stabilized by Van der Waals forces.

Related literature top

For related structures of compounds, see: Munakata et al. (1996); Han et al. (2006).

Experimental top

To 20 ml of 50% NaOH aqueous solution containing triethylbenzylammonium chloride (0.21 g, 0.0010 mol) was added a mixture of 2,3,5-trimethyl-4-(cyanomethyl)thiophene (16 g, 0.10 mol) and CCl4 (15 g, 0.10 mol) at 40 ° C. The solution was stirred for 1.5 h at 45 ° C. The reaction mixture was poured into water and the product was extracted with ether and chloroform. After the solvent was removed, the mixture of trans and cis forms was separated by column chlomatography on silica gel with light petroleum-CHCl3 (1: 1), collected the first yellow band, and then purified by recrystallization from a hexane-ether mixture. Single crystals suitable for X-ray measurements were obtained by recrystallization from methanol at room temperature for one week.

Refinement top

H atoms bonded to C atoms were treated as riding atoms, with C—H distances of 0.96 Å and Uiso(H) values of 1.5Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the title compound (I), with displacement ellipsoids drawn at the 40% probability level.
trans-2,3-Bis(2,4,5-trimethyl-3-thienyl)but-2-enedinitrile top
Crystal data top
C18H18N2S2Z = 2
Mr = 326.46F(000) = 344
Triclinic, P1Dx = 1.270 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.8368 (10) ÅCell parameters from 2501 reflections
b = 9.1785 (10) Åθ = 2.3–25.1°
c = 11.4160 (12) ŵ = 0.31 mm1
α = 85.271 (2)°T = 273 K
β = 71.058 (2)°Block, yellow
γ = 77.171 (2)°0.40 × 0.32 × 0.28 mm
V = 853.88 (16) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
3686 independent reflections
Radiation source: fine-focus sealed tube2264 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ϕ and ω scansθmax = 27.5°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 119
Tmin = 0.886, Tmax = 0.918k = 1111
5025 measured reflectionsl = 1314
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.175H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0826P)2 + 0.1249P]
where P = (Fo2 + 2Fc2)/3
3686 reflections(Δ/σ)max < 0.001
199 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C18H18N2S2γ = 77.171 (2)°
Mr = 326.46V = 853.88 (16) Å3
Triclinic, P1Z = 2
a = 8.8368 (10) ÅMo Kα radiation
b = 9.1785 (10) ŵ = 0.31 mm1
c = 11.4160 (12) ÅT = 273 K
α = 85.271 (2)°0.40 × 0.32 × 0.28 mm
β = 71.058 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3686 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2264 reflections with I > 2σ(I)
Tmin = 0.886, Tmax = 0.918Rint = 0.020
5025 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.175H-atom parameters constrained
S = 1.06Δρmax = 0.28 e Å3
3686 reflectionsΔρmin = 0.23 e Å3
199 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.36871 (11)0.71963 (9)0.60411 (8)0.0553 (3)
S20.40282 (12)0.15478 (10)0.92480 (9)0.0616 (3)
C120.2777 (4)0.4790 (3)0.6886 (3)0.0409 (7)
C20.2998 (4)0.1229 (3)0.8994 (3)0.0428 (7)
C100.2760 (4)0.3248 (3)0.7386 (3)0.0420 (7)
C150.1480 (4)0.5656 (3)0.6474 (2)0.0410 (7)
C130.4056 (4)0.5472 (4)0.6719 (3)0.0474 (8)
C80.2843 (4)0.2788 (3)0.8535 (3)0.0438 (7)
C110.2615 (4)0.2192 (4)0.6591 (3)0.0481 (8)
C140.1819 (4)0.6995 (3)0.5987 (3)0.0459 (7)
C30.1900 (4)0.0800 (3)1.0143 (3)0.0457 (7)
C10.4219 (4)0.0072 (3)0.8411 (3)0.0481 (8)
C40.2314 (4)0.0692 (4)1.0389 (3)0.0527 (8)
C180.0090 (4)0.5183 (4)0.6644 (3)0.0556 (9)
H18A0.07770.59310.62980.083*
H18B0.06360.50610.75120.083*
H18C0.01330.42520.62320.083*
N20.2477 (4)0.1424 (3)0.5914 (3)0.0682 (9)
C90.2797 (5)0.3908 (4)0.9369 (3)0.0543 (8)
C70.0454 (5)0.1843 (4)1.0961 (3)0.0654 (10)
H7A0.00880.13041.16730.098*
H7B0.02920.22581.05090.098*
H7C0.08160.26351.12230.098*
N10.2708 (5)0.4759 (4)1.0067 (3)0.0814 (11)
C60.5626 (4)0.0063 (4)0.7253 (3)0.0651 (10)
H6A0.55630.10480.68920.098*
H6B0.55880.06230.66770.098*
H6C0.66320.02420.74440.098*
C170.0801 (5)0.8252 (4)0.5472 (3)0.0655 (10)
H17A0.02000.79790.55060.098*
H17B0.13950.84460.46280.098*
H17C0.05580.91330.59530.098*
C160.5635 (4)0.4920 (4)0.6983 (4)0.0648 (10)
H16A0.56490.39450.73610.097*
H16B0.57450.55950.75360.097*
H16C0.65260.48660.62230.097*
C50.1468 (6)0.1591 (4)1.1464 (3)0.0789 (12)
H5A0.05410.09471.20090.118*
H5B0.22140.20431.19060.118*
H5C0.11080.23561.11640.118*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0595 (6)0.0513 (5)0.0576 (5)0.0242 (4)0.0145 (4)0.0040 (4)
S20.0718 (6)0.0429 (5)0.0699 (6)0.0036 (4)0.0276 (5)0.0013 (4)
C120.0455 (17)0.0419 (17)0.0338 (15)0.0106 (14)0.0097 (13)0.0001 (12)
C20.0490 (18)0.0417 (17)0.0398 (16)0.0079 (14)0.0178 (14)0.0006 (13)
C100.0425 (17)0.0417 (16)0.0412 (16)0.0105 (13)0.0110 (13)0.0025 (13)
C150.0431 (17)0.0462 (17)0.0327 (15)0.0112 (14)0.0094 (13)0.0006 (13)
C130.0443 (18)0.0493 (19)0.0475 (17)0.0128 (15)0.0104 (14)0.0026 (14)
C80.0510 (18)0.0394 (16)0.0399 (16)0.0092 (14)0.0126 (14)0.0028 (13)
C110.055 (2)0.0485 (19)0.0433 (17)0.0162 (15)0.0156 (15)0.0022 (15)
C140.0520 (19)0.0447 (18)0.0411 (16)0.0101 (15)0.0151 (14)0.0010 (14)
C30.0533 (19)0.0490 (18)0.0367 (16)0.0127 (15)0.0153 (14)0.0003 (13)
C10.0486 (19)0.0449 (18)0.0508 (18)0.0058 (15)0.0169 (15)0.0058 (15)
C40.069 (2)0.0485 (19)0.0479 (18)0.0186 (17)0.0261 (16)0.0059 (15)
C180.051 (2)0.063 (2)0.058 (2)0.0173 (17)0.0203 (16)0.0035 (17)
N20.084 (2)0.066 (2)0.0641 (19)0.0231 (17)0.0289 (17)0.0100 (17)
C90.073 (2)0.0437 (18)0.0458 (18)0.0077 (17)0.0213 (17)0.0013 (15)
C70.072 (2)0.065 (2)0.051 (2)0.0134 (19)0.0064 (18)0.0075 (17)
N10.130 (3)0.057 (2)0.060 (2)0.019 (2)0.032 (2)0.0110 (17)
C60.050 (2)0.064 (2)0.070 (2)0.0069 (18)0.0050 (18)0.0098 (19)
C170.084 (3)0.051 (2)0.063 (2)0.0120 (19)0.029 (2)0.0108 (17)
C160.050 (2)0.069 (2)0.081 (3)0.0162 (18)0.0243 (19)0.006 (2)
C50.117 (4)0.067 (3)0.060 (2)0.038 (2)0.031 (2)0.017 (2)
Geometric parameters (Å, º) top
S1—C131.716 (3)C4—C51.503 (5)
S1—C141.723 (3)C18—H18A0.9600
S2—C11.711 (3)C18—H18B0.9600
S2—C41.723 (4)C18—H18C0.9600
C12—C131.364 (4)C9—N11.133 (4)
C12—C151.432 (4)C7—H7A0.9600
C12—C101.483 (4)C7—H7B0.9600
C2—C11.370 (4)C7—H7C0.9600
C2—C31.441 (4)C6—H6A0.9600
C2—C81.476 (4)C6—H6B0.9600
C10—C81.364 (4)C6—H6C0.9600
C10—C111.433 (4)C17—H17A0.9600
C15—C141.361 (4)C17—H17B0.9600
C15—C181.493 (4)C17—H17C0.9600
C13—C161.492 (5)C16—H16A0.9600
C8—C91.443 (4)C16—H16B0.9600
C11—N21.140 (4)C16—H16C0.9600
C14—C171.502 (4)C5—H5A0.9600
C3—C41.367 (4)C5—H5B0.9600
C3—C71.500 (5)C5—H5C0.9600
C1—C61.491 (5)
C13—S1—C1492.95 (15)H18A—C18—H18B109.5
C1—S2—C493.19 (15)C15—C18—H18C109.5
C13—C12—C15114.4 (3)H18A—C18—H18C109.5
C13—C12—C10123.2 (3)H18B—C18—H18C109.5
C15—C12—C10122.3 (3)N1—C9—C8176.8 (4)
C1—C2—C3113.7 (3)C3—C7—H7A109.5
C1—C2—C8124.0 (3)C3—C7—H7B109.5
C3—C2—C8122.3 (3)H7A—C7—H7B109.5
C8—C10—C11118.9 (3)C3—C7—H7C109.5
C8—C10—C12124.9 (3)H7A—C7—H7C109.5
C11—C10—C12116.2 (2)H7B—C7—H7C109.5
C14—C15—C12111.4 (3)C1—C6—H6A109.5
C14—C15—C18124.7 (3)C1—C6—H6B109.5
C12—C15—C18123.8 (3)H6A—C6—H6B109.5
C12—C13—C16130.3 (3)C1—C6—H6C109.5
C12—C13—S1109.8 (2)H6A—C6—H6C109.5
C16—C13—S1119.8 (2)H6B—C6—H6C109.5
C10—C8—C9117.8 (3)C14—C17—H17A109.5
C10—C8—C2125.3 (3)C14—C17—H17B109.5
C9—C8—C2116.9 (3)H17A—C17—H17B109.5
N2—C11—C10175.8 (3)C14—C17—H17C109.5
C15—C14—C17129.5 (3)H17A—C17—H17C109.5
C15—C14—S1111.4 (2)H17B—C17—H17C109.5
C17—C14—S1119.1 (3)C13—C16—H16A109.5
C4—C3—C2111.6 (3)C13—C16—H16B109.5
C4—C3—C7123.7 (3)H16A—C16—H16B109.5
C2—C3—C7124.6 (3)C13—C16—H16C109.5
C2—C1—C6130.3 (3)H16A—C16—H16C109.5
C2—C1—S2110.3 (2)H16B—C16—H16C109.5
C6—C1—S2119.4 (2)C4—C5—H5A109.5
C3—C4—C5128.6 (3)C4—C5—H5B109.5
C3—C4—S2111.2 (2)H5A—C5—H5B109.5
C5—C4—S2120.2 (3)C4—C5—H5C109.5
C15—C18—H18A109.5H5A—C5—H5C109.5
C15—C18—H18B109.5H5B—C5—H5C109.5
C13—C12—C10—C861.6 (4)C12—C15—C14—C17178.7 (3)
C15—C12—C10—C8121.9 (3)C18—C15—C14—C172.8 (5)
C13—C12—C10—C11119.5 (3)C12—C15—C14—S10.3 (3)
C15—C12—C10—C1157.0 (4)C18—C15—C14—S1175.6 (2)
C13—C12—C15—C140.4 (4)C13—S1—C14—C150.1 (2)
C10—C12—C15—C14176.3 (3)C13—S1—C14—C17178.7 (3)
C13—C12—C15—C18175.5 (3)C1—C2—C3—C40.9 (4)
C10—C12—C15—C187.7 (4)C8—C2—C3—C4178.3 (3)
C15—C12—C13—C16177.6 (3)C1—C2—C3—C7179.5 (3)
C10—C12—C13—C160.9 (5)C8—C2—C3—C73.1 (5)
C15—C12—C13—S10.3 (3)C3—C2—C1—C6176.8 (3)
C10—C12—C13—S1176.4 (2)C8—C2—C1—C60.6 (5)
C14—S1—C13—C120.1 (2)C3—C2—C1—S20.6 (3)
C14—S1—C13—C16177.7 (3)C8—C2—C1—S2177.9 (2)
C11—C10—C8—C9173.0 (3)C4—S2—C1—C20.1 (3)
C12—C10—C8—C95.9 (5)C4—S2—C1—C6177.6 (3)
C11—C10—C8—C27.8 (5)C2—C3—C4—C5178.2 (3)
C12—C10—C8—C2173.3 (3)C7—C3—C4—C50.4 (5)
C1—C2—C8—C1055.5 (5)C2—C3—C4—S20.8 (3)
C3—C2—C8—C10127.3 (3)C7—C3—C4—S2179.4 (3)
C1—C2—C8—C9123.7 (3)C1—S2—C4—C30.4 (3)
C3—C2—C8—C953.5 (4)C1—S2—C4—C5178.7 (3)
C8—C10—C11—N2167 (5)C10—C8—C9—N1133 (7)
C12—C10—C11—N212 (5)C2—C8—C9—N148 (7)

Experimental details

Crystal data
Chemical formulaC18H18N2S2
Mr326.46
Crystal system, space groupTriclinic, P1
Temperature (K)273
a, b, c (Å)8.8368 (10), 9.1785 (10), 11.4160 (12)
α, β, γ (°)85.271 (2), 71.058 (2), 77.171 (2)
V3)853.88 (16)
Z2
Radiation typeMo Kα
µ (mm1)0.31
Crystal size (mm)0.40 × 0.32 × 0.28
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.886, 0.918
No. of measured, independent and
observed [I > 2σ(I)] reflections
5025, 3686, 2264
Rint0.020
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.175, 1.06
No. of reflections3686
No. of parameters199
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.23

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1999), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This research was sponsored by the National Science Foundation of Shanxi Province of China (No. 2009011038–3)

References

First citationBruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHan, J., Nabei, A., Suenaga, Y., Maekawa, M., Isihara, H., Kuroda-Sowa, T. & Munakata, M. (2006). Polyhedron, 25, 2483–2490.  Web of Science CSD CrossRef CAS Google Scholar
First citationMunakata, M., Wu, L. P., Kuroda-Sowa, T., Maekawa, M., Suenaga, Y. & Furuichi, K. (1996). J. Am. Chem. Soc. 118, 3305–3306.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds