metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[aqua­bis­­[2-(3-benzoyl­phen­yl)propano­ato-κ2O1,O1′]cadmium(II)]-μ-4,4′-bi­pyridine-κ2N:N′]

aDepartment of Food and Environmental Engineering, Heilongjiang East University, Harbin 150086, People's Republic of China, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 7 January 2011; accepted 10 January 2011; online 15 January 2011)

The 4,4′-bipyridine heterocycle in the polymeric title compound, [Cd(C16H13O3)2(C10H8N2)(H2O)]n, links adjacent Cd(II) ions into a chain running along the c axis. The Cd atom, which lies on a twofold rotation axis, is chelated by the carboxyl­ate unit and exists in a seven-coordinate penta­gonal–bipyramidal geometry. The apical sites are occupied by N atoms. The water mol­ecule also lies on the twofold rotation axis. The methyl substituent of the propano­ate group is disordered over two positions in a 1:1 ratio. O—H⋯O hydrogen bonding between water molecules and adjacent carboxylate O atoms is observed.

Related literature

For the crystal structure of the parent carb­oxy­lic acid, see: Briard & Rossi (1990[Briard, P. & Rossi, J. C. (1990). Acta Cryst. C46, 1036-1038.]). For related metal carboxyl­ates, see: Zhang et al. (2007a[Zhang, Z.-Y., Chen, P.-G., Deng, Z.-P., Yu, N. & Liu, B.-Y. (2007a). Acta Cryst. E63, m1900-m1901.],b[Zhang, Z.-Y., Yu, N., Guo, X.-X., Pu, J. & Sun, J.-P. (2007b). Acta Cryst. E63, m2883.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(C16H13O3)2(C10H8N2)(H2O)]

  • Mr = 793.13

  • Monoclinic, C 2/c

  • a = 28.3242 (5) Å

  • b = 6.2561 (2) Å

  • c = 23.6171 (4) Å

  • β = 119.539 (1)°

  • V = 3640.97 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.65 mm−1

  • T = 293 K

  • 0.21 × 0.17 × 0.15 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.875, Tmax = 0.908

  • 25489 measured reflections

  • 4128 independent reflections

  • 3904 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.083

  • S = 1.10

  • 4128 reflections

  • 246 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.86 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1w—H1⋯O2i 0.84 2.09 2.741 (3) 135
Symmetry code: (i) x, y+1, z.

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The drug, 2-(3-benzoylphenyl)propanoic acid (Kétoprofène) (Briard & Rossi, 1990), forms a small number of metal derivatives; in the cobalt(II) and nickel(II) derivatives, the carboxyl unit binds in a unidentate manner to the water-coordinated metal atoms (Zhang et al., 2007a, 2007b). In the title cadmium–4,4'-bipyridine adduct (Scheme I), the N-heterocycle links adjacent formula units into a chain running along the c-axis of the monoclinic unit cell. The cadmium atom, which lies on a twofold rotation axis, is chelated by the carboxyl unit and it exists in seven-coordinate pentagonal bipyramidal geometry. The apical sites are occupied by N atoms. The water molecule also lies on the twofold rotation axis (Fig. 1). The methyl subsituent of the carboxylate is disordered over two positions in a 1:1 ratio.

Related literature top

For the crystal structure of the parent carboxylic acid, see: Briard & Rossi (1990). For related metal carboxylates, see: Zhang et al. (2007a, 2007b).

Experimental top

Cadmium nitrate (1 mmol) and 4,4'-bipyridine (1 mmol) were dissolved in ethanol (50 ml); the solution was added to an aqueous solution (50 ml) of 2-(3-benzoylphenyl)propanoic acid (2 mmol). The pH was adjusted to 7 by the addition of aqueous sodium hydroxide. The solution was filtered and then set aside for the growth of crystal.

Refinement top

The methyl substitutent in the carboxylate is disordered over two positions; as the occupancy refined to nearly 50%, the occupancy was then fixed as 50:50. The pair of Cmethine–Cmethyl distances were restained to within 0.01 Å of each other.

All hydrogen atoms were generated geometrically (C–H 0.93 to 0.98, O–H 0.84; U 1.2 to 1.5 Ueq of the arrier atom).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of fragment of the polymeric Cd(H2O)(C10H8N2)(C16H13O3)2 chain at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius. The disorder is not shown.
catena-Poly[[aquabis[2-(3-benzoylphenyl)propanoato- κ2O1,O1']cadmium(II)]-µ-4,4'-bipyridine- κ2N:N'] top
Crystal data top
[Cd(C16H13O3)2(C10H8N2)(H2O)]F(000) = 1624
Mr = 793.13Dx = 1.447 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 24003 reflections
a = 28.3242 (5) Åθ = 3.2–27.4°
b = 6.2561 (2) ŵ = 0.65 mm1
c = 23.6171 (4) ÅT = 293 K
β = 119.539 (1)°Prism, colorless
V = 3640.97 (15) Å30.21 × 0.17 × 0.15 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4128 independent reflections
Radiation source: fine-focus sealed tube3904 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
Detector resolution: 10.000 pixels mm-1θmax = 27.4°, θmin = 3.2°
ω scansh = 3633
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 88
Tmin = 0.875, Tmax = 0.908l = 2930
25489 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.083H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0418P)2 + 4.0713P]
where P = (Fo2 + 2Fc2)/3
4128 reflections(Δ/σ)max = 0.001
246 parametersΔρmax = 0.86 e Å3
1 restraintΔρmin = 0.32 e Å3
Crystal data top
[Cd(C16H13O3)2(C10H8N2)(H2O)]V = 3640.97 (15) Å3
Mr = 793.13Z = 4
Monoclinic, C2/cMo Kα radiation
a = 28.3242 (5) ŵ = 0.65 mm1
b = 6.2561 (2) ÅT = 293 K
c = 23.6171 (4) Å0.21 × 0.17 × 0.15 mm
β = 119.539 (1)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4128 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
3904 reflections with I > 2σ(I)
Tmin = 0.875, Tmax = 0.908Rint = 0.023
25489 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0321 restraint
wR(F2) = 0.083H-atom parameters constrained
S = 1.10Δρmax = 0.86 e Å3
4128 reflectionsΔρmin = 0.32 e Å3
246 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cd10.50000.57510 (3)0.75000.03727 (8)
O10.40639 (7)0.6179 (3)0.67563 (9)0.0607 (5)
O20.43201 (9)0.2876 (3)0.70014 (11)0.0704 (5)
O30.40988 (11)0.0777 (4)0.45591 (12)0.0850 (7)
O1W0.50000.9428 (4)0.75000.0785 (10)
H10.46790.98760.73030.118*
N10.50515 (8)0.5506 (3)0.65299 (9)0.0442 (4)
C10.39770 (10)0.4249 (5)0.66638 (11)0.0532 (6)
C20.34256 (14)0.3558 (9)0.60990 (15)0.1154 (18)
H20.35000.20340.60860.138*0.50
H2'0.31860.46120.61360.138*0.50
C30.3003 (2)0.3399 (14)0.6217 (3)0.0763 (17)0.50
H3A0.31350.29570.66590.114*0.50
H3B0.27470.23660.59270.114*0.50
H3C0.28280.47640.61470.114*0.50
C3'0.3174 (3)0.1758 (11)0.6087 (3)0.0765 (18)0.50
H3'10.32170.14940.65110.115*0.50
H3'20.33280.05950.59670.115*0.50
H3'30.27950.18830.57750.115*0.50
C40.33928 (11)0.4258 (6)0.54630 (13)0.0717 (10)
C50.35646 (10)0.2915 (5)0.51355 (11)0.0600 (7)
H50.36990.15680.53040.072*
C60.35392 (10)0.3555 (4)0.45536 (11)0.0512 (5)
C70.33546 (11)0.5580 (4)0.43111 (13)0.0561 (6)
H70.33400.60250.39270.067*
C80.31913 (12)0.6943 (6)0.46458 (15)0.0712 (8)
H80.30700.83120.44880.085*
C90.32088 (12)0.6274 (7)0.52109 (16)0.0799 (10)
H90.30940.71980.54280.096*
C100.37381 (11)0.2037 (4)0.42323 (12)0.0561 (6)
C110.34975 (11)0.2039 (4)0.35106 (12)0.0523 (5)
C120.29677 (12)0.2666 (5)0.30938 (14)0.0625 (7)
H120.27510.31450.32620.075*
C130.27593 (15)0.2578 (6)0.24244 (15)0.0805 (9)
H130.24040.30000.21440.097*
C140.30791 (18)0.1868 (6)0.21779 (16)0.0863 (11)
H140.29380.18030.17300.104*
C150.36051 (17)0.1253 (6)0.25842 (18)0.0837 (10)
H150.38210.07960.24120.100*
C160.38120 (13)0.1315 (5)0.32456 (15)0.0671 (7)
H160.41660.08680.35200.080*
C170.47859 (10)0.6901 (4)0.60522 (10)0.0496 (5)
H170.46080.80290.61250.060*
C180.47596 (10)0.6764 (4)0.54526 (10)0.0492 (5)
H180.45710.77940.51360.059*
C190.50120 (9)0.5111 (4)0.53218 (9)0.0419 (4)
C200.52919 (13)0.3651 (5)0.58225 (12)0.0653 (8)
H200.54710.25030.57620.078*
C210.53023 (13)0.3917 (5)0.64114 (12)0.0634 (8)
H210.54950.29320.67410.076*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.04538 (13)0.04118 (13)0.02536 (11)0.0000.01752 (9)0.000
O10.0547 (10)0.0751 (14)0.0467 (10)0.0085 (9)0.0207 (8)0.0110 (9)
O20.0836 (14)0.0608 (13)0.0684 (12)0.0055 (11)0.0386 (11)0.0031 (10)
O30.1018 (17)0.0817 (16)0.0668 (14)0.0390 (13)0.0380 (13)0.0248 (11)
O1W0.0694 (18)0.0446 (16)0.093 (2)0.0000.0182 (18)0.000
N10.0528 (10)0.0534 (12)0.0303 (8)0.0050 (8)0.0236 (8)0.0042 (7)
C10.0472 (12)0.082 (2)0.0352 (11)0.0121 (12)0.0238 (10)0.0136 (11)
C20.077 (2)0.227 (5)0.0424 (15)0.081 (3)0.0299 (15)0.035 (2)
C30.046 (3)0.108 (5)0.070 (4)0.010 (3)0.025 (3)0.004 (4)
C3'0.087 (4)0.084 (5)0.058 (3)0.036 (4)0.035 (3)0.007 (3)
C40.0467 (13)0.121 (3)0.0383 (13)0.0263 (16)0.0142 (11)0.0198 (15)
C50.0533 (13)0.0784 (19)0.0374 (11)0.0092 (12)0.0139 (10)0.0032 (12)
C60.0487 (12)0.0573 (14)0.0383 (11)0.0031 (11)0.0144 (9)0.0004 (10)
C70.0565 (14)0.0568 (16)0.0402 (12)0.0005 (11)0.0124 (10)0.0020 (10)
C80.0612 (15)0.069 (2)0.0603 (17)0.0041 (14)0.0122 (13)0.0176 (14)
C90.0555 (16)0.114 (3)0.0595 (18)0.0091 (17)0.0202 (13)0.0391 (19)
C100.0635 (14)0.0530 (15)0.0495 (13)0.0027 (12)0.0260 (11)0.0097 (11)
C110.0624 (14)0.0463 (14)0.0490 (13)0.0069 (11)0.0282 (11)0.0004 (10)
C120.0649 (15)0.0590 (17)0.0550 (14)0.0027 (12)0.0228 (12)0.0084 (12)
C130.089 (2)0.069 (2)0.0538 (16)0.0030 (17)0.0120 (15)0.0080 (14)
C140.124 (3)0.082 (2)0.0515 (16)0.014 (2)0.0419 (19)0.0025 (16)
C150.107 (3)0.093 (3)0.076 (2)0.019 (2)0.064 (2)0.0076 (19)
C160.0711 (17)0.0711 (19)0.0688 (18)0.0083 (14)0.0420 (15)0.0003 (14)
C170.0615 (13)0.0566 (15)0.0361 (11)0.0146 (11)0.0282 (10)0.0063 (10)
C180.0603 (13)0.0560 (14)0.0334 (10)0.0153 (11)0.0247 (10)0.0113 (9)
C190.0490 (11)0.0509 (12)0.0291 (10)0.0035 (9)0.0217 (8)0.0042 (9)
C200.101 (2)0.0636 (17)0.0439 (13)0.0355 (16)0.0457 (14)0.0172 (12)
C210.096 (2)0.0645 (17)0.0384 (12)0.0317 (15)0.0397 (13)0.0189 (11)
Geometric parameters (Å, º) top
Cd1—O1W2.301 (3)C6—C71.382 (4)
Cd1—O1i2.3653 (18)C6—C101.489 (4)
Cd1—O12.3653 (18)C7—C81.388 (4)
Cd1—N12.3713 (17)C7—H70.9300
Cd1—N1i2.3713 (17)C8—C91.376 (5)
Cd1—O22.469 (2)C8—H80.9300
Cd1—O2i2.469 (2)C9—H90.9300
O1—C11.230 (3)C10—C111.491 (3)
O2—C11.247 (4)C11—C121.385 (4)
O3—C101.218 (3)C11—C161.393 (4)
O1W—H10.8400C12—C131.390 (4)
N1—C171.328 (3)C12—H120.9300
N1—C211.329 (3)C13—C141.370 (5)
C1—C21.534 (4)C13—H130.9300
C2—C3'1.325 (6)C14—C151.371 (6)
C2—C31.360 (6)C14—H140.9300
C2—C41.523 (4)C15—C161.372 (4)
C2—H20.9800C15—H150.9300
C2—H2'0.9800C16—H160.9300
C3—H3A0.9600C17—C181.384 (3)
C3—H3B0.9600C17—H170.9300
C3—H3C0.9600C18—C191.376 (3)
C3'—H3'10.9600C18—H180.9300
C3'—H3'20.9600C19—C201.392 (3)
C3'—H3'30.9600C19—C19ii1.494 (4)
C4—C91.382 (5)C20—C211.387 (3)
C4—C51.383 (4)C20—H200.9300
C5—C61.399 (3)C21—H210.9300
C5—H50.9300
O1W—Cd1—O1i83.50 (5)C2—C3'—H3'3109.5
O1W—Cd1—O183.50 (5)H3'1—C3'—H3'3109.5
O1i—Cd1—O1167.01 (11)H3'2—C3'—H3'3109.5
O1W—Cd1—N193.71 (5)C9—C4—C5118.4 (3)
O1i—Cd1—N198.30 (7)C9—C4—C2120.9 (4)
O1—Cd1—N182.55 (7)C5—C4—C2120.7 (4)
O1W—Cd1—N1i93.71 (5)C4—C5—C6120.9 (3)
O1i—Cd1—N1i82.55 (7)C4—C5—H5119.5
O1—Cd1—N1i98.30 (7)C6—C5—H5119.5
N1—Cd1—N1i172.58 (10)C7—C6—C5119.7 (3)
O1W—Cd1—O2136.77 (6)C7—C6—C10122.3 (2)
O1i—Cd1—O2139.63 (8)C5—C6—C10118.0 (3)
O1—Cd1—O253.34 (8)C6—C7—C8119.4 (3)
N1—Cd1—O284.10 (7)C6—C7—H7120.3
N1i—Cd1—O290.49 (7)C8—C7—H7120.3
O1W—Cd1—O2i136.77 (6)C9—C8—C7120.2 (3)
O1i—Cd1—O2i53.34 (8)C9—C8—H8119.9
O1—Cd1—O2i139.63 (8)C7—C8—H8119.9
N1—Cd1—O2i90.49 (7)C8—C9—C4121.4 (3)
N1i—Cd1—O2i84.10 (7)C8—C9—H9119.3
O2—Cd1—O2i86.47 (11)C4—C9—H9119.3
C1—O1—Cd194.23 (16)O3—C10—C6120.0 (2)
C1—O2—Cd188.96 (17)O3—C10—C11119.5 (3)
Cd1—O1W—H1109.5C6—C10—C11120.5 (2)
C17—N1—C21116.76 (19)C12—C11—C16118.8 (3)
C17—N1—Cd1119.96 (15)C12—C11—C10122.5 (2)
C21—N1—Cd1123.07 (15)C16—C11—C10118.7 (3)
O1—C1—O2122.6 (2)C11—C12—C13120.1 (3)
O1—C1—C2117.4 (3)C11—C12—H12120.0
O2—C1—C2120.0 (3)C13—C12—H12120.0
O1—C1—Cd159.23 (13)C14—C13—C12119.8 (3)
O2—C1—Cd164.04 (14)C14—C13—H13120.1
C2—C1—Cd1169.56 (19)C12—C13—H13120.1
C3'—C2—C354.9 (5)C13—C14—C15120.8 (3)
C3'—C2—C4116.9 (4)C13—C14—H14119.6
C3—C2—C4126.2 (4)C15—C14—H14119.6
C3'—C2—C1124.3 (5)C14—C15—C16119.7 (3)
C3—C2—C1117.7 (4)C14—C15—H15120.1
C4—C2—C1108.5 (2)C16—C15—H15120.1
C3'—C2—H245.1C15—C16—C11120.8 (3)
C3—C2—H299.2C15—C16—H16119.6
C4—C2—H299.2C11—C16—H16119.6
C1—C2—H299.2N1—C17—C18123.4 (2)
C3'—C2—H2'100.7N1—C17—H17118.3
C3—C2—H2'46.6C18—C17—H17118.3
C4—C2—H2'100.7C19—C18—C17120.3 (2)
C1—C2—H2'100.7C19—C18—H18119.9
H2—C2—H2'145.7C17—C18—H18119.9
C2—C3—H3A109.5C18—C19—C20116.36 (19)
C2—C3—H3B109.5C18—C19—C19ii122.0 (3)
H3A—C3—H3B109.5C20—C19—C19ii121.6 (3)
C2—C3—H3C109.5C21—C20—C19119.7 (2)
H3A—C3—H3C109.5C21—C20—H20120.2
H3B—C3—H3C109.5C19—C20—H20120.2
C2—C3'—H3'1109.5N1—C21—C20123.5 (2)
C2—C3'—H3'2109.5N1—C21—H21118.3
H3'1—C3'—H3'2109.5C20—C21—H21118.3
O1W—Cd1—O1—C1177.46 (15)Cd1—C1—C2—C42.5 (18)
O1i—Cd1—O1—C1177.46 (15)C3'—C2—C4—C9126.0 (6)
N1—Cd1—O1—C182.84 (15)C3—C2—C4—C961.3 (7)
N1i—Cd1—O1—C189.72 (15)C1—C2—C4—C987.2 (4)
O2—Cd1—O1—C15.33 (14)C3'—C2—C4—C556.3 (6)
O2i—Cd1—O1—C10.9 (2)C3—C2—C4—C5120.9 (7)
C1i—Cd1—O1—C17.4 (4)C1—C2—C4—C590.5 (4)
O1W—Cd1—O2—C19.29 (18)C9—C4—C5—C61.7 (4)
O1i—Cd1—O2—C1175.73 (14)C2—C4—C5—C6179.5 (2)
O1—Cd1—O2—C15.24 (14)C4—C5—C6—C71.9 (4)
N1—Cd1—O2—C179.84 (15)C4—C5—C6—C10179.2 (2)
N1i—Cd1—O2—C1105.24 (15)C5—C6—C7—C80.7 (4)
O2i—Cd1—O2—C1170.71 (18)C10—C6—C7—C8177.9 (3)
C1i—Cd1—O2—C1175.28 (10)C6—C7—C8—C90.6 (4)
O1W—Cd1—N1—C1737.10 (19)C7—C8—C9—C40.7 (5)
O1i—Cd1—N1—C17121.1 (2)C5—C4—C9—C80.4 (4)
O1—Cd1—N1—C1745.85 (19)C2—C4—C9—C8178.2 (3)
O2—Cd1—N1—C1799.6 (2)C7—C6—C10—O3147.3 (3)
O2i—Cd1—N1—C17174.0 (2)C5—C6—C10—O329.9 (4)
O1W—Cd1—N1—C21148.4 (2)C7—C6—C10—C1132.9 (4)
O1i—Cd1—N1—C2164.5 (2)C5—C6—C10—C11149.9 (2)
O1—Cd1—N1—C21128.6 (2)O3—C10—C11—C12151.6 (3)
O2—Cd1—N1—C2174.9 (2)C6—C10—C11—C1228.2 (4)
O2i—Cd1—N1—C2111.5 (2)O3—C10—C11—C1626.2 (4)
C1—Cd1—N1—C21101.9 (2)C6—C10—C11—C16154.0 (3)
C1i—Cd1—N1—C2137.7 (2)C16—C11—C12—C130.4 (4)
Cd1—O1—C1—O210.1 (3)C10—C11—C12—C13178.1 (3)
Cd1—O1—C1—C2168.7 (2)C11—C12—C13—C140.1 (5)
Cd1—O2—C1—O19.6 (3)C12—C13—C14—C150.4 (6)
Cd1—O2—C1—C2169.1 (2)C13—C14—C15—C161.1 (6)
O1W—Cd1—C1—O12.68 (16)C14—C15—C16—C111.4 (5)
O1i—Cd1—C1—O1177.57 (14)C12—C11—C16—C151.0 (5)
N1—Cd1—C1—O193.06 (15)C10—C11—C16—C15178.9 (3)
N1i—Cd1—C1—O193.98 (15)C21—N1—C17—C180.2 (4)
O2—Cd1—C1—O1170.6 (2)Cd1—N1—C17—C18174.6 (2)
O2i—Cd1—C1—O1179.35 (14)N1—C17—C18—C190.6 (4)
O1—C1—C2—C3'150.3 (5)C17—C18—C19—C200.8 (4)
O2—C1—C2—C3'30.9 (6)C17—C18—C19—C19ii179.3 (3)
Cd1—C1—C2—C3'141.2 (14)C18—C19—C20—C210.2 (5)
O1—C1—C2—C385.7 (6)C19ii—C19—C20—C21179.9 (3)
O2—C1—C2—C395.5 (6)C17—N1—C21—C200.9 (5)
Cd1—C1—C2—C3154.1 (13)Cd1—N1—C21—C20173.8 (3)
O1—C1—C2—C465.9 (4)C19—C20—C21—N10.7 (5)
O2—C1—C2—C4112.9 (4)
Symmetry codes: (i) x+1, y, z+3/2; (ii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H1···O2iii0.842.092.741 (3)135
Symmetry code: (iii) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Cd(C16H13O3)2(C10H8N2)(H2O)]
Mr793.13
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)28.3242 (5), 6.2561 (2), 23.6171 (4)
β (°) 119.539 (1)
V3)3640.97 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.65
Crystal size (mm)0.21 × 0.17 × 0.15
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.875, 0.908
No. of measured, independent and
observed [I > 2σ(I)] reflections
25489, 4128, 3904
Rint0.023
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.083, 1.10
No. of reflections4128
No. of parameters246
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.86, 0.32

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H1···O2i0.842.092.741 (3)135
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

We thank Heilongjiang East University and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBriard, P. & Rossi, J. C. (1990). Acta Cryst. C46, 1036–1038.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, Z.-Y., Chen, P.-G., Deng, Z.-P., Yu, N. & Liu, B.-Y. (2007a). Acta Cryst. E63, m1900–m1901.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, Z.-Y., Yu, N., Guo, X.-X., Pu, J. & Sun, J.-P. (2007b). Acta Cryst. E63, m2883.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds