metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 2| February 2011| Pages m257-m258

Tris(ethane-1,2-di­amine-κ2N,N′)nickel(II) 5-hy­dr­oxy­isophthalate monohydrate

aCollege of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, People's Republic of China, bKey Laboratory of Polymer Functional Materials, College of Chemical Engineering and Material, Heilongjiang University, Harbin 150080, People's Republic of China, and cInstitute of Petrochemistry, HLJ Academy of Sciences, Harbin 150040, People's Republic of China
*Correspondence e-mail: wangc_93@yahoo.com

(Received 8 December 2010; accepted 20 January 2011; online 26 January 2011)

The asymmetric unit of the title compound, [Ni(C2H8N2)3](C8H4O5)·H2O, contains one [Ni(en)3]2+ cation (en is ethane-1,2-diamine), one 5-hy­droxy­isophthalate dianion and one water mol­ecule. In the cation, the Ni2+ ion is coordinated by six N atoms from three ethyl­enediamine ligands in a distorted octa­hedral geometry. The complex ions and water mol­ecules are linked by weak N—H⋯N/O and O—H⋯N/O hydrogen bonds into a three-demensional structure.

Related literature

For the construction of supra­molecular networks, see: Colacio et al. (2002[Colacio, E., Lloret, F., Kivekäs, F., Ruiz, R. J., Suárez-Varela, J. & Sundberg, M. R. (2002). Chem. Commun. pp. 592-593.]); Guilera & Steed (1999[Guilera, G. & Steed, J. W. (1999). Chem. Commun. pp. 1563-1564.]); Roesky & Andruh (2003[Roesky, H. W. & Andruh, M. (2003). Coord. Chem. Rev. 236, 91-119.]). For the structures of compounds with 5-hy­droxy­isophthalic acid, see: Braverman & LaDuca (2007[Braverman, M. A. & LaDuca, R. L. (2007). Acta Cryst. E63, o3167.]); Feller & Cheetham (2009[Feller, R. K. & Cheetham, A. K. (2009). CrystEngComm, 11, 980-985.]); Li et al. (2005[Li, X. J., Cao, R., Bi, W. H., Wang, Y. Q., Wang, Y. L. & Li, X. (2005). Polyhedron, 24, 2955-2962.]); Shao et al. (2009[Shao, K. Z., Zhao, Y. H., Wang, X. L., Lan, Y. Q., Wang, D. J., Su, Z. M. & Wang, R. S. (2009). Inorg. Chem. 48, 10-12.]); Wang et al. (2007[Wang, M.-H., Wu, J.-G. & Luan, G.-Y. (2007). Acta Cryst. E63, m1039-m1041.]); Xu & Li (2004[Xu, H. T. & Li, Y. D. (2004). J. Mol. Struct. 690, 137-143.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C2H8N2)3](C8H4O5)·H2O

  • Mr = 437.13

  • Monoclinic, P 21 /c

  • a = 8.208 (5) Å

  • b = 14.590 (5) Å

  • c = 16.581 (5) Å

  • β = 97.747 (5)°

  • V = 1967.5 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.03 mm−1

  • T = 293 K

  • 0.10 × 0.08 × 0.06 mm

Data collection
  • Bruker APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.906, Tmax = 0.940

  • 8306 measured reflections

  • 3656 independent reflections

  • 2997 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.092

  • S = 1.00

  • 3656 reflections

  • 258 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Selected bond lengths (Å)

Ni1—N5 2.112 (2)
Ni1—N4 2.120 (2)
Ni1—N2 2.123 (2)
Ni1—N3 2.129 (2)
Ni1—N6 2.135 (2)
Ni1—N1 2.139 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H4⋯O2i 0.82 1.80 2.618 (2) 174
N5—H14⋯O4ii 0.90 2.09 2.958 (3) 161
N5—H13⋯O4iii 0.90 2.38 3.238 (3) 159
N5—H13⋯O3iii 0.90 2.50 3.266 (3) 143
N4—H19⋯O6iv 0.90 2.30 3.173 (3) 162
N4—H20⋯O3iii 0.90 2.11 2.924 (3) 150
N3—H31⋯O4ii 0.90 2.14 3.011 (3) 162
N3—H32⋯O2v 0.90 2.41 3.214 (3) 148
N2—H27⋯O6iv 0.90 2.27 3.097 (3) 152
N2—H28⋯O1v 0.90 2.34 3.190 (3) 157
N6—H16⋯O5vi 0.90 2.42 3.292 (3) 164
N6—H15⋯O1v 0.90 2.49 3.285 (3) 148
O6—H5⋯O1v 0.82 (2) 2.28 (2) 3.076 (4) 165 (3)
O6—H6⋯O1vi 0.83 (2) 1.94 (2) 2.749 (3) 167 (3)
N1—H26⋯O3iii 0.92 (2) 2.08 (2) 2.953 (3) 158 (2)
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) x+1, y, z; (v) -x+1, -y+1, -z+2; (vi) x, y-1, z.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

There has been considerable interest in the crystal engineering of supramolecular architectures organized and sustained by means of coordinate covalent supramolecular contacts (such as hydrogen bonds), aurophilicity interactions, and so on (Colacio et al., 2002; Roesky & Andruh, 2003; Guilera & Steed, 1999). As a multidentate ligand, 5-hydroxyisophthalic acid has two rigid carboxyl groups but also one exible hydroxyl group. Therefore, 5-hydroxyisophthalic acid has been widely reported as a good candidate not only in the construction of various coordination polymers but also in the construction of supramolecular networks (Braverman & LaDuca, 2007; Feller & Cheetham, 2009; Li et al., 2005; Shao et al., 2009; Wang et al., 2007; Xu & Li, 2004).

The molecular structure of the title compound is illustrated in Fig. 1, and selected geometric parameters are listed in Table 1. The asymmetric unit of the title compound, [Ni(C2H8N2)3] [C8H4O5]. H2O, contains one [Ni(en)3]2+ cation, one 5-hydroxyisophthalatedianion and one water molecules. In the title compound, the Ni2+ ion is coordinated by six N atoms from three ethylenediamine ligands in a distorted octahedral geometry. Note that a three-dimensional supramolecular hydrogen-bonding network is observed in the crystal structure of the title compound; details are given in Table 2.

Related literature top

For the construction of supramolecular networks, see: Colacio et al. (2002); Guilera & Steed (1999); Roesky & Andruh (2003). For the structures of compounds with 5-hydroxyisophthalic acid, see: Braverman & LaDuca (2007); Feller & Cheetham (2009); Li et al. (2005); Shao et al. (2009); Wang et al. (2007); Xu & Li (2004).

Experimental top

All chemicals were purchased from commercial sources and used without further purification. A mixture of nickel nitrate (Ni(NO3)2. 3H2O (0.5 mmol), 5-hydroxyisophthalic acid (0.5 mmol) and ethylenediamine (0.1 mL) were dissolved in methanol (20 mL). The reaction mixture was stirred for 2 h at 313 K. The filtrate was kept at room temperature and brown block like single crystals were obtained after 3 months.

Refinement top

H atoms are treated by a mixture of independent and constrained refinement.

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of [Ni(C2H8N2)3] [C8H4O5]. H2O, with the atom labeling, showing displacement at the 30% ellipsoids probability level.
[Figure 2] Fig. 2. View of three-dimensional supramolecule framework of [Ni(C2H8N2)3] [C8H4O5]. H2O, with hydrogen bonds indicated by dashed lines.
Tris(ethane-1,2-diamine-κ2N,N')nickel(II) 5-hydroxyisophthalate monohydrate top
Crystal data top
[Ni(C2H8N2)3](C8H4O5)·H2OF(000) = 928
Mr = 437.13Dx = 1.476 Mg m3
Dm = 1.476 Mg m3
Dm measured by not measured
Monoclinic, P21/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ybcCell parameters from 3656 reflections
a = 8.208 (5) Åθ = 2.0–51.0°
b = 14.590 (5) ŵ = 1.03 mm1
c = 16.581 (5) ÅT = 293 K
β = 97.747 (5)°Block, brown
V = 1967.5 (15) Å30.10 × 0.08 × 0.06 mm
Z = 4
Data collection top
Bruker APEX CCD area-detector
diffractometer
3656 independent reflections
Radiation source: fine-focus sealed tube2997 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ω scansθmax = 25.5°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 89
Tmin = 0.906, Tmax = 0.940k = 1617
8306 measured reflectionsl = 209
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0592P)2 + 0.2444P]
where P = (Fo2 + 2Fc2)/3
3656 reflections(Δ/σ)max = 0.004
258 parametersΔρmax = 0.45 e Å3
4 restraintsΔρmin = 0.39 e Å3
Crystal data top
[Ni(C2H8N2)3](C8H4O5)·H2OV = 1967.5 (15) Å3
Mr = 437.13Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.208 (5) ŵ = 1.03 mm1
b = 14.590 (5) ÅT = 293 K
c = 16.581 (5) Å0.10 × 0.08 × 0.06 mm
β = 97.747 (5)°
Data collection top
Bruker APEX CCD area-detector
diffractometer
3656 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2997 reflections with I > 2σ(I)
Tmin = 0.906, Tmax = 0.940Rint = 0.026
8306 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0324 restraints
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.45 e Å3
3656 reflectionsΔρmin = 0.39 e Å3
258 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.91637 (3)0.259626 (17)0.974252 (16)0.02383 (11)
O50.4795 (2)1.20853 (10)0.77712 (10)0.0387 (4)
H40.53191.24120.74970.058*
C41.2188 (3)0.3041 (2)1.08329 (16)0.0453 (6)
H171.19930.36931.08880.054*
H181.33430.29221.10100.054*
C90.4722 (3)0.96063 (13)0.79873 (13)0.0247 (5)
O20.3689 (2)0.81120 (11)0.81877 (12)0.0564 (6)
O30.8221 (2)0.88664 (12)0.64932 (12)0.0527 (5)
O40.8811 (2)1.03211 (12)0.62789 (11)0.0469 (5)
N50.8745 (2)0.40180 (13)0.95883 (12)0.0338 (4)
H140.89490.43081.00710.041*
H130.94110.42520.92510.041*
C130.5152 (3)1.11865 (13)0.76445 (13)0.0263 (5)
C110.6694 (2)0.99956 (13)0.70870 (12)0.0232 (4)
O10.3348 (3)0.91643 (12)0.90927 (12)0.0614 (6)
N41.1751 (2)0.27597 (14)0.99752 (13)0.0352 (5)
H191.22540.22280.98850.042*
H201.20800.31890.96420.042*
N30.9414 (3)0.26683 (14)1.10360 (12)0.0369 (5)
H310.91010.32241.11930.044*
H320.87760.22421.12300.044*
C80.8013 (3)0.97061 (15)0.65782 (13)0.0300 (5)
C100.5897 (3)0.93413 (14)0.74970 (13)0.0254 (5)
H20.61460.87240.74460.030*
C120.6296 (3)1.09163 (13)0.71495 (12)0.0248 (4)
H30.68001.13530.68580.030*
C140.4373 (3)1.05317 (14)0.80625 (13)0.0283 (5)
H10.36091.07140.83970.034*
N20.9402 (2)0.11470 (13)0.97466 (11)0.0359 (5)
H271.04040.09850.99950.043*
H280.86420.08941.00210.043*
N10.9271 (3)0.24104 (13)0.84709 (13)0.0346 (5)
N60.6543 (3)0.25611 (13)0.96287 (14)0.0384 (5)
H160.61250.23140.91480.046*
H150.62140.22211.00300.046*
C70.3851 (3)0.89121 (15)0.84474 (15)0.0338 (5)
C10.9958 (3)0.14870 (17)0.83782 (15)0.0386 (6)
H211.11390.14970.85400.046*
H240.97470.12980.78130.046*
C20.9176 (3)0.08176 (16)0.89022 (15)0.0436 (6)
H220.80120.07610.87070.052*
H230.96790.02190.88750.052*
C50.5970 (3)0.35214 (19)0.96839 (17)0.0465 (7)
H110.60520.37051.02500.056*
H100.48280.35690.94450.056*
C60.7013 (3)0.41394 (18)0.92398 (18)0.0464 (7)
H120.68690.39870.86650.056*
H90.66860.47730.92960.056*
C31.1144 (3)0.25055 (18)1.13507 (16)0.0436 (6)
H301.13930.18571.13270.052*
H291.13690.27041.19130.052*
O60.3136 (3)0.07283 (15)0.99974 (13)0.0559 (5)
H50.399 (3)0.074 (2)1.0317 (17)0.067*
H60.335 (4)0.0285 (17)0.9720 (17)0.067*
H261.001 (3)0.2840 (15)0.8337 (15)0.041 (7)*
H250.827 (3)0.2482 (17)0.8153 (16)0.046 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.02321 (18)0.02431 (16)0.02524 (17)0.00172 (10)0.00789 (12)0.00261 (10)
O50.0551 (11)0.0185 (7)0.0477 (10)0.0084 (7)0.0258 (9)0.0027 (7)
C40.0298 (14)0.0588 (17)0.0457 (15)0.0068 (12)0.0003 (12)0.0092 (13)
C90.0259 (11)0.0224 (10)0.0270 (11)0.0007 (8)0.0086 (9)0.0007 (8)
O20.0734 (14)0.0239 (9)0.0829 (14)0.0119 (8)0.0509 (12)0.0092 (9)
O30.0599 (12)0.0319 (9)0.0750 (13)0.0058 (8)0.0414 (11)0.0119 (9)
O40.0528 (11)0.0409 (10)0.0549 (11)0.0008 (8)0.0363 (9)0.0066 (8)
N50.0342 (11)0.0324 (10)0.0368 (11)0.0025 (8)0.0123 (9)0.0024 (8)
C130.0324 (12)0.0182 (10)0.0293 (11)0.0053 (8)0.0079 (9)0.0007 (8)
C110.0242 (11)0.0236 (10)0.0226 (10)0.0003 (8)0.0058 (9)0.0014 (8)
O10.1002 (16)0.0370 (10)0.0593 (13)0.0193 (10)0.0558 (12)0.0076 (8)
N40.0284 (11)0.0381 (11)0.0407 (12)0.0017 (8)0.0106 (9)0.0031 (9)
N30.0388 (12)0.0384 (11)0.0358 (11)0.0020 (9)0.0136 (10)0.0022 (8)
C80.0323 (12)0.0306 (12)0.0291 (12)0.0021 (9)0.0116 (10)0.0044 (9)
C100.0318 (12)0.0174 (10)0.0280 (11)0.0004 (8)0.0075 (9)0.0021 (8)
C120.0301 (11)0.0200 (10)0.0258 (11)0.0008 (8)0.0092 (9)0.0030 (8)
C140.0308 (12)0.0258 (11)0.0314 (12)0.0034 (9)0.0154 (10)0.0008 (9)
N20.0401 (12)0.0328 (10)0.0352 (11)0.0043 (9)0.0064 (9)0.0054 (8)
N10.0383 (13)0.0343 (11)0.0322 (11)0.0027 (9)0.0086 (10)0.0030 (8)
N60.0320 (12)0.0428 (12)0.0414 (12)0.0073 (8)0.0088 (10)0.0039 (9)
C70.0383 (13)0.0235 (11)0.0427 (14)0.0020 (9)0.0174 (11)0.0015 (9)
C10.0428 (14)0.0403 (13)0.0333 (13)0.0041 (11)0.0077 (11)0.0063 (10)
C20.0599 (17)0.0281 (12)0.0408 (14)0.0025 (11)0.0001 (13)0.0019 (10)
C50.0266 (13)0.0508 (16)0.0636 (18)0.0047 (11)0.0113 (13)0.0016 (13)
C60.0364 (14)0.0396 (14)0.0620 (18)0.0084 (11)0.0016 (13)0.0115 (12)
C30.0438 (16)0.0565 (17)0.0294 (13)0.0077 (12)0.0016 (12)0.0015 (11)
O60.0534 (13)0.0568 (13)0.0561 (14)0.0171 (10)0.0023 (10)0.0102 (10)
Geometric parameters (Å, º) top
Ni1—N52.112 (2)N3—C31.464 (4)
Ni1—N42.120 (2)N3—H310.9000
Ni1—N22.123 (2)N3—H320.9000
Ni1—N32.129 (2)C10—H20.9300
Ni1—N62.135 (2)C12—H30.9300
Ni1—N12.139 (2)C14—H10.9300
O5—C131.366 (2)N2—C21.468 (3)
O5—H40.8200N2—H270.9000
C4—N41.477 (3)N2—H280.9000
C4—C31.510 (4)N1—C11.476 (3)
C4—H170.9700N1—H260.922 (17)
C4—H180.9700N1—H250.922 (18)
C9—C141.389 (3)N6—C51.485 (3)
C9—C101.397 (3)N6—H160.9000
C9—C71.505 (3)N6—H150.9000
O2—C71.245 (3)C1—C21.507 (3)
O3—C81.248 (3)C1—H210.9700
O4—C81.252 (3)C1—H240.9700
N5—C61.472 (3)C2—H220.9700
N5—H140.9000C2—H230.9700
N5—H130.9000C5—C61.502 (4)
C13—C121.385 (3)C5—H110.9700
C13—C141.386 (3)C5—H100.9700
C11—C101.386 (3)C6—H120.9700
C11—C121.390 (3)C6—H90.9700
C11—C81.520 (3)C3—H300.9700
O1—C71.253 (3)C3—H290.9700
N4—H190.9000O6—H50.818 (18)
N4—H200.9000O6—H60.826 (17)
N5—Ni1—N493.10 (8)C11—C12—H3119.9
N5—Ni1—N2172.57 (8)C13—C14—C9120.70 (18)
N4—Ni1—N291.25 (8)C13—C14—H1119.6
N5—Ni1—N393.76 (8)C9—C14—H1119.6
N4—Ni1—N381.53 (8)C2—N2—Ni1108.85 (14)
N2—Ni1—N392.84 (7)C2—N2—H27109.9
N5—Ni1—N682.39 (7)Ni1—N2—H27109.9
N4—Ni1—N6172.57 (8)C2—N2—H28109.9
N2—Ni1—N693.89 (8)Ni1—N2—H28109.9
N3—Ni1—N692.85 (8)H27—N2—H28108.3
N5—Ni1—N191.88 (8)C1—N1—Ni1106.58 (15)
N4—Ni1—N191.15 (8)C1—N1—H26108.8 (17)
N2—Ni1—N182.00 (7)Ni1—N1—H26105.5 (16)
N3—Ni1—N1170.99 (8)C1—N1—H25111.6 (16)
N6—Ni1—N194.87 (9)Ni1—N1—H25113.4 (19)
C13—O5—H4109.5H26—N1—H25111 (2)
N4—C4—C3108.7 (2)C5—N6—Ni1107.19 (14)
N4—C4—H17109.9C5—N6—H16110.3
C3—C4—H17109.9Ni1—N6—H16110.3
N4—C4—H18109.9C5—N6—H15110.3
C3—C4—H18109.9Ni1—N6—H15110.3
H17—C4—H18108.3H16—N6—H15108.5
C14—C9—C10119.18 (18)O2—C7—O1122.6 (2)
C14—C9—C7119.40 (18)O2—C7—C9119.42 (19)
C10—C9—C7121.40 (18)O1—C7—C9118.0 (2)
C6—N5—Ni1107.36 (14)N1—C1—C2109.4 (2)
C6—N5—H14110.2N1—C1—H21109.8
Ni1—N5—H14110.2C2—C1—H21109.8
C6—N5—H13110.2N1—C1—H24109.8
Ni1—N5—H13110.2C2—C1—H24109.8
H14—N5—H13108.5H21—C1—H24108.2
O5—C13—C12122.75 (18)N2—C2—C1109.18 (19)
O5—C13—C14117.49 (18)N2—C2—H22109.8
C12—C13—C14119.70 (18)C1—C2—H22109.8
C10—C11—C12119.87 (18)N2—C2—H23109.8
C10—C11—C8119.97 (18)C1—C2—H23109.8
C12—C11—C8120.15 (18)H22—C2—H23108.3
C4—N4—Ni1108.26 (14)N6—C5—C6109.3 (2)
C4—N4—H19110.0N6—C5—H11109.8
Ni1—N4—H19110.0C6—C5—H11109.8
C4—N4—H20110.0N6—C5—H10109.8
Ni1—N4—H20110.0C6—C5—H10109.8
H19—N4—H20108.4H11—C5—H10108.3
C3—N3—Ni1107.96 (15)N5—C6—C5108.6 (2)
C3—N3—H31110.1N5—C6—H12110.0
Ni1—N3—H31110.1C5—C6—H12110.0
C3—N3—H32110.1N5—C6—H9110.0
Ni1—N3—H32110.1C5—C6—H9110.0
H31—N3—H32108.4H12—C6—H9108.3
O3—C8—O4124.9 (2)N3—C3—C4108.1 (2)
O3—C8—C11117.01 (19)N3—C3—H30110.1
O4—C8—C11118.07 (19)C4—C3—H30110.1
C11—C10—C9120.22 (18)N3—C3—H29110.1
C11—C10—H2119.9C4—C3—H29110.1
C9—C10—H2119.9H30—C3—H29108.4
C13—C12—C11120.28 (18)H5—O6—H699 (3)
C13—C12—H3119.9
N4—Ni1—N5—C6168.22 (16)C10—C9—C14—C131.4 (3)
N2—Ni1—N5—C642.5 (6)C7—C9—C14—C13179.8 (2)
N3—Ni1—N5—C6110.08 (16)N5—Ni1—N2—C223.7 (6)
N6—Ni1—N5—C617.70 (16)N4—Ni1—N2—C2102.10 (16)
N1—Ni1—N5—C676.96 (16)N3—Ni1—N2—C2176.32 (16)
C3—C4—N4—Ni140.3 (2)N6—Ni1—N2—C283.27 (16)
N5—Ni1—N4—C480.33 (17)N1—Ni1—N2—C211.11 (16)
N2—Ni1—N4—C4105.70 (17)N5—Ni1—N1—C1166.69 (16)
N3—Ni1—N4—C413.01 (16)N4—Ni1—N1—C173.56 (16)
N6—Ni1—N4—C428.1 (7)N2—Ni1—N1—C117.54 (16)
N1—Ni1—N4—C4172.28 (17)N3—Ni1—N1—C138.0 (6)
N5—Ni1—N3—C3109.45 (16)N6—Ni1—N1—C1110.79 (16)
N4—Ni1—N3—C316.88 (15)N5—Ni1—N6—C511.55 (16)
N2—Ni1—N3—C373.96 (16)N4—Ni1—N6—C541.3 (7)
N6—Ni1—N3—C3168.00 (16)N2—Ni1—N6—C5174.91 (16)
N1—Ni1—N3—C319.1 (6)N3—Ni1—N6—C581.87 (17)
C10—C11—C8—O36.3 (3)N1—Ni1—N6—C5102.80 (17)
C12—C11—C8—O3174.4 (2)C14—C9—C7—O2155.0 (2)
C10—C11—C8—O4173.5 (2)C10—C9—C7—O226.2 (4)
C12—C11—C8—O45.8 (3)C14—C9—C7—O126.6 (4)
C12—C11—C10—C91.4 (3)C10—C9—C7—O1152.2 (2)
C8—C11—C10—C9177.87 (19)Ni1—N1—C1—C243.2 (2)
C14—C9—C10—C110.5 (3)Ni1—N2—C2—C137.7 (2)
C7—C9—C10—C11179.3 (2)N1—C1—C2—N255.4 (3)
O5—C13—C12—C11175.5 (2)Ni1—N6—C5—C638.8 (2)
C14—C13—C12—C111.6 (3)Ni1—N5—C6—C544.1 (2)
C10—C11—C12—C132.5 (3)N6—C5—C6—N556.6 (3)
C8—C11—C12—C13176.8 (2)Ni1—N3—C3—C443.4 (2)
O5—C13—C14—C9177.6 (2)N4—C4—C3—N356.7 (3)
C12—C13—C14—C90.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H4···O2i0.821.802.618 (2)174
N5—H14···O4ii0.902.092.958 (3)161
N5—H13···O4iii0.902.383.238 (3)159
N5—H13···O3iii0.902.503.266 (3)143
N4—H19···O6iv0.902.303.173 (3)162
N4—H20···O3iii0.902.112.924 (3)150
N3—H31···O4ii0.902.143.011 (3)162
N3—H32···O2v0.902.413.214 (3)148
N2—H27···O6iv0.902.273.097 (3)152
N2—H28···O1v0.902.343.190 (3)157
N6—H16···O5vi0.902.423.292 (3)164
N6—H15···O1v0.902.493.285 (3)148
O6—H5···O1v0.82 (2)2.28 (2)3.076 (4)165 (3)
O6—H6···O1vi0.83 (2)1.94 (2)2.749 (3)167 (3)
N1—H26···O3iii0.92 (2)2.08 (2)2.953 (3)158 (2)
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x, y+3/2, z+1/2; (iii) x+2, y1/2, z+3/2; (iv) x+1, y, z; (v) x+1, y+1, z+2; (vi) x, y1, z.

Experimental details

Crystal data
Chemical formula[Ni(C2H8N2)3](C8H4O5)·H2O
Mr437.13
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)8.208 (5), 14.590 (5), 16.581 (5)
β (°) 97.747 (5)
V3)1967.5 (15)
Z4
Radiation typeMo Kα
µ (mm1)1.03
Crystal size (mm)0.10 × 0.08 × 0.06
Data collection
DiffractometerBruker APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.906, 0.940
No. of measured, independent and
observed [I > 2σ(I)] reflections
8306, 3656, 2997
Rint0.026
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.092, 1.00
No. of reflections3656
No. of parameters258
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.45, 0.39

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Ni1—N52.112 (2)Ni1—N32.129 (2)
Ni1—N42.120 (2)Ni1—N62.135 (2)
Ni1—N22.123 (2)Ni1—N12.139 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H4···O2i0.821.802.618 (2)174
N5—H14···O4ii0.902.092.958 (3)161
N5—H13···O4iii0.902.383.238 (3)159
N5—H13···O3iii0.902.503.266 (3)143
N4—H19···O6iv0.902.303.173 (3)162
N4—H20···O3iii0.902.112.924 (3)150
N3—H31···O4ii0.902.143.011 (3)162
N3—H32···O2v0.902.413.214 (3)148
N2—H27···O6iv0.902.273.097 (3)152
N2—H28···O1v0.902.343.190 (3)157
N6—H16···O5vi0.902.423.292 (3)164
N6—H15···O1v0.902.493.285 (3)148
O6—H5···O1v0.818 (18)2.277 (19)3.076 (4)165 (3)
O6—H6···O1vi0.826 (17)1.938 (19)2.749 (3)167 (3)
N1—H26···O3iii0.922 (17)2.076 (18)2.953 (3)158 (2)
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x, y+3/2, z+1/2; (iii) x+2, y1/2, z+3/2; (iv) x+1, y, z; (v) x+1, y+1, z+2; (vi) x, y1, z.
 

Acknowledgements

The present study has been supported in part by the Abroad Person with Ability Foundation of Heilongjiang Province (Nos. 11551339, 2010td03), the NSFC (No. 20872030), the China Postdoctoral Foundation and the Elitist Foundation of Heilongjiang University (No. Hdtd2010-11).

References

First citationBraverman, M. A. & LaDuca, R. L. (2007). Acta Cryst. E63, o3167.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationColacio, E., Lloret, F., Kivekäs, F., Ruiz, R. J., Suárez-Varela, J. & Sundberg, M. R. (2002). Chem. Commun. pp. 592–593.  Web of Science CSD CrossRef Google Scholar
First citationFeller, R. K. & Cheetham, A. K. (2009). CrystEngComm, 11, 980–985.  Web of Science CSD CrossRef CAS Google Scholar
First citationGuilera, G. & Steed, J. W. (1999). Chem. Commun. pp. 1563–1564.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, X. J., Cao, R., Bi, W. H., Wang, Y. Q., Wang, Y. L. & Li, X. (2005). Polyhedron, 24, 2955–2962.  Web of Science CSD CrossRef CAS Google Scholar
First citationRoesky, H. W. & Andruh, M. (2003). Coord. Chem. Rev. 236, 91–119.  Web of Science CrossRef CAS Google Scholar
First citationShao, K. Z., Zhao, Y. H., Wang, X. L., Lan, Y. Q., Wang, D. J., Su, Z. M. & Wang, R. S. (2009). Inorg. Chem. 48, 10–12.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, M.-H., Wu, J.-G. & Luan, G.-Y. (2007). Acta Cryst. E63, m1039–m1041.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXu, H. T. & Li, Y. D. (2004). J. Mol. Struct. 690, 137–143.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 2| February 2011| Pages m257-m258
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds