metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(N,N-diiso­propyl­butanaminium) bis­­[di-μ-chlorido-bis­­[di­chlorido­cuprate(II)]]

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: fudavid88@yahoo.com.cn

(Received 20 December 2010; accepted 25 December 2010; online 15 January 2011)

In the title compound, (C10H24N)2[Cu2Cl6], N,N-diisopropyl­butanamine is protonated on the N atom. The CuII atom in the centrosymmetric [Cu2Cl6]2− anion has a distorted tetra­hedral geometry. In the crystal, the cations and anions are connected by N—H⋯Cl and C—H⋯Cl hydrogen bonds into layers parallel to (100).

Related literature

For the properties and structures of N,N-diisopropyl­butyl-1-amine compounds, see: Fu et al. (2007[Fu, D.-W., Song, Y.-M., Wang, G.-X., Ye, Q., Xiong, R.-G., Akutagawa, T., Nakamura, T., Chan, P. W. H. & Huang, S. D. (2007). J. Am. Chem. Soc. 129, 5346-5347.], 2008[Fu, D.-W., Zhang, W. & Xiong, R.-G. (2008). Cryst. Growth Des. 8, 3461-3464.], 2009[Fu, D.-W., Ge, J.-Z., Dai, J., Ye, H.-Y. & Qu, Z.-R. (2009). Inorg. Chem. Commun. 12, 994-997.]); Fu & Xiong (2008[Fu, D.-W. & Xiong, R.-G. (2008). Dalton Trans. pp. 3946-3948.]).

[Scheme 1]

Experimental

Crystal data
  • (C10H24N)2[Cu2Cl6]

  • Mr = 656.40

  • Triclinic, [P \overline 1]

  • a = 8.5697 (17) Å

  • b = 10.213 (2) Å

  • c = 10.384 (2) Å

  • α = 72.43 (3)°

  • β = 68.53 (3)°

  • γ = 71.78 (3)°

  • V = 785.1 (3) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.88 mm−1

  • T = 298 K

  • 0.30 × 0.05 × 0.05 mm

Data collection
  • Rigaku Mercury2 CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.910, Tmax = 1.000

  • 8206 measured reflections

  • 3588 independent reflections

  • 2728 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.107

  • S = 1.08

  • 3588 reflections

  • 141 parameters

  • H-atom parameters constrained

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.52 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Cl3 0.91 2.44 3.336 (3) 168
C2—H2A⋯Cl3i 0.98 2.82 3.668 (5) 146
C5—H5A⋯Cl2ii 0.98 2.64 3.511 (4) 149
C8—H8A⋯Cl3 0.97 2.78 3.617 (4) 144
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, -y+1, -z+2.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Salts of amide have attracted more attention as phase transition dielectric materials for its applications in memory storage (Fu et al., 2007, 2008, 2009; Fu & Xiong, 2008). With the purpose of obtaining phase transition crystals of N,N-diisopropylbutyl-1-amine salts, its interactions with various metal ions have been studied and we have elaborated a series of new materials with this organic molecule. In this paper, we describe the crystal structure of the title compound,

The asymmetric unit is composed of half [Cu2Cl6]2- anion and one [C10H24N]+ cation (Fig. 1). The N atom of N,N-diisopropylbutyl-1-amine is protonated, thus indicating one positive charge in the amide N atom. The half [Cu2Cl6]2- anion showing one negative charge makes charge balance. The geometric parameters of the title compound are in a normal range. In the crystal structure, the cations and anions are involved in N—H···Cl and C—H···Cl hydrogen bonds (Table 1), which link the cations and anions into a two-dimensional network (Fig. 2).

Related literature top

For the properties and structures of N,N-diisopropylbutyl-1-amine compounds, see: Fu et al. (2007, 2008, 2009); Fu & Xiong (2008).

Experimental top

The commercial N,N-diisopropylbutyl-1-amine (10 mmol), HCl (2 ml) and CuCl2 (5 mmol) were dissolved in 10 ml water. The solvent was slowly evaporated in air, affording blue block-shaped crystals of the title compound suitable for X-ray analysis.

The dielectric constant of the title compound as a function of temperature indicates that the permittivity is basically temperature-independent, suggesting that this compound should not be a real ferroelectrics or there may be no distinct phase transition occurred within the measured temperature range. Similarly, below the melting point (446–447 K) of the compound, the dielectric constant as a function of temperature also goes smoothly, and there is no dielectric anomaly observed (dielectric constant equaling to 8.9 to 10.6).

Refinement top

H atoms were positioned geometrically and treated as riding, with C—H = 0.98 (CH), 0.97 (CH2) and 0.96 (CH3) Å and N—H = 0.91 Å and with Uiso(H) = 1.2(1.5 for methyl)Ueq(C, N).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry code: (A) 1-x, 2-y, 1-z.]
[Figure 2] Fig. 2. The crystal packing of the title compound, showing the two-dimensional network. Dashed lines denote hydrogen bonds.
Bis(N,N-diisopropylbutanaminium) bis[di-µ-chlorido-bis[dichloridocuprate(II)]] top
Crystal data top
(C10H24N)2[Cu2Cl6]Z = 1
Mr = 656.40F(000) = 342
Triclinic, P1Dx = 1.388 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.5697 (17) ÅCell parameters from 3588 reflections
b = 10.213 (2) Åθ = 3.4–27.5°
c = 10.384 (2) ŵ = 1.88 mm1
α = 72.43 (3)°T = 298 K
β = 68.53 (3)°Block, blue
γ = 71.78 (3)°0.30 × 0.05 × 0.05 mm
V = 785.1 (3) Å3
Data collection top
Rigaku Mercury2 CCD
diffractometer
3588 independent reflections
Radiation source: fine-focus sealed tube2728 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.4°
ω scansh = 1111
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1313
Tmin = 0.910, Tmax = 1.000l = 1313
8206 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0342P)2 + 0.4528P]
where P = (Fo2 + 2Fc2)/3
3588 reflections(Δ/σ)max < 0.001
141 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.52 e Å3
Crystal data top
(C10H24N)2[Cu2Cl6]γ = 71.78 (3)°
Mr = 656.40V = 785.1 (3) Å3
Triclinic, P1Z = 1
a = 8.5697 (17) ÅMo Kα radiation
b = 10.213 (2) ŵ = 1.88 mm1
c = 10.384 (2) ÅT = 298 K
α = 72.43 (3)°0.30 × 0.05 × 0.05 mm
β = 68.53 (3)°
Data collection top
Rigaku Mercury2 CCD
diffractometer
3588 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
2728 reflections with I > 2σ(I)
Tmin = 0.910, Tmax = 1.000Rint = 0.044
8206 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.107H-atom parameters constrained
S = 1.08Δρmax = 0.45 e Å3
3588 reflectionsΔρmin = 0.52 e Å3
141 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.7275 (3)0.3131 (3)0.7043 (3)0.0374 (6)
H10.71970.40660.66440.045*
C10.5308 (7)0.1423 (5)0.8060 (6)0.0907 (17)
H1A0.42480.12970.80510.136*
H1B0.53000.12670.90210.136*
H1C0.62560.07610.75890.136*
Cu10.55821 (5)0.83754 (4)0.59096 (4)0.03888 (14)
Cl10.30886 (11)1.01180 (9)0.60170 (11)0.0629 (3)
C20.5495 (4)0.2903 (4)0.7304 (4)0.0510 (9)
H2A0.53440.30620.63740.061*
Cl20.50922 (16)0.75177 (13)0.81673 (10)0.0778 (4)
C30.4106 (5)0.3995 (5)0.8062 (5)0.0680 (12)
H3A0.30110.40030.80020.102*
H3B0.43570.49090.76250.102*
H3C0.40690.37660.90380.102*
Cl30.70329 (12)0.64171 (9)0.51116 (9)0.0505 (2)
C40.8746 (6)0.4013 (5)0.8158 (4)0.0663 (12)
H4A0.89940.39220.90150.099*
H4B0.80650.49410.79120.099*
H4C0.98050.38640.74070.099*
C50.7756 (4)0.2922 (4)0.8379 (4)0.0449 (8)
H5A0.66790.31140.91400.054*
C60.8723 (6)0.1434 (4)0.8862 (4)0.0707 (13)
H6A0.88020.13310.97870.106*
H6B0.98600.12610.82090.106*
H6C0.81190.07710.88940.106*
C70.8673 (4)0.2391 (4)0.5948 (3)0.0447 (8)
H7A0.87090.13890.62580.054*
H7B0.97680.25200.59020.054*
C80.8484 (5)0.2876 (4)0.4479 (3)0.0452 (8)
H8A0.83660.38900.41830.054*
H8B0.74460.26700.44940.054*
C91.0015 (5)0.2162 (4)0.3426 (4)0.0565 (10)
H9A1.10460.23750.34170.068*
H9B1.01370.11490.37400.068*
C100.9891 (6)0.2596 (5)0.1937 (4)0.0698 (12)
H10A1.09040.21070.13280.105*
H10B0.97960.35950.16070.105*
H10C0.88930.23640.19290.105*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0384 (15)0.0359 (14)0.0347 (15)0.0041 (11)0.0109 (12)0.0078 (12)
C10.083 (3)0.072 (3)0.124 (5)0.045 (3)0.018 (3)0.016 (3)
Cu10.0400 (2)0.0323 (2)0.0370 (2)0.00387 (16)0.00747 (17)0.00665 (17)
Cl10.0393 (5)0.0424 (5)0.0699 (7)0.0006 (4)0.0065 (4)0.0027 (4)
C20.043 (2)0.066 (2)0.047 (2)0.0150 (18)0.0124 (17)0.0148 (19)
Cl20.0893 (8)0.0808 (8)0.0353 (5)0.0012 (6)0.0073 (5)0.0061 (5)
C30.040 (2)0.084 (3)0.070 (3)0.007 (2)0.009 (2)0.019 (2)
Cl30.0628 (6)0.0332 (4)0.0488 (5)0.0008 (4)0.0151 (4)0.0118 (4)
C40.073 (3)0.083 (3)0.058 (3)0.023 (2)0.031 (2)0.017 (2)
C50.0412 (19)0.053 (2)0.0355 (19)0.0014 (16)0.0136 (15)0.0097 (16)
C60.084 (3)0.065 (3)0.054 (3)0.011 (2)0.039 (2)0.005 (2)
C70.0429 (19)0.0426 (19)0.042 (2)0.0019 (15)0.0118 (16)0.0134 (16)
C80.051 (2)0.0408 (19)0.044 (2)0.0037 (16)0.0172 (17)0.0138 (16)
C90.057 (2)0.062 (2)0.046 (2)0.0047 (19)0.0102 (18)0.0212 (19)
C100.081 (3)0.083 (3)0.049 (2)0.017 (2)0.012 (2)0.030 (2)
Geometric parameters (Å, º) top
N1—C71.501 (4)C4—H4B0.9600
N1—C51.525 (4)C4—H4C0.9600
N1—C21.528 (4)C5—C61.518 (5)
N1—H10.9100C5—H5A0.9800
C1—C21.506 (5)C6—H6A0.9600
C1—H1A0.9600C6—H6B0.9600
C1—H1B0.9600C6—H6C0.9600
C1—H1C0.9600C7—C81.508 (4)
Cu1—Cl22.1701 (13)C7—H7A0.9700
Cu1—Cl32.2190 (12)C7—H7B0.9700
Cu1—Cl1i2.2884 (14)C8—C91.511 (5)
Cu1—Cl12.3051 (13)C8—H8A0.9700
Cl1—Cu1i2.2884 (14)C8—H8B0.9700
C2—C31.515 (5)C9—C101.509 (5)
C2—H2A0.9800C9—H9A0.9700
C3—H3A0.9600C9—H9B0.9700
C3—H3B0.9600C10—H10A0.9600
C3—H3C0.9600C10—H10B0.9600
C4—C51.519 (5)C10—H10C0.9600
C4—H4A0.9600
C7—N1—C5113.3 (2)C6—C5—C4111.9 (3)
C7—N1—C2113.5 (3)C6—C5—N1113.9 (3)
C5—N1—C2114.8 (3)C4—C5—N1109.1 (3)
C7—N1—H1104.6C6—C5—H5A107.2
C5—N1—H1104.6C4—C5—H5A107.2
C2—N1—H1104.6N1—C5—H5A107.2
C2—C1—H1A109.5C5—C6—H6A109.5
C2—C1—H1B109.5C5—C6—H6B109.5
H1A—C1—H1B109.5H6A—C6—H6B109.5
C2—C1—H1C109.5C5—C6—H6C109.5
H1A—C1—H1C109.5H6A—C6—H6C109.5
H1B—C1—H1C109.5H6B—C6—H6C109.5
Cl2—Cu1—Cl399.48 (5)N1—C7—C8115.2 (3)
Cl2—Cu1—Cl1i146.21 (6)N1—C7—H7A108.5
Cl3—Cu1—Cl1i96.22 (5)C8—C7—H7A108.5
Cl2—Cu1—Cl197.69 (6)N1—C7—H7B108.5
Cl3—Cu1—Cl1143.17 (5)C8—C7—H7B108.5
Cl1i—Cu1—Cl187.01 (5)H7A—C7—H7B107.5
Cu1i—Cl1—Cu192.99 (5)C7—C8—C9111.6 (3)
C1—C2—C3112.0 (4)C7—C8—H8A109.3
C1—C2—N1113.3 (3)C9—C8—H8A109.3
C3—C2—N1110.3 (3)C7—C8—H8B109.3
C1—C2—H2A107.0C9—C8—H8B109.3
C3—C2—H2A107.0H8A—C8—H8B108.0
N1—C2—H2A107.0C10—C9—C8114.0 (3)
C2—C3—H3A109.5C10—C9—H9A108.8
C2—C3—H3B109.5C8—C9—H9A108.8
H3A—C3—H3B109.5C10—C9—H9B108.8
C2—C3—H3C109.5C8—C9—H9B108.8
H3A—C3—H3C109.5H9A—C9—H9B107.6
H3B—C3—H3C109.5C9—C10—H10A109.5
C5—C4—H4A109.5C9—C10—H10B109.5
C5—C4—H4B109.5H10A—C10—H10B109.5
H4A—C4—H4B109.5C9—C10—H10C109.5
C5—C4—H4C109.5H10A—C10—H10C109.5
H4A—C4—H4C109.5H10B—C10—H10C109.5
H4B—C4—H4C109.5
Cl2—Cu1—Cl1—Cu1i146.38 (6)C2—N1—C5—C692.1 (4)
Cl3—Cu1—Cl1—Cu1i96.39 (7)C7—N1—C5—C485.3 (4)
Cl1i—Cu1—Cl1—Cu1i0.0C2—N1—C5—C4142.1 (3)
C7—N1—C2—C170.5 (4)C5—N1—C7—C8163.7 (3)
C5—N1—C2—C162.1 (4)C2—N1—C7—C863.0 (4)
C7—N1—C2—C3163.1 (3)N1—C7—C8—C9175.3 (3)
C5—N1—C2—C364.3 (4)C7—C8—C9—C10179.4 (3)
C7—N1—C5—C640.5 (4)
Symmetry code: (i) x+1, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl30.912.443.336 (3)168
C2—H2A···Cl3ii0.982.823.668 (5)146
C5—H5A···Cl2iii0.982.643.511 (4)149
C8—H8A···Cl30.972.783.617 (4)144
Symmetry codes: (ii) x+1, y+1, z+1; (iii) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formula(C10H24N)2[Cu2Cl6]
Mr656.40
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)8.5697 (17), 10.213 (2), 10.384 (2)
α, β, γ (°)72.43 (3), 68.53 (3), 71.78 (3)
V3)785.1 (3)
Z1
Radiation typeMo Kα
µ (mm1)1.88
Crystal size (mm)0.30 × 0.05 × 0.05
Data collection
DiffractometerRigaku Mercury2 CCD
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.910, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
8206, 3588, 2728
Rint0.044
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.107, 1.08
No. of reflections3588
No. of parameters141
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.45, 0.52

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl30.912.443.336 (3)168
C2—H2A···Cl3i0.982.823.668 (5)146
C5—H5A···Cl2ii0.982.643.511 (4)149
C8—H8A···Cl30.972.783.617 (4)144
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1, z+2.
 

Acknowledgements

This work was supported by a start-up grant from Southeast University, China.

References

First citationFu, D.-W., Ge, J.-Z., Dai, J., Ye, H.-Y. & Qu, Z.-R. (2009). Inorg. Chem. Commun. 12, 994–997.  Web of Science CSD CrossRef CAS Google Scholar
First citationFu, D.-W., Song, Y.-M., Wang, G.-X., Ye, Q., Xiong, R.-G., Akutagawa, T., Nakamura, T., Chan, P. W. H. & Huang, S. D. (2007). J. Am. Chem. Soc. 129, 5346–5347.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFu, D.-W. & Xiong, R.-G. (2008). Dalton Trans. pp. 3946–3948.  Web of Science CSD CrossRef Google Scholar
First citationFu, D.-W., Zhang, W. & Xiong, R.-G. (2008). Cryst. Growth Des. 8, 3461–3464.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds