metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Methanol-κO)(methano­lato-κO)oxido[N-(2-oxido­benzyl­­idene)phenyl­alaninato-κ3O,N,O′]vanadium(V)

aSchool of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China
*Correspondence e-mail: lilianzhi1963@yahoo.com.cn

(Received 17 January 2011; accepted 24 January 2011; online 29 January 2011)

In the title complex, [V(C16H13NO3)(CH3O)O(CH3OH)], the VV atom is six-coordinated by a tridentate ligand derived from the condensation of salicyl­aldehyde and L-phenyl­alanine, a vanadyl O atom, a methano­late O atom and a methanol O atom, forming a distorted octa­hedral coordination geometry. In the crystal, inter­molecular O—H⋯O and C—H⋯O hydrogen bonds result in a two-dimensional structure parallel to (001).

Related literature

For general background to the coordination chemistry of vanadium, see: Diego et al. (2003[Diego, D. R., Agustin, G., Ramon, V., Carlo, M., Andrea, I. & Dante, M. (2003). Dalton Trans. pp. 1813-1820.]); Kenji et al. (2000[Kenji, K., Makoto, T., Ken, H., Naohisa, Y. & Yoshitane, K. (2000). Inorg. Chim. Acta, 305, 172-183.]); Thompson et al. (1999[Thompson, K. H., McNeill, J. H. & Orvig, C. (1999). Chem. Rev. 99, 2561-2571.]); Thompson & Orvig (2006[Thompson, K. H. & Orvig, C. (2006). Dalton Trans. pp. 761-764.]); Wikksky et al. (2001[Wikksky, G. R., Goldfine, A. B., Kostyniak, P. J., McNeill, J. H., Yang, L. Q., Khan, H. R. & Crans, D. C. (2001). J. Inorg. Biochem. 85, 33-42.]).

[Scheme 1]

Experimental

Crystal data
  • [V(C16H13NO3)(CH3O)O(CH4O)]

  • Mr = 397.29

  • Orthorhombic, P 21 21 2

  • a = 14.3095 (15) Å

  • b = 18.782 (2) Å

  • c = 6.6986 (7) Å

  • V = 1800.3 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.59 mm−1

  • T = 298 K

  • 0.45 × 0.42 × 0.41 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.779, Tmax = 0.795

  • 8134 measured reflections

  • 3177 independent reflections

  • 2293 reflections with I > 2σ(I)

  • Rint = 0.073

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.129

  • S = 1.03

  • 3177 reflections

  • 241 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.48 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1328 Friedel pairs

  • Flack parameter: 0.04 (4)

Table 1
Selected bond lengths (Å)

V1—O1 1.570 (3)
V1—O2 1.934 (3)
V1—O4 1.831 (3)
V1—O5 2.366 (3)
V1—O6 1.762 (3)
V1—N1 2.086 (4)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H19⋯O3i 1.00 (5) 1.73 (5) 2.687 (4) 161 (4)
C13—H13⋯O3ii 0.93 2.59 3.500 (7) 165
Symmetry codes: (i) -x+2, -y+2, z; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The coordination chemistry of vanadium has been receiving increasing interest since it was found that vanadium compounds in various oxidation states have insulin-mimetic properties (Diego et al., 2003; Kenji et al., 2000; Thompson & Orvig, 2006). Compared with other transition metal complexes, less vanadium complexes have been synthesized and characterized (Thompson et al., 1999; Wikksky et al., 2001). We report here the synthesis and crystal structure of an oxovanadium(V) complex with a tetradentate Schiff-base ligand derived from the condensation of salicylaldehyde and L-phenylalanine.

As shown in Fig. 1, the VV ion is six-coordinated by the tridentate (O,N,O) donor ligand and three O atoms from an oxido group, a methanolate group and a methanol molecule (Table 1), forming a distorted octahedral geometry. In the complex, O2, N1 and O4 of the tridentate Schiff base ligand and O6 of the methanolate ligand define the equatorial plane and the oxido O1 and the methanol O5 occupy the axial positions. The Schiff base ligand coordinating to the VV atom forms two chelating rings, the five-membered V1—O2—C1—C2—N1 ring and the six-membered V1—N1—C10—C11—C16—O4 ring. The dihedral angle of the two rings is 15.69 (15)°, which increases the stability of the complex.

In the crystal, the intermolecular O—H···O and C—H···O hydrogen bonds (Table 2) result in a two-dimensional structure (Fig. 2).

Related literature top

For general background to the coordination chemistry of vanadium, see: Diego et al. (2003); Kenji et al. (2000); Thompson et al. (1999); Thompson & Orvig (2006); Wikksky et al. (2001).

Experimental top

L-Phenylalanine (1 mmol, 0.165 g) and potassium hydroxide (1 mmol, 0.056 g) were dissolved in hot methanol (10 ml) with stirring. The mixture was added successively to a methanol solution (5 ml) of salicylaldehyde (1 mmol, 0.11 ml) with stirring at 323 K for 2 h. Subsequently, an aqueous solution (2 ml) of vanadyl sulfate hydrate (1 mmol, 0.225 g) was added dropwise and stirred for 3 h continuously. The resultant solution was filtered and the filtrate was held at room temperature for several days, whereupon red blocky crystals suitable for X-ray diffraction were obtained.

Refinement top

H atoms on C atoms were placed in calculated positions and refined as riding atoms, with C—H = 0.93–0.98 Å and with Uiso(H) = 1.2(1.5 for methyl)Ueq(C). The hydroxy H atom (H19) of the methanol molecule was located from a difference Fourier map and refined isotropically.

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The two-dimensional structure of the title compound, linked by intermolecular hydrogen bonds (dashed lines).
(Methanol-κO)(methanolato-κO)oxido[N-(2- oxidobenzylidene)phenylalaninato- κ3O,N,O']vanadium(V) top
Crystal data top
[V(C16H13NO3)(CH3O)O(CH4O)]F(000) = 824
Mr = 397.29Dx = 1.466 Mg m3
Orthorhombic, P21212Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2 2abCell parameters from 2512 reflections
a = 14.3095 (15) Åθ = 2.6–23.6°
b = 18.782 (2) ŵ = 0.59 mm1
c = 6.6986 (7) ÅT = 298 K
V = 1800.3 (3) Å3Block, red
Z = 40.45 × 0.42 × 0.41 mm
Data collection top
Bruker SMART 1000 CCD
diffractometer
3177 independent reflections
Radiation source: fine-focus sealed tube2293 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.073
ϕ and ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1017
Tmin = 0.779, Tmax = 0.795k = 2212
8134 measured reflectionsl = 77
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.054H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.129 w = 1/[σ2(Fo2) + (0.0594P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
3177 reflectionsΔρmax = 0.46 e Å3
241 parametersΔρmin = 0.48 e Å3
0 restraintsAbsolute structure: Flack (1983), 1328 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.04 (4)
Crystal data top
[V(C16H13NO3)(CH3O)O(CH4O)]V = 1800.3 (3) Å3
Mr = 397.29Z = 4
Orthorhombic, P21212Mo Kα radiation
a = 14.3095 (15) ŵ = 0.59 mm1
b = 18.782 (2) ÅT = 298 K
c = 6.6986 (7) Å0.45 × 0.42 × 0.41 mm
Data collection top
Bruker SMART 1000 CCD
diffractometer
3177 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2293 reflections with I > 2σ(I)
Tmin = 0.779, Tmax = 0.795Rint = 0.073
8134 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.054H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.129Δρmax = 0.46 e Å3
S = 1.03Δρmin = 0.48 e Å3
3177 reflectionsAbsolute structure: Flack (1983), 1328 Friedel pairs
241 parametersAbsolute structure parameter: 0.04 (4)
0 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
V10.84142 (5)0.86795 (4)0.57437 (11)0.0419 (3)
O10.7400 (2)0.8810 (2)0.6561 (5)0.0676 (12)
O20.8790 (2)0.96385 (16)0.5061 (5)0.0482 (9)
O30.8863 (2)1.05118 (18)0.2846 (6)0.0613 (10)
O40.8383 (2)0.77184 (17)0.5287 (5)0.0535 (9)
O50.9878 (2)0.85346 (17)0.4151 (5)0.0465 (8)
O60.9045 (2)0.8721 (2)0.7999 (4)0.0549 (9)
N10.7976 (2)0.87816 (19)0.2787 (5)0.0323 (9)
C10.8574 (3)0.9935 (3)0.3387 (8)0.0425 (12)
C20.7896 (3)0.9517 (2)0.2140 (7)0.0369 (11)
H20.80480.95600.07190.044*
C30.6910 (3)0.9796 (2)0.2553 (8)0.0480 (13)
H3A0.68110.98110.39850.058*
H3B0.68641.02800.20570.058*
C40.6158 (3)0.9364 (2)0.1631 (7)0.0405 (12)
C50.5940 (4)0.9426 (3)0.0351 (8)0.0579 (15)
H50.62610.97530.11380.069*
C60.5261 (4)0.9017 (4)0.1182 (10)0.081 (2)
H60.51140.90760.25240.097*
C70.4796 (4)0.8527 (4)0.0100 (13)0.082 (2)
H70.43320.82480.06790.099*
C80.5020 (4)0.8451 (3)0.1849 (12)0.0731 (19)
H80.47120.81090.26090.088*
C90.5687 (4)0.8864 (3)0.2722 (9)0.0613 (16)
H90.58230.88050.40690.074*
C100.7750 (3)0.8287 (2)0.1591 (7)0.0338 (10)
H100.75850.84170.02980.041*
C110.7727 (3)0.7552 (2)0.2063 (7)0.0363 (11)
C120.7375 (3)0.7080 (3)0.0650 (9)0.0502 (12)
H120.71990.72480.06000.060*
C130.7286 (3)0.6378 (3)0.1077 (9)0.0607 (15)
H130.70440.60680.01240.073*
C140.7550 (4)0.6124 (3)0.2902 (10)0.0632 (16)
H140.74800.56430.31900.076*
C150.7917 (4)0.6572 (3)0.4311 (10)0.0575 (14)
H150.81040.63910.55400.069*
C160.8010 (3)0.7291 (3)0.3918 (7)0.0436 (12)
C171.0399 (4)0.7920 (3)0.3821 (11)0.078 (2)
H17A1.00500.75130.42640.117*
H17B1.09750.79480.45510.117*
H17C1.05300.78740.24220.117*
C180.9966 (5)0.8865 (4)0.8526 (10)0.096 (2)
H18A1.02090.92330.76770.143*
H18B1.03340.84410.83720.143*
H18C0.99890.90190.98910.143*
H191.024 (4)0.896 (3)0.376 (8)0.065 (17)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
V10.0372 (4)0.0665 (5)0.0222 (4)0.0044 (4)0.0019 (4)0.0005 (4)
O10.042 (2)0.132 (4)0.0290 (18)0.001 (2)0.0042 (16)0.004 (2)
O20.050 (2)0.057 (2)0.038 (2)0.0011 (17)0.0172 (16)0.0117 (15)
O30.068 (2)0.048 (2)0.068 (3)0.0181 (19)0.021 (2)0.0047 (19)
O40.060 (2)0.062 (2)0.039 (2)0.0178 (18)0.0140 (19)0.0158 (16)
O50.0393 (18)0.051 (2)0.050 (2)0.0013 (16)0.0070 (18)0.0033 (19)
O60.050 (2)0.089 (3)0.0254 (17)0.008 (2)0.0088 (16)0.0017 (19)
N10.0256 (19)0.041 (2)0.030 (2)0.0024 (17)0.0054 (15)0.0029 (18)
C10.035 (3)0.050 (3)0.043 (3)0.005 (2)0.011 (2)0.004 (2)
C20.036 (3)0.044 (3)0.031 (3)0.006 (2)0.005 (2)0.001 (2)
C30.045 (3)0.049 (3)0.049 (3)0.001 (2)0.005 (3)0.005 (2)
C40.034 (3)0.046 (3)0.042 (3)0.002 (2)0.005 (2)0.007 (2)
C50.036 (3)0.088 (4)0.049 (4)0.001 (3)0.010 (3)0.003 (3)
C60.053 (4)0.135 (6)0.055 (4)0.002 (4)0.024 (3)0.025 (4)
C70.038 (3)0.088 (5)0.121 (7)0.007 (3)0.009 (4)0.038 (4)
C80.035 (3)0.093 (5)0.091 (5)0.011 (3)0.001 (4)0.008 (4)
C90.041 (3)0.097 (5)0.047 (3)0.013 (3)0.004 (3)0.007 (3)
C100.027 (2)0.051 (3)0.023 (2)0.000 (2)0.0017 (19)0.003 (2)
C110.028 (3)0.048 (3)0.032 (3)0.002 (2)0.000 (2)0.001 (2)
C120.045 (3)0.056 (3)0.049 (3)0.002 (2)0.006 (3)0.012 (3)
C130.050 (3)0.051 (3)0.081 (5)0.005 (3)0.006 (3)0.017 (4)
C140.070 (4)0.042 (3)0.077 (5)0.014 (3)0.004 (4)0.004 (3)
C150.058 (3)0.054 (3)0.061 (4)0.008 (3)0.005 (3)0.019 (3)
C160.037 (3)0.056 (3)0.039 (3)0.007 (2)0.002 (2)0.003 (2)
C170.067 (4)0.063 (4)0.105 (6)0.005 (3)0.032 (4)0.003 (4)
C180.078 (5)0.165 (7)0.044 (4)0.014 (4)0.032 (4)0.001 (4)
Geometric parameters (Å, º) top
V1—O11.570 (3)C6—H60.9300
V1—O21.934 (3)C7—C81.352 (9)
V1—O41.831 (3)C7—H70.9300
V1—O52.366 (3)C8—C91.361 (8)
V1—O61.762 (3)C8—H80.9300
V1—N12.086 (4)C9—H90.9300
O2—C11.289 (5)C10—C111.417 (6)
O3—C11.215 (6)C10—H100.9300
O4—C161.331 (5)C11—C121.390 (6)
O5—C171.392 (6)C11—C161.395 (6)
O5—H191.00 (5)C12—C131.356 (6)
O6—C181.390 (6)C12—H120.9300
N1—C101.269 (5)C13—C141.365 (8)
N1—C21.451 (5)C13—H130.9300
C1—C21.503 (6)C14—C151.369 (8)
C2—C31.531 (6)C14—H140.9300
C2—H20.9800C15—C161.382 (6)
C3—C41.483 (6)C15—H150.9300
C3—H3A0.9700C17—H17A0.9600
C3—H3B0.9700C17—H17B0.9600
C4—C91.368 (7)C17—H17C0.9600
C4—C51.369 (7)C18—H18A0.9600
C5—C61.359 (8)C18—H18B0.9600
C5—H50.9300C18—H18C0.9600
C6—C71.347 (9)
O1—V1—O699.65 (17)C7—C6—C5121.3 (7)
O1—V1—O4100.91 (19)C7—C6—H6119.4
O6—V1—O4101.54 (16)C5—C6—H6119.4
O1—V1—O2101.17 (18)C6—C7—C8118.3 (6)
O6—V1—O291.07 (15)C6—C7—H7120.8
O4—V1—O2152.27 (15)C8—C7—H7120.8
O1—V1—N192.22 (16)C7—C8—C9121.4 (6)
O6—V1—N1164.59 (15)C7—C8—H8119.3
O4—V1—N185.67 (14)C9—C8—H8119.3
O2—V1—N176.92 (14)C8—C9—C4120.5 (6)
O1—V1—O5173.31 (16)C8—C9—H9119.8
O6—V1—O586.45 (14)C4—C9—H9119.8
O4—V1—O580.40 (14)N1—C10—C11125.3 (4)
O2—V1—O575.80 (13)N1—C10—H10117.3
N1—V1—O581.31 (12)C11—C10—H10117.3
C1—O2—V1122.7 (3)C12—C11—C16119.2 (5)
C16—O4—V1136.1 (3)C12—C11—C10118.5 (4)
C17—O5—V1129.8 (3)C16—C11—C10122.3 (4)
C17—O5—H19110 (3)C13—C12—C11120.7 (5)
V1—O5—H19119 (3)C13—C12—H12119.7
C18—O6—V1135.4 (3)C11—C12—H12119.7
C10—N1—C2119.2 (4)C12—C13—C14120.1 (5)
C10—N1—V1127.5 (3)C12—C13—H13119.9
C2—N1—V1113.2 (3)C14—C13—H13119.9
O3—C1—O2124.3 (5)C13—C14—C15120.7 (5)
O3—C1—C2121.3 (4)C13—C14—H14119.7
O2—C1—C2114.4 (4)C15—C14—H14119.7
N1—C2—C1106.3 (4)C14—C15—C16120.3 (6)
N1—C2—C3110.2 (4)C14—C15—H15119.8
C1—C2—C3108.4 (4)C16—C15—H15119.8
N1—C2—H2110.6O4—C16—C15119.8 (5)
C1—C2—H2110.6O4—C16—C11121.2 (4)
C3—C2—H2110.6C15—C16—C11119.0 (5)
C4—C3—C2113.9 (4)O5—C17—H17A109.5
C4—C3—H3A108.8O5—C17—H17B109.5
C2—C3—H3A108.8H17A—C17—H17B109.5
C4—C3—H3B108.8O5—C17—H17C109.5
C2—C3—H3B108.8H17A—C17—H17C109.5
H3A—C3—H3B107.7H17B—C17—H17C109.5
C9—C4—C5117.7 (5)O6—C18—H18A109.5
C9—C4—C3120.8 (5)O6—C18—H18B109.5
C5—C4—C3121.5 (5)H18A—C18—H18B109.5
C6—C5—C4120.8 (6)O6—C18—H18C109.5
C6—C5—H5119.6H18A—C18—H18C109.5
C4—C5—H5119.6H18B—C18—H18C109.5
O1—V1—O2—C183.7 (4)V1—N1—C2—C390.1 (4)
O6—V1—O2—C1176.2 (4)O3—C1—C2—N1158.9 (4)
O4—V1—O2—C158.5 (5)O2—C1—C2—N123.0 (5)
N1—V1—O2—C16.0 (3)O3—C1—C2—C382.7 (6)
O5—V1—O2—C190.1 (3)O2—C1—C2—C395.4 (5)
O1—V1—O4—C1675.3 (5)N1—C2—C3—C456.0 (6)
O6—V1—O4—C16177.7 (4)C1—C2—C3—C4171.9 (4)
O2—V1—O4—C1666.9 (6)C2—C3—C4—C997.9 (6)
N1—V1—O4—C1616.1 (4)C2—C3—C4—C579.1 (6)
O5—V1—O4—C1698.0 (5)C9—C4—C5—C61.8 (8)
O6—V1—O5—C1785.4 (5)C3—C4—C5—C6178.9 (5)
O4—V1—O5—C1716.9 (5)C4—C5—C6—C71.5 (9)
O2—V1—O5—C17177.4 (5)C5—C6—C7—C80.1 (10)
N1—V1—O5—C17104.0 (5)C6—C7—C8—C91.1 (10)
O1—V1—O6—C18157.1 (6)C7—C8—C9—C40.8 (9)
O4—V1—O6—C1899.6 (6)C5—C4—C9—C80.6 (8)
O2—V1—O6—C1855.6 (6)C3—C4—C9—C8177.7 (5)
N1—V1—O6—C1817.2 (10)C2—N1—C10—C11175.2 (4)
O5—V1—O6—C1820.1 (6)V1—N1—C10—C111.8 (6)
O1—V1—N1—C1095.5 (4)N1—C10—C11—C12173.7 (4)
O6—V1—N1—C10124.0 (6)N1—C10—C11—C163.7 (7)
O4—V1—N1—C105.3 (3)C16—C11—C12—C131.5 (7)
O2—V1—N1—C10163.6 (4)C10—C11—C12—C13175.9 (4)
O5—V1—N1—C1086.2 (4)C11—C12—C13—C140.6 (8)
O1—V1—N1—C281.7 (3)C12—C13—C14—C150.7 (8)
O6—V1—N1—C258.8 (7)C13—C14—C15—C161.1 (8)
O4—V1—N1—C2177.5 (3)V1—O4—C16—C15162.9 (4)
O2—V1—N1—C219.3 (3)V1—O4—C16—C1118.6 (7)
O5—V1—N1—C296.6 (3)C14—C15—C16—O4178.8 (5)
V1—O2—C1—O3173.7 (4)C14—C15—C16—C110.2 (8)
V1—O2—C1—C28.3 (5)C12—C11—C16—O4177.5 (4)
C10—N1—C2—C1155.4 (4)C10—C11—C16—O45.2 (7)
V1—N1—C2—C127.2 (4)C12—C11—C16—C151.1 (7)
C10—N1—C2—C387.4 (5)C10—C11—C16—C15176.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H19···O3i1.00 (5)1.73 (5)2.687 (4)161 (4)
C13—H13···O3ii0.932.593.500 (7)165
Symmetry codes: (i) x+2, y+2, z; (ii) x+3/2, y1/2, z.

Experimental details

Crystal data
Chemical formula[V(C16H13NO3)(CH3O)O(CH4O)]
Mr397.29
Crystal system, space groupOrthorhombic, P21212
Temperature (K)298
a, b, c (Å)14.3095 (15), 18.782 (2), 6.6986 (7)
V3)1800.3 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.59
Crystal size (mm)0.45 × 0.42 × 0.41
Data collection
DiffractometerBruker SMART 1000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.779, 0.795
No. of measured, independent and
observed [I > 2σ(I)] reflections
8134, 3177, 2293
Rint0.073
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.129, 1.03
No. of reflections3177
No. of parameters241
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.46, 0.48
Absolute structureFlack (1983), 1328 Friedel pairs
Absolute structure parameter0.04 (4)

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
V1—O11.570 (3)V1—O52.366 (3)
V1—O21.934 (3)V1—O61.762 (3)
V1—O41.831 (3)V1—N12.086 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H19···O3i1.00 (5)1.73 (5)2.687 (4)161 (4)
C13—H13···O3ii0.932.593.500 (7)165
Symmetry codes: (i) x+2, y+2, z; (ii) x+3/2, y1/2, z.
 

Acknowledgements

The authors thank the Natural Science Foundation of Shandong Province (No. Y2004B02) for a research grant.

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDiego, D. R., Agustin, G., Ramon, V., Carlo, M., Andrea, I. & Dante, M. (2003). Dalton Trans. pp. 1813–1820.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKenji, K., Makoto, T., Ken, H., Naohisa, Y. & Yoshitane, K. (2000). Inorg. Chim. Acta, 305, 172–183.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThompson, K. H., McNeill, J. H. & Orvig, C. (1999). Chem. Rev. 99, 2561–2571.  Web of Science CrossRef PubMed CAS Google Scholar
First citationThompson, K. H. & Orvig, C. (2006). Dalton Trans. pp. 761–764.  Web of Science CrossRef Google Scholar
First citationWikksky, G. R., Goldfine, A. B., Kostyniak, P. J., McNeill, J. H., Yang, L. Q., Khan, H. R. & Crans, D. C. (2001). J. Inorg. Biochem. 85, 33–42.  Web of Science CrossRef PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds