organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Amino­pyridinium-3-sulfonate monohydrate

aCollege of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 15 November 2010; accepted 14 January 2011; online 22 January 2011)

The reaction of 4-amino­pyridine and oleum yielded the title hydrated zwitterion, C5H6N2O3S·H2O. There are two formula units in the asymmetric unit. The H and non-H atoms of both zwitterions lie on a mirror plane except for one sulfonate O atom. The water mol­ecules are also situated on a mirror plane. In the crystal, the zwitterions and water mol­ecules are linked by O—H⋯O and N—H⋯O hydrogen bonds, generating a three-dimensional network.

Related literature

The analogous reaction of 4-hy­droxy­pyridine with oleum yielded hydro­nium 4-oxo-1,4-dihydro­pyridine-3-sulfonate dihydrate and 4-hy­droxy­pyridinium-3-sulfonate; see: Zhu et al. (2009[Zhu, Z.-B., Gao, S. & Ng, S. W. (2009). Acta Cryst. E65, o2687.], 2011[Zhu, Z.-B., Gao, S. & Ng, S. W. (2011). Acta Cryst. E67, o11.]).

[Scheme 1]

Experimental

Crystal data
  • C5H6N2O3S·H2O

  • Mr = 192.19

  • Orthorhombic, P n m a

  • a = 31.6739 (13) Å

  • b = 6.5824 (3) Å

  • c = 7.3204 (3) Å

  • V = 1526.23 (11) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.40 mm−1

  • T = 293 K

  • 0.21 × 0.19 × 0.16 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.921, Tmax = 0.939

  • 22965 measured reflections

  • 1898 independent reflections

  • 1325 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.137

  • S = 1.17

  • 1898 reflections

  • 157 parameters

  • 8 restraints

  • All H-atom parameters refined

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.49 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1wi 0.88 (2) 1.99 (2) 2.820 (4) 158 (3)
N2—H22⋯O2ii 0.88 (2) 2.01 (2) 2.886 (3) 172 (3)
N3—H3⋯O1wiii 0.88 (2) 2.15 (3) 2.871 (4) 139 (3)
N4—H42⋯O4iv 0.88 (2) 1.99 (2) 2.869 (3) 173 (4)
O1w—H1w⋯O1 0.84 (2) 1.99 (2) 2.826 (3) 173 (3)
O2w—H2w⋯O3 0.85 (2) 2.02 (2) 2.864 (2) 171 (3)
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) x, y, z-1; (iii) [-x+{\script{3\over 2}}, -y+1, z-{\script{1\over 2}}]; (iv) x, y, z+1.

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

A previous reaction of 4-hydroxpyridine and oleum gave the salt, hydronium 4-oxo-1,4-dihydropyridine-3-sulfonate dihydrate (Zhu et al., 2009); a later repeat of the synthesis gave zwitterionic 4-hydroxypyridinium-3-sulfonate (Zhu et al., 2011). The studies were extended to 4-aminopyridine which upon reaction with oleum gave zwitterionic 4-aminopyridinium-3-sulfonate as a monohydrate (Scheme I, Fig. 1). The bonds in the ring are delocalized bonds. Adjacent zwitterions and water molecues are linked by N–H···O and O–H···O hydrogen bonds into a three-dimensional network (Tablel 1).

Related literature top

The analogous reaction of 4-hydroxypyridine with oleum yielded hydronium 4-oxo-1,4-dihydropyridine-3-sulfonate dihydrate and 4-hydroxypyridinium-3-sulfonate; see: Zhu et al. (2009, 2011).

Experimental top

4-Aminopyridine (10 mmol) was dissolved in 20% oleum (10 ml). The solution was heated to 393 K for 4 days. After it was cooled, the excess oleum was decanted. Recrystallization of the solid from water gave colorless crystals.

Refinement top

Hydrogen atoms were placed in calculated positions (C–H 0.93 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C). The amino and water H atoms were located in a difference Fourier map, and were refined with distance restraints of O–H 0.84±0.01 Å and N–H 0.88±0.01 Å; their temperature factors were tied by a factor of 1.2–1.5Ueq(N,O).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of the two independent molecules of C5H6N2O3S.H2O at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
4-Aminopyridinium-3-sulfonate monohydrate top
Crystal data top
C5H6N2O3S·H2OF(000) = 800
Mr = 192.19Dx = 1.673 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 13913 reflections
a = 31.6739 (13) Åθ = 3.1–27.5°
b = 6.5824 (3) ŵ = 0.40 mm1
c = 7.3204 (3) ÅT = 293 K
V = 1526.23 (11) Å3Prism, colorless
Z = 80.21 × 0.19 × 0.16 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
1898 independent reflections
Radiation source: fine-focus sealed tube1325 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
Detector resolution: 10.000 pixels mm-1θmax = 27.5°, θmin = 3.1°
ω scansh = 4141
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 88
Tmin = 0.921, Tmax = 0.939l = 98
22965 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.137All H-atom parameters refined
S = 1.17 w = 1/[σ2(Fo2) + (0.0795P)2]
where P = (Fo2 + 2Fc2)/3
1898 reflections(Δ/σ)max = 0.001
157 parametersΔρmax = 0.45 e Å3
8 restraintsΔρmin = 0.49 e Å3
Crystal data top
C5H6N2O3S·H2OV = 1526.23 (11) Å3
Mr = 192.19Z = 8
Orthorhombic, PnmaMo Kα radiation
a = 31.6739 (13) ŵ = 0.40 mm1
b = 6.5824 (3) ÅT = 293 K
c = 7.3204 (3) Å0.21 × 0.19 × 0.16 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
1898 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1325 reflections with I > 2σ(I)
Tmin = 0.921, Tmax = 0.939Rint = 0.049
22965 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0448 restraints
wR(F2) = 0.137All H-atom parameters refined
S = 1.17Δρmax = 0.45 e Å3
1898 reflectionsΔρmin = 0.49 e Å3
157 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.55812 (2)0.25000.86929 (9)0.0348 (3)
S20.66689 (2)0.25000.36003 (10)0.0360 (3)
O10.58140 (6)0.4293 (3)0.8206 (3)0.0647 (6)
O20.54212 (8)0.25001.0518 (3)0.0712 (10)
O1W0.62156 (8)0.75001.0095 (3)0.0451 (6)
H1W0.6107 (9)0.648 (4)0.959 (4)0.068*
O2W0.67561 (10)0.25000.6401 (4)0.0573 (8)
H2W0.6649 (10)0.151 (4)0.582 (4)0.086*
O30.64409 (5)0.0686 (3)0.4112 (2)0.0496 (5)
O40.68205 (8)0.25000.1750 (3)0.0570 (8)
N10.43845 (8)0.25000.7058 (4)0.0413 (7)
H10.4151 (7)0.25000.770 (4)0.050*
N20.55273 (8)0.25000.4434 (3)0.0366 (7)
H210.5763 (6)0.25000.505 (4)0.044*
H220.5522 (11)0.25000.3234 (14)0.044*
N30.78781 (8)0.25000.5065 (4)0.0416 (7)
H30.8121 (6)0.25000.449 (4)0.050*
N40.67536 (8)0.25000.7841 (4)0.0443 (8)
H410.6504 (6)0.25000.731 (5)0.053*
H420.6752 (12)0.25000.9046 (15)0.053*
C10.47379 (9)0.25000.8053 (4)0.0367 (8)
H1A0.47170.25000.93200.044*
C20.51300 (9)0.25000.7265 (4)0.0296 (7)
C30.51604 (9)0.25000.5320 (4)0.0285 (7)
C40.47767 (9)0.25000.4337 (4)0.0330 (7)
H40.47830.25000.30670.040*
C50.44023 (11)0.25000.5209 (4)0.0408 (8)
H50.41530.25000.45350.049*
C60.78747 (10)0.25000.6914 (5)0.0449 (9)
H60.81290.25000.75490.054*
C70.75061 (10)0.25000.7851 (4)0.0399 (8)
H70.75100.25000.91210.048*
C80.71128 (9)0.25000.6911 (4)0.0344 (7)
C90.71321 (10)0.25000.4964 (4)0.0332 (7)
C100.75175 (10)0.25000.4121 (4)0.0368 (8)
H100.75290.25000.28520.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0304 (4)0.0518 (6)0.0223 (4)0.0000.0034 (3)0.000
S20.0287 (4)0.0574 (6)0.0219 (4)0.0000.0017 (3)0.000
O10.0602 (11)0.0694 (15)0.0644 (12)0.0289 (10)0.0289 (10)0.0189 (10)
O20.0466 (15)0.144 (3)0.0225 (12)0.0000.0016 (11)0.000
O1W0.0354 (13)0.0573 (18)0.0428 (14)0.0000.0008 (10)0.000
O2W0.0606 (18)0.065 (2)0.0457 (16)0.0000.0179 (12)0.000
O30.0365 (9)0.0631 (13)0.0493 (10)0.0121 (9)0.0081 (7)0.0079 (9)
O40.0438 (14)0.104 (2)0.0237 (11)0.0000.0003 (10)0.000
N10.0255 (13)0.059 (2)0.0388 (15)0.0000.0049 (11)0.000
N20.0287 (13)0.0584 (19)0.0227 (12)0.0000.0021 (11)0.000
N30.0240 (13)0.055 (2)0.0452 (16)0.0000.0040 (11)0.000
N40.0337 (15)0.076 (2)0.0228 (13)0.0000.0004 (11)0.000
C10.0335 (16)0.050 (2)0.0265 (14)0.0000.0026 (13)0.000
C20.0280 (14)0.0379 (19)0.0227 (14)0.0000.0013 (11)0.000
C30.0303 (15)0.0324 (18)0.0227 (13)0.0000.0013 (11)0.000
C40.0311 (15)0.041 (2)0.0267 (14)0.0000.0032 (12)0.000
C50.0325 (16)0.054 (2)0.0363 (17)0.0000.0078 (13)0.000
C60.0307 (16)0.058 (2)0.0461 (18)0.0000.0103 (15)0.000
C70.0372 (17)0.052 (2)0.0304 (16)0.0000.0086 (14)0.000
C80.0314 (16)0.045 (2)0.0270 (14)0.0000.0013 (12)0.000
C90.0279 (15)0.046 (2)0.0261 (14)0.0000.0004 (11)0.000
C100.0333 (16)0.045 (2)0.0322 (16)0.0000.0038 (13)0.000
Geometric parameters (Å, º) top
S1—O21.429 (2)N3—H30.88 (2)
S1—O11.436 (2)N4—C81.326 (4)
S1—O1i1.436 (2)N4—H410.88 (2)
S1—C21.771 (3)N4—H420.88 (2
S2—O41.437 (2)C1—C21.369 (4)
S2—O31.4451 (18)C1—H1A0.9300
S2—O3i1.4451 (18)C2—C31.427 (4)
S2—C91.775 (3)C3—C41.412 (4)
O1W—H1W0.84 (3)C4—C51.347 (4)
O2W—H2W0.85 (2)C4—H40.9300
N1—C11.335 (4)C5—H50.9300
N1—C51.355 (4)C6—C71.354 (5)
N1—H10.878 (10)C6—H60.9300
N2—C31.331 (4)C7—C81.423 (4)
N2—H210.87 (2)C7—H70.9300
N2—H220.88 (2)C8—C91.427 (4)
N3—C101.335 (4)C9—C101.368 (4)
N3—C61.354 (4)C10—H100.9300
O2—S1—O1114.46 (10)C1—C2—C3118.8 (3)
O2—S1—O1i114.46 (10)C1—C2—S1118.9 (2)
O1—S1—O1i110.5 (2)C3—C2—S1122.3 (2)
O2—S1—C2105.40 (14)N2—C3—C4120.2 (2)
O1—S1—C2105.54 (9)N2—C3—C2123.0 (3)
O1i—S1—C2105.54 (9)C4—C3—C2116.8 (3)
O4—S2—O3114.29 (9)C5—C4—C3121.1 (3)
O4—S2—O3i114.29 (9)C5—C4—H4119.5
O3—S2—O3i111.47 (16)C3—C4—H4119.5
O4—S2—C9104.71 (14)C4—C5—N1120.7 (3)
O3—S2—C9105.51 (8)C4—C5—H5119.7
O3i—S2—C9105.51 (8)N1—C5—H5119.7
C1—N1—C5120.7 (3)N3—C6—C7120.9 (3)
C1—N1—H1114 (2)N3—C6—H6119.6
C5—N1—H1125 (2)C7—C6—H6119.6
C3—N2—H21120 (2)C6—C7—C8120.7 (3)
C3—N2—H22118 (2)C6—C7—H7119.7
H21—N2—H22122 (3)C8—C7—H7119.7
C10—N3—C6120.7 (3)N4—C8—C7120.2 (3)
C10—N3—H3120 (2)N4—C8—C9123.4 (3)
C6—N3—H3119 (2)C7—C8—C9116.4 (3)
C8—N4—H41123 (3)C10—C9—C8119.3 (3)
C8—N4—H42121 (3)C10—C9—S2119.0 (2)
H41—N4—H42116 (4)C8—C9—S2121.8 (2)
N1—C1—C2122.0 (3)N3—C10—C9122.0 (3)
N1—C1—H1A119.0N3—C10—H10119.0
C2—C1—H1A119.0C9—C10—H10119.0
C5—N1—C1—C20.0C10—N3—C6—C70.0
N1—C1—C2—C30.0N3—C6—C7—C80.0
N1—C1—C2—S1180.0C6—C7—C8—N4180.0
O2—S1—C2—C10.0C6—C7—C8—C90.0
O1—S1—C2—C1121.49 (11)N4—C8—C9—C10180.0
O1i—S1—C2—C1121.49 (11)C7—C8—C9—C100.0
O2—S1—C2—C3180.0N4—C8—C9—S20.0
O1—S1—C2—C358.51 (11)C7—C8—C9—S2180.0
O1i—S1—C2—C358.51 (11)O4—S2—C9—C100.0
C1—C2—C3—N2180.0O3—S2—C9—C10120.95 (9)
S1—C2—C3—N20.0O3i—S2—C9—C10120.95 (9)
C1—C2—C3—C40.0O4—S2—C9—C8180.0
S1—C2—C3—C4180.0O3—S2—C9—C859.05 (9)
N2—C3—C4—C5180.0O3i—S2—C9—C859.05 (9)
C2—C3—C4—C50.0C6—N3—C10—C90.0
C3—C4—C5—N10.0C8—C9—C10—N30.0
C1—N1—C5—C40.0S2—C9—C10—N3180.0
Symmetry code: (i) x, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1wii0.88 (2)1.99 (2)2.820 (4)158 (3)
N2—H22···O2iii0.88 (2)2.01 (2)2.886 (3)172 (3)
N3—H3···O1wiv0.88 (2)2.15 (3)2.871 (4)139 (3)
N4—H42···O4v0.88 (2)1.99 (2)2.869 (3)173 (4)
O1w—H1w···O10.84 (2)1.99 (2)2.826 (3)173 (3)
O2w—H2w···O30.85 (2)2.02 (2)2.864 (2)171 (3)
Symmetry codes: (ii) x+1, y+1, z+2; (iii) x, y, z1; (iv) x+3/2, y+1, z1/2; (v) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC5H6N2O3S·H2O
Mr192.19
Crystal system, space groupOrthorhombic, Pnma
Temperature (K)293
a, b, c (Å)31.6739 (13), 6.5824 (3), 7.3204 (3)
V3)1526.23 (11)
Z8
Radiation typeMo Kα
µ (mm1)0.40
Crystal size (mm)0.21 × 0.19 × 0.16
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.921, 0.939
No. of measured, independent and
observed [I > 2σ(I)] reflections
22965, 1898, 1325
Rint0.049
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.137, 1.17
No. of reflections1898
No. of parameters157
No. of restraints8
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.45, 0.49

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1wi0.88 (2)1.99 (2)2.820 (4)158 (3)
N2—H22···O2ii0.88 (2)2.01 (2)2.886 (3)172 (3)
N3—H3···O1wiii0.88 (2)2.15 (3)2.871 (4)139 (3)
N4—H42···O4iv0.88 (2)1.99 (2)2.869 (3)173 (4)
O1w—H1w···O10.84 (2)1.99 (2)2.826 (3)173 (3)
O2w—H2w···O30.85 (2)2.02 (2)2.864 (2)171 (3)
Symmetry codes: (i) x+1, y+1, z+2; (ii) x, y, z1; (iii) x+3/2, y+1, z1/2; (iv) x, y, z+1.
 

Acknowledgements

We thank the Key Project of the Natural Science Foundation of Heilongjiang Province (No. ZD200903) and the Innovation Team of the Education Bureau of Heilongjiang Province (No. 2010 t d03), Heilongjiang University and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhu, Z.-B., Gao, S. & Ng, S. W. (2009). Acta Cryst. E65, o2687.  Web of Science CrossRef IUCr Journals Google Scholar
First citationZhu, Z.-B., Gao, S. & Ng, S. W. (2011). Acta Cryst. E67, o11.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds