organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 2| February 2011| Pages o293-o294

N-[5-Methyl-2-(2-nitro­phen­yl)-4-oxo-1,3-thia­zolidin-3-yl]pyridine-3-carboxamide monohydrate

aDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, bDepartment of Physics, Faculty of Arts and Sciences, Cumhuriyet University, 58140 Sivas, Turkey, cDepartment of Pharmaceutical Chemistry, Faculty of Pharmacy, Istanbul University, 34116 Beyazit, Istanbul, Turkey, and dDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Samsun, Turkey
*Correspondence e-mail: akkurt@erciyes.edu.tr

(Received 2 December 2010; accepted 5 January 2011; online 8 January 2011)

In the title compound, C16H14N4O4S·H2O, the benzene and pyridine rings make a dihedral angle of 85.8 (1)°. Both enanti­omers of the chiral title compound are statistically disordered over the same position in the unit cell. The methyl and carbonyl group attached to the stereogenic center (C5 of the thia­zolidine ring) were therefore refined with common site-occupation factors of 0.531 (9) and 0.469 (9), respectively, for each stereoisomer. In the crystal, inter­molecular N—H⋯O, O—H⋯O and O—H⋯N hydrogen bonds link the mol­ecules, forming a three-dimensional supra­molecular network. The crystal structure further shows ππ stacking inter­actions [centroid–centroid distance = 3.5063 (13) Å] between the pyridine rings.

Related literature

For the biological and pharmacological properties of pyridine-3-carboxamide derivatives, see: Balzarini et al. (2009[Balzarini, J., Orzeszko-Krzesinska, B., Maurin, J. K. & Orzeszko, A. (2009). Eur. J. Med. Chem. 44, 303-311.]); Baumbach et al. (1995[Baumbach, A., Braun, U., Döring, G., Haase, K. K., Voelker, W. & Karsch, K. R. (1995). Cardiovasc. Drugs Ther. 9, 213-220.]); Girgis et al. (2006[Girgis, A. S., Hosni, H. M. & Barsoum, F. F. (2006). Bioorg. Med. Chem. 14, 4466-4476.]); Guzel & Salman (2009[Guzel, Ö. & Salman, A. (2009). J. Enzyme Inhib. Med. Chem. 24, 1015-1023.]); Kuramochi et al. (2005[Kuramochi, T., Kakefuda, A., Sato, I., Tsukamoto, I., Taguchi, T. & Sakamoto, S. (2005). Bioorg. Med. Chem. 13, 717-724.]); Moëll et al. (2009[Moëll, A., Skog, O., Ahlin, E., Korsgren, O. & Frisk, G. (2009). J. Med. Virol. 81, 1082-1087.]); Slominska et al. (2008[Slominska, E. M., Yuen, A., Osman, L., Gebicki, J., Yacoub, M. H. & Smolenski, R. T. (2008). Nucleosides Nucleotides Nucleic Acids, 27, 863-866.]); Ur et al. (2004[Ur, F., Cesur, N., Birteksöz, S. & Ötük, G. (2004). Arzneim. Forsch. Drug Res. 54, 125-129.]); Vigorita et al. (1992[Vigorita, M. G., Basile, M., Zappala, C., Gabbrielli, G. & Pizzimenti, F. (1992). Farmaco, 47, 893-906.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C16H14N4O4S·H2O

  • Mr = 376.40

  • Triclinic, [P \overline 1]

  • a = 8.1399 (4) Å

  • b = 8.4106 (4) Å

  • c = 15.0274 (7) Å

  • α = 92.957 (4)°

  • β = 104.176 (4)°

  • γ = 116.792 (4)°

  • V = 874.66 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 296 K

  • 0.62 × 0.55 × 0.49 mm

Data collection
  • Stoe IPDS 2 diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.875, Tmax = 0.899

  • 11714 measured reflections

  • 3963 independent reflections

  • 3192 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.121

  • S = 1.04

  • 3963 reflections

  • 285 parameters

  • 15 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—HN1⋯OW1i 0.86 (2) 1.96 (2) 2.804 (2) 167 (2)
OW1—HW1⋯O3Aii 0.81 (2) 2.02 (2) 2.806 (1) 163 (4)
OW1—HW2⋯N4iii 0.80 (2) 2.01 (2) 2.803 (2) 173 (3)
Symmetry codes: (i) x+1, y, z; (ii) -x+1, -y+1, -z+2; (iii) x-2, y-1, z.

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Pyridine-3-carboxamide derivatives have gained attention because of their cytoprotective (Slominska et al., 2008), sodium-calcium exchanger (NCX) inhibitory (Kuramochi et al., 2005), vasodilatory (Baumbach et al., 1995), and cytotoxic (Girgis et al., 2006) properties. An inhibitory effect of pyridine-3-carboxamide on enterovirus replication and chemokine secretion has also been recently reported (Moëll et al., 2009). Here, we combine the pyridine-3-carboxamide moiety with a thiazolidinone moiety, which has shown antimycobacterial (Guzel et al., 2009), antimicrobial (Ur et al., 2004), anticancer (Vigorita et al., 1992) and antiviral (Balzarini et al., 2009) activities. Design and synthesis of bioactive molecules bearing both 4-thiazolidinone and pyridine-3-carboxamide groups take advantage of the diverse biological activities of the two scaffolds.

In the title compound (I), (Fig. 1), the bond lengths and bond angles are within normal range (Allen et al., 1987). The benzene (C1–C6) and pyridine (N4/C12–C16) rings in (I) make a dihedral angle of 85.8 (1)° with each other.

Both enantiomers of the chiral title compound are statistically disordered over the same position in the unit cell. The methyl and carbonyl group attached to the stereogenic center (C(5) of the thiazolidine ring) were therefore refined with common site occupation factors of 0.531 (9) and 0.469 (9), respectively, for each stereoisomer. Atoms C8A and C8B show strange thermal parameters due to the observed disorder.

The molecular packing (Fig. 2), is stabilized by the intermolecular N—H···O, O—H···O and O—H···N hydrogen bonds connecting the molecules to form a three-dimensional supramolecular network (Table 1). Additionally, a π-π stacking interaction in the structure was observed between the pyridine rings of the two adjacent molecules [Cg3···Cg3iv = 3.5063 (13) Å, symmetry code (iv) 3 - x, 2 - y, 2 - z; Cg3 is a centroid of the pyridine ring (N4/C12—C16)].

Related literature top

For the biological and pharmacological properties of pyridine-3-carboxamide derivatives, see: Balzarini et al. (2009); Baumbach et al. (1995); Girgis et al. (2006); Guzel & Salman (2009); Kuramochi et al. (2005); Moëll et al. (2009); Slominska et al. (2008); Ur et al. (2004); Vigorita et al. (1992). For bond-length data, see: Allen et al. (1987).

Experimental top

0.01 mol of N'-(2-nitrobenzylidine)pyridine-3-carbohydrazide was reacted with 0.028 mol of 2-mercaptopropanoic acid in anhydrous benzene for 18 h using a Dean-Stark trap. Excess benzene was removed under reduced pressure. The residue was triturated with saturated sodium bicarbonate solution. The separated solid was filtered, washed with water and crystallized from methanol to obtain a white crystalline solid. Yield: 70.11%; m.p.: 378.2–382.1 K. UV (EtOH) λ max: 212.2, 220.0, 255.4 nm. IR (KBr) υ: 1681 (amide C=O), 1707 (thia C=O) cm-1; 1H-NMR (DMSO-d6, 500 MHz): 1.48, 1.52 (3H, 2 d, J=7.3 Hz, 6.8 Hz, CH3-thia.), 4.10 (1H, q, J= 7.0 Hz, H5-thia.), 4.21 (1H, dq, J= 6.8, 1.96 Hz, H5-thia.), 6.22 (1H, d, J=2 Hz, H2-thia), 7.51 (1H, dd, J=4.8 Hz, 4.4 Hz, H5-pyridine), 7.61–7.65 (1H, m, 2-C6H4—H4-thia.), 7.85–7.90 (2H, m, 2-C6H4-(H5,6)-thia.), 8.04–8.11 (2H, m, 2-C6H4—H3-thia. ve H4-pyridine), 8.73 (1H, dd, J=8.3 Hz, 2.0 Hz, H6-pyridine), 8.71, 8.79 (1H, 2 d, J=2.4 Hz, 2.4 Hz, H2-pyridine), 11.04, 11.05 (1H, 2 s, CONH) p.p.m.; ESI– (m/z, relative abundance): 358.13 ([M—H+1]-, 17.77), 357.13 ([M—H]-, 100). Analysis calculated for C16H14N4O4S.H2O: C 51.06, H 4.28, N 14.89%. Found: C 51.21, H 3.73, N 14.83%.

Refinement top

H atoms of the water molecule were found from a difference Fourier map and were refined with distance restraints of O–H = 0.82 Å, H···H = 1.23 Å, and with Uiso(H) = 1.5 Ueq(O). The N-bound H atom was located from the Fourier synthesis and was refined with a distance restraint of N–H = 0.86 Å, and with Uiso(H) = 1.2 Ueq(N). C-bound H atoms were placed geometrically (C—H = 0.93–0.98 Å) and refined as riding with Uiso(H) = 1.2 or 1.5Ueq(C).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. View of the title molecule with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level. Only the S-enantiomer is shown.
[Figure 2] Fig. 2. Packing diagram of (I) viewed down the a-axis and showing the hydrogen bonding pattern. All hydrogen atoms not involved in hydrogen bonding have been omitted for clarity. Only the S-enantiomers are shown.
N-[5-Methyl-2-(2-nitrophenyl)-4-oxo-1,3-thiazolidin-3-yl]pyridine-3- carboxamide monohydrate top
Crystal data top
C16H14N4O4S·H2OZ = 2
Mr = 376.40F(000) = 392
Triclinic, P1Dx = 1.429 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.1399 (4) ÅCell parameters from 15771 reflections
b = 8.4106 (4) Åθ = 2.8–28.0°
c = 15.0274 (7) ŵ = 0.22 mm1
α = 92.957 (4)°T = 296 K
β = 104.176 (4)°Block, colourless
γ = 116.792 (4)°0.62 × 0.55 × 0.49 mm
V = 874.66 (8) Å3
Data collection top
Stoe IPDS 2
diffractometer
3963 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus3192 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.038
Detector resolution: 6.67 pixels mm-1θmax = 27.5°, θmin = 2.8°
ω scansh = 1010
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 1010
Tmin = 0.875, Tmax = 0.899l = 1918
11714 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.057P)2 + 0.1358P]
where P = (Fo2 + 2Fc2)/3
3963 reflections(Δ/σ)max = 0.001
285 parametersΔρmax = 0.27 e Å3
15 restraintsΔρmin = 0.27 e Å3
Crystal data top
C16H14N4O4S·H2Oγ = 116.792 (4)°
Mr = 376.40V = 874.66 (8) Å3
Triclinic, P1Z = 2
a = 8.1399 (4) ÅMo Kα radiation
b = 8.4106 (4) ŵ = 0.22 mm1
c = 15.0274 (7) ÅT = 296 K
α = 92.957 (4)°0.62 × 0.55 × 0.49 mm
β = 104.176 (4)°
Data collection top
Stoe IPDS 2
diffractometer
3963 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
3192 reflections with I > 2σ(I)
Tmin = 0.875, Tmax = 0.899Rint = 0.038
11714 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04315 restraints
wR(F2) = 0.121H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.27 e Å3
3963 reflectionsΔρmin = 0.27 e Å3
285 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.56133 (7)0.45061 (8)0.61403 (3)0.0699 (2)
O10.7192 (5)0.2528 (4)0.38302 (13)0.1562 (12)
O20.7900 (2)0.4795 (3)0.48092 (11)0.0856 (6)
O3A0.7493 (19)0.5809 (14)0.8800 (8)0.091 (3)0.531 (9)
O41.1251 (2)0.84381 (17)0.77262 (11)0.0811 (5)
N10.7598 (3)0.3251 (3)0.46237 (12)0.0771 (6)
N20.84041 (19)0.50765 (19)0.76035 (9)0.0551 (4)
N31.0289 (2)0.56998 (19)0.81531 (10)0.0563 (4)
N41.6987 (2)0.9892 (2)0.90983 (13)0.0741 (6)
C10.7803 (3)0.2246 (3)0.53763 (13)0.0645 (6)
C20.7799 (4)0.0637 (3)0.5129 (2)0.0927 (9)
C30.7969 (4)0.0385 (4)0.5785 (3)0.1087 (13)
C40.8097 (4)0.0165 (3)0.6687 (2)0.0947 (10)
C50.8058 (3)0.1748 (3)0.69268 (15)0.0707 (7)
C60.7942 (2)0.2861 (2)0.62885 (12)0.0539 (5)
C70.7962 (2)0.4616 (2)0.65973 (11)0.0527 (5)
C8A0.5297 (5)0.4937 (9)0.7236 (2)0.0587 (13)0.531 (9)
C9A0.7153 (13)0.5370 (11)0.7958 (6)0.0610 (19)0.531 (9)
C10A0.3540 (12)0.3317 (16)0.7341 (6)0.126 (4)0.531 (9)
C111.1625 (3)0.7433 (2)0.81826 (12)0.0567 (5)
C121.3603 (2)0.7956 (2)0.87999 (12)0.0529 (5)
C131.3975 (3)0.7257 (3)0.95825 (13)0.0648 (6)
C141.5852 (3)0.7867 (3)1.01129 (15)0.0738 (7)
C151.7293 (3)0.9187 (3)0.98500 (15)0.0681 (6)
C161.5163 (3)0.9272 (2)0.85835 (14)0.0679 (6)
C8B0.5041 (6)0.3820 (10)0.7244 (3)0.0592 (16)0.469 (9)
C9B0.7003 (12)0.4774 (11)0.7995 (6)0.0513 (16)0.469 (9)
C10B0.3623 (15)0.4314 (15)0.7441 (7)0.093 (3)0.469 (9)
O3B0.7218 (17)0.5168 (14)0.8810 (8)0.076 (2)0.469 (9)
OW10.0315 (2)0.3195 (2)0.93103 (12)0.0931 (6)
H40.821000.053100.713600.1130*
H70.891600.560400.638600.0630*
H8A0.509600.600000.726700.0710*0.531 (9)
H50.811100.208400.753700.0850*
H10B0.338600.354800.794000.1890*0.531 (9)
H10C0.371000.226100.729400.1890*0.531 (9)
H131.296400.637600.975300.0780*
H141.613400.739101.063900.0890*
H151.856000.961501.021900.0820*
H161.492400.974700.805100.0810*
H10A0.241300.311600.685700.1890*0.531 (9)
HN11.048 (3)0.499 (2)0.8508 (13)0.062 (5)*
H20.768000.025300.451400.1110*
H30.799800.145200.562200.1300*
H8B0.452500.250500.718600.0710*0.469 (9)
H10D0.242500.367600.694700.1400*0.469 (9)
H10E0.410400.559600.748000.1400*0.469 (9)
H10F0.341900.399000.802300.1400*0.469 (9)
HW10.078 (4)0.355 (4)0.9872 (13)0.120 (11)*
HW20.068 (3)0.230 (3)0.924 (2)0.126 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0665 (3)0.1068 (4)0.0450 (2)0.0532 (3)0.0084 (2)0.0109 (2)
O10.245 (3)0.159 (2)0.0532 (10)0.088 (2)0.0453 (15)0.0094 (12)
O20.0975 (11)0.1172 (13)0.0581 (8)0.0619 (10)0.0255 (8)0.0329 (9)
O3A0.103 (6)0.130 (7)0.046 (3)0.069 (5)0.009 (3)0.007 (4)
O40.0813 (9)0.0583 (7)0.0893 (10)0.0317 (7)0.0032 (8)0.0239 (7)
N10.0713 (10)0.1071 (14)0.0478 (9)0.0377 (10)0.0208 (8)0.0090 (9)
N20.0463 (7)0.0679 (8)0.0414 (7)0.0231 (6)0.0062 (5)0.0082 (6)
N30.0466 (7)0.0540 (7)0.0549 (8)0.0182 (6)0.0038 (6)0.0145 (6)
N40.0560 (9)0.0652 (9)0.0838 (12)0.0139 (7)0.0225 (8)0.0155 (8)
C10.0540 (9)0.0745 (11)0.0580 (10)0.0266 (8)0.0150 (8)0.0051 (8)
C20.0887 (16)0.0873 (15)0.0903 (17)0.0380 (13)0.0218 (13)0.0130 (13)
C30.114 (2)0.0742 (15)0.131 (3)0.0498 (15)0.0206 (19)0.0047 (16)
C40.0990 (18)0.0634 (12)0.107 (2)0.0358 (12)0.0121 (15)0.0204 (12)
C50.0716 (12)0.0611 (10)0.0665 (12)0.0247 (9)0.0125 (9)0.0166 (9)
C60.0446 (8)0.0596 (9)0.0512 (9)0.0209 (7)0.0117 (7)0.0111 (7)
C70.0508 (8)0.0626 (9)0.0425 (8)0.0253 (7)0.0131 (6)0.0155 (7)
C8A0.061 (2)0.071 (3)0.0513 (18)0.038 (2)0.0153 (15)0.0157 (17)
C9A0.070 (3)0.069 (4)0.051 (3)0.041 (3)0.014 (2)0.012 (3)
C10A0.066 (4)0.190 (9)0.077 (5)0.021 (5)0.019 (3)0.056 (6)
C110.0582 (9)0.0502 (8)0.0557 (9)0.0233 (7)0.0124 (8)0.0097 (7)
C120.0519 (8)0.0440 (7)0.0542 (9)0.0174 (6)0.0135 (7)0.0069 (6)
C130.0504 (9)0.0669 (10)0.0607 (10)0.0152 (8)0.0138 (8)0.0192 (8)
C140.0571 (10)0.0843 (13)0.0658 (11)0.0242 (9)0.0118 (9)0.0250 (10)
C150.0485 (9)0.0713 (11)0.0739 (12)0.0220 (8)0.0151 (9)0.0082 (9)
C160.0628 (11)0.0543 (9)0.0709 (12)0.0160 (8)0.0168 (9)0.0182 (8)
C8B0.051 (2)0.071 (4)0.053 (2)0.027 (2)0.0144 (16)0.017 (2)
C9B0.050 (2)0.065 (4)0.039 (2)0.027 (3)0.0129 (16)0.018 (3)
C10B0.080 (5)0.150 (8)0.073 (3)0.071 (6)0.031 (3)0.021 (5)
O3B0.060 (2)0.113 (6)0.043 (3)0.031 (4)0.0160 (18)0.015 (4)
OW10.0800 (10)0.0681 (9)0.0728 (10)0.0017 (8)0.0099 (8)0.0323 (8)
Geometric parameters (Å, º) top
S1—C71.8238 (19)C8A—C9A1.501 (11)
S1—C8A1.772 (4)C8A—C10A1.518 (14)
S1—C8B1.880 (5)C8B—C10B1.476 (15)
O1—N11.205 (3)C8B—C9B1.529 (11)
O2—N11.211 (3)C11—C121.495 (3)
O3A—C9A1.226 (14)C12—C161.384 (3)
O3B—C9B1.201 (15)C12—C131.370 (3)
O4—C111.211 (2)C13—C141.374 (4)
OW1—HW10.813 (19)C14—C151.365 (3)
OW1—HW20.80 (2)C2—H20.9300
N1—C11.468 (3)C3—H30.9300
N2—N31.386 (2)C4—H40.9300
N2—C71.454 (2)C5—H50.9300
N2—C9A1.364 (11)C7—H70.9800
N2—C9B1.339 (10)C8A—H8A0.9800
N3—C111.360 (2)C8B—H8B0.9800
N4—C161.331 (3)C10A—H10B0.9600
N4—C151.324 (3)C10A—H10C0.9600
N3—HN10.861 (18)C10A—H10A0.9600
C1—C61.399 (3)C10B—H10F0.9600
C1—C21.383 (4)C10B—H10E0.9600
C2—C31.363 (5)C10B—H10D0.9600
C3—C41.373 (5)C13—H130.9300
C4—C51.378 (4)C14—H140.9300
C5—C61.390 (3)C15—H150.9300
C6—C71.516 (2)C16—H160.9300
S1···O22.999 (2)C12···C15ix3.496 (3)
S1···N13.466 (2)C13···O3Bvi3.288 (11)
S1···S1i3.5774 (7)C13···OW1vii3.286 (3)
S1···O2i3.188 (2)C14···C12ix3.586 (3)
O1···O4ii3.150 (4)C14···C16ix3.523 (3)
O1···C11ii3.389 (3)C14···O3Avii3.420 (15)
OW1···C13iii3.286 (3)C15···C12ix3.496 (3)
OW1···N4iv2.803 (2)C15···O3Avii3.266 (13)
OW1···O3Av2.806 (12)C16···C14ix3.523 (3)
OW1···N3iii2.804 (2)C5···HN13.026 (17)
OW1···O3Bv2.870 (12)C9B···H52.9000
O2···C72.688 (2)C10A···H14vi3.0900
O2···S1i3.188 (2)C11···H72.8500
O2···N1ii3.123 (3)C12···H10Evii2.9600
O2···S12.999 (2)C13···HN12.62 (2)
O2···O2ii3.177 (3)C15···H15x3.0900
O2···C1ii3.348 (3)C15···HW2viii2.74 (2)
O3A···C15iii3.266 (13)C16···H10Evii3.0700
O3A···C113.400 (16)C16···HW2viii3.04 (3)
O3A···C14iii3.420 (15)HN1···OW1vii1.958 (17)
O3A···OW1v2.806 (12)HN1···C53.026 (17)
O3A···N32.720 (16)HN1···H52.4100
O3B···OW1v2.870 (12)HN1···HW1vii2.45 (3)
O3B···C13vi3.288 (11)HN1···HW2vii2.46 (3)
O3B···N32.769 (15)HN1···O3B2.87 (3)
O4···C73.136 (2)HN1···H132.1800
O4···C9A3.288 (10)HN1···C132.62 (2)
O4···O1ii3.150 (4)H2···O12.3600
O4···N22.689 (2)HW1···H13iii2.2900
O1···H10Ei2.8800HW1···O3Bv2.09 (2)
O1···H8Ai2.9200HW1···O3Av2.02 (2)
O1···H22.3600HW1···HN1iii2.45 (3)
OW1···H5iii2.6600HW2···C16iv3.04 (3)
OW1···H13iii2.4800HW2···N4iv2.01 (2)
OW1···HN1iii1.958 (17)HW2···C15iv2.74 (2)
O2···H72.2600HW2···H5iii2.4700
O3A···H10B2.8900HW2···HN1iii2.46 (3)
O3A···H13vi2.9000H5···HN12.4100
O3A···HW1v2.02 (2)H5···HW2vii2.4700
O3B···H10F2.7000H5···OW1vii2.6600
O3B···HN12.87 (3)H5···N22.4100
O3B···H13vi2.5800H5···C9B2.9000
O3B···HW1v2.09 (3)H5···N32.7000
O4···H72.6300H7···O22.2600
O4···H162.5800H7···O42.6300
N1···S13.466 (2)H7···C112.8500
N1···O2ii3.123 (3)H7···N12.8700
N2···O42.689 (2)H8A···O1i2.9200
N3···O3B2.769 (15)H10B···O3A2.8900
N3···OW1vii2.804 (2)H10B···H14vi2.3200
N3···O3A2.720 (16)H10E···C12iii2.9600
N3···C53.167 (3)H10E···O1i2.8800
N4···OW1viii2.803 (2)H10E···C16iii3.0700
N1···H72.8700H10F···H14vi2.4100
N2···H52.4100H10F···O3B2.7000
N3···H132.6500H13···OW1vii2.4800
N3···H52.7000H13···N32.6500
N4···HW2viii2.01 (2)H13···HN12.1800
C1···O2ii3.348 (3)H13···HW1vii2.2900
C5···C9B3.466 (10)H13···O3Avi2.9000
C5···N33.167 (3)H13···O3Bvi2.5800
C7···O22.688 (2)H14···C10Avi3.0900
C7···O43.136 (2)H14···H10Bvi2.3200
C9A···O43.288 (10)H14···H10Fvi2.4100
C9B···C53.466 (10)H15···C15x3.0900
C11···O3A3.400 (16)H15···H15x2.4000
C11···O1ii3.389 (3)H16···O42.5800
C12···C14ix3.586 (3)
C7—S1—C8A96.72 (17)C13—C12—C16117.71 (19)
C7—S1—C8B89.56 (19)C11—C12—C13124.34 (17)
HW1—OW1—HW2105 (3)C12—C13—C14119.5 (2)
O1—N1—C1118.6 (2)C13—C14—C15118.5 (2)
O2—N1—C1120.00 (17)N4—C15—C14123.6 (2)
O1—N1—O2121.4 (2)N4—C16—C12123.38 (17)
N3—N2—C9A119.9 (4)C3—C2—H2120.00
N3—N2—C9B120.7 (4)C1—C2—H2120.00
N3—N2—C7118.23 (15)C2—C3—H3120.00
C7—N2—C9B120.9 (4)C4—C3—H3120.00
C7—N2—C9A119.4 (4)C3—C4—H4120.00
N2—N3—C11118.67 (16)C5—C4—H4120.00
C15—N4—C16117.28 (18)C6—C5—H5119.00
C11—N3—HN1124.9 (14)C4—C5—H5119.00
N2—N3—HN1115.9 (14)N2—C7—H7109.00
N1—C1—C2116.4 (2)C6—C7—H7109.00
N1—C1—C6121.7 (2)S1—C7—H7109.00
C2—C1—C6121.9 (2)S1—C8A—H8A109.00
C1—C2—C3120.1 (3)C10A—C8A—H8A109.00
C2—C3—C4119.8 (3)C9A—C8A—H8A109.00
C3—C4—C5120.0 (3)C9B—C8B—H8B109.00
C4—C5—C6122.3 (2)C10B—C8B—H8B109.00
C5—C6—C7120.07 (16)S1—C8B—H8B109.00
C1—C6—C7124.04 (16)H10A—C10A—H10B109.00
C1—C6—C5115.89 (18)C8A—C10A—H10C109.00
N2—C7—C6113.13 (13)C8A—C10A—H10B110.00
S1—C7—N2103.61 (12)H10A—C10A—H10C109.00
S1—C7—C6112.56 (12)H10B—C10A—H10C109.00
C9A—C8A—C10A114.1 (6)C8A—C10A—H10A110.00
S1—C8A—C9A106.0 (5)C8B—C10B—H10D109.00
S1—C8A—C10A109.8 (5)C8B—C10B—H10E109.00
C9B—C8B—C10B113.3 (7)H10D—C10B—H10F110.00
S1—C8B—C10B112.3 (5)H10D—C10B—H10E109.00
S1—C8B—C9B104.0 (5)H10E—C10B—H10F110.00
N2—C9A—C8A113.7 (6)C8B—C10B—H10F109.00
O3A—C9A—C8A124.5 (12)C14—C13—H13120.00
O3A—C9A—N2121.6 (11)C12—C13—H13120.00
O3B—C9B—C8B124.1 (11)C13—C14—H14121.00
N2—C9B—C8B109.7 (6)C15—C14—H14121.00
O3B—C9B—N2126.2 (11)N4—C15—H15118.00
O4—C11—N3122.8 (2)C14—C15—H15118.00
N3—C11—C12113.92 (16)N4—C16—H16118.00
O4—C11—C12123.26 (16)C12—C16—H16118.00
C11—C12—C16117.92 (16)
C8A—S1—C7—C6120.0 (2)N1—C1—C2—C3179.5 (3)
C7—S1—C8A—C10A117.5 (5)C2—C1—C6—C7179.7 (2)
C7—S1—C8A—C9A6.1 (5)C1—C2—C3—C41.6 (5)
C8A—S1—C7—N22.6 (2)C2—C3—C4—C50.2 (5)
O1—N1—C1—C6168.9 (3)C3—C4—C5—C61.7 (5)
O1—N1—C1—C29.5 (4)C4—C5—C6—C12.0 (4)
O2—N1—C1—C2168.0 (3)C4—C5—C6—C7178.2 (2)
O2—N1—C1—C613.7 (4)C5—C6—C7—N28.9 (3)
C9A—N2—N3—C1186.1 (5)C1—C6—C7—S171.6 (2)
N3—N2—C7—S1164.40 (12)C5—C6—C7—S1108.16 (19)
C7—N2—N3—C1175.9 (2)C1—C6—C7—N2171.39 (19)
C9A—N2—C7—C6124.5 (4)C10A—C8A—C9A—N2112.4 (7)
C9A—N2—C7—S12.3 (4)S1—C8A—C9A—N28.5 (7)
N3—N2—C7—C673.41 (19)C10A—C8A—C9A—O3A62.0 (12)
C7—N2—C9A—C8A7.4 (8)S1—C8A—C9A—O3A177.1 (9)
N3—N2—C9A—O3A16.3 (11)N3—C11—C12—C1330.2 (3)
C7—N2—C9A—O3A178.0 (8)O4—C11—C12—C13152.0 (2)
N3—N2—C9A—C8A169.1 (4)O4—C11—C12—C1626.0 (3)
N2—N3—C11—C12179.78 (15)N3—C11—C12—C16151.82 (18)
N2—N3—C11—O42.4 (3)C16—C12—C13—C140.4 (3)
C16—N4—C15—C140.6 (3)C11—C12—C16—N4177.67 (18)
C15—N4—C16—C120.4 (3)C11—C12—C13—C14178.5 (2)
N1—C1—C6—C5177.7 (2)C13—C12—C16—N40.5 (3)
N1—C1—C6—C72.1 (3)C12—C13—C14—C151.3 (3)
C6—C1—C2—C31.2 (5)C13—C14—C15—N41.4 (4)
C2—C1—C6—C50.6 (4)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+1, z+1; (iii) x1, y, z; (iv) x2, y1, z; (v) x+1, y+1, z+2; (vi) x+2, y+1, z+2; (vii) x+1, y, z; (viii) x+2, y+1, z; (ix) x+3, y+2, z+2; (x) x+4, y+2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—HN1···OW1vii0.86 (2)1.96 (2)2.804 (2)167 (2)
OW1—HW1···O3Av0.81 (2)2.02 (2)2.806 (1)163 (4)
OW1—HW2···N4iv0.80 (2)2.01 (2)2.803 (2)173 (3)
C5—H5···N20.932.412.794 (3)104
C7—H7···O20.982.262.688 (2)105
C13—H13···OW1vii0.932.483.286 (3)145
Symmetry codes: (iv) x2, y1, z; (v) x+1, y+1, z+2; (vii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC16H14N4O4S·H2O
Mr376.40
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)8.1399 (4), 8.4106 (4), 15.0274 (7)
α, β, γ (°)92.957 (4), 104.176 (4), 116.792 (4)
V3)874.66 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.62 × 0.55 × 0.49
Data collection
DiffractometerStoe IPDS 2
diffractometer
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.875, 0.899
No. of measured, independent and
observed [I > 2σ(I)] reflections
11714, 3963, 3192
Rint0.038
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.121, 1.04
No. of reflections3963
No. of parameters285
No. of restraints15
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.27, 0.27

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—HN1···OW1i0.86 (2)1.96 (2)2.804 (2)167 (2)
OW1—HW1···O3Aii0.81 (2)2.02 (2)2.806 (1)163 (4)
OW1—HW2···N4iii0.80 (2)2.01 (2)2.803 (2)173 (3)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z+2; (iii) x2, y1, z.
 

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant F.279 of the University Research Fund). HD and SO acknowledge the Scientific Research Projects Coordination Unit of Istanbul University (Project number T-3691).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBalzarini, J., Orzeszko-Krzesinska, B., Maurin, J. K. & Orzeszko, A. (2009). Eur. J. Med. Chem. 44, 303–311.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBaumbach, A., Braun, U., Döring, G., Haase, K. K., Voelker, W. & Karsch, K. R. (1995). Cardiovasc. Drugs Ther. 9, 213–220.  CrossRef PubMed Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGirgis, A. S., Hosni, H. M. & Barsoum, F. F. (2006). Bioorg. Med. Chem. 14, 4466–4476.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGuzel, Ö. & Salman, A. (2009). J. Enzyme Inhib. Med. Chem. 24, 1015–1023.  Web of Science PubMed Google Scholar
First citationKuramochi, T., Kakefuda, A., Sato, I., Tsukamoto, I., Taguchi, T. & Sakamoto, S. (2005). Bioorg. Med. Chem. 13, 717–724.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMoëll, A., Skog, O., Ahlin, E., Korsgren, O. & Frisk, G. (2009). J. Med. Virol. 81, 1082–1087.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSlominska, E. M., Yuen, A., Osman, L., Gebicki, J., Yacoub, M. H. & Smolenski, R. T. (2008). Nucleosides Nucleotides Nucleic Acids, 27, 863–866.  Web of Science CrossRef PubMed CAS Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationUr, F., Cesur, N., Birteksöz, S. & Ötük, G. (2004). Arzneim. Forsch. Drug Res. 54, 125–129.  CAS Google Scholar
First citationVigorita, M. G., Basile, M., Zappala, C., Gabbrielli, G. & Pizzimenti, F. (1992). Farmaco, 47, 893–906.  PubMed CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 2| February 2011| Pages o293-o294
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds