organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N,N′-Bis(4-amino­benz­yl)oxalamide

aFacultad de Ciencias Químicas, Universidad de Colima, Carretera Coquimatlán-Colima, Coquimatlán Colima, Mexico 28400, and bUnidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, Avenida Acueducto s/n, Barrio La Laguna Ticomán, México DF 07340, Mexico
*Correspondence e-mail: fjmartin@ucol.mx

(Received 16 December 2010; accepted 6 January 2011; online 15 January 2011)

In the title compound, C16H18N4O2, the two carbonyl groups are in an anti­periplanar conformation with an O=C—C=O torsion angle of 173.86 (17)°. In the crystal, a pair of inter­molecular N—H⋯O hydrogen bonds, forming an R22(10) ring motif, connect the mol­ecules into an inversion dimer. The dimers are further linked by N—H⋯N and C—H⋯π inter­actions, forming a zigzag chain along the b axis.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For related structures, see: Lee & Wang (2007[Lee, G.-H. & Wang, H.-T. (2007). Acta Cryst. C63, m216-m219.]). For background to and applications of oxalamides, see: Martínez-Martínez et al. (1998[Martínez-Martínez, F. J., Padilla-Martínez, I. I., Brito, M. A., Geniz, E. D., Rojas, R. C., Saavedra, J. B. R., Höpfl, H., Tlahuextl, M. & Contreras, R. (1998). J. Chem. Soc. Perkin Trans. 2, pp. 401-406.]); Padilla-Martínez et al. (2001[Padilla-Martínez, I. I., Martínez-Martínez, F. J., García-Báez, E. V., Torres-Valencia, J. M., Rojas-Lima, S. & Höpfl, H. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 1817-1823.]); Nguyen et al. (2001[Nguyen, T. L., Fowler, F. W. & Lauher, J. W. (2001). J. Am. Chem. Soc. 123, 11057-11064.]).

[Scheme 1]

Experimental

Crystal data
  • C16H18N4O2

  • Mr = 298.34

  • Monoclinic, P 21 /c

  • a = 10.7970 (9) Å

  • b = 8.0930 (8) Å

  • c = 17.9888 (7) Å

  • β = 110.151 (10)°

  • V = 1475.7 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.40 × 0.30 × 0.20 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • 13460 measured reflections

  • 2577 independent reflections

  • 2041 reflections with I > 2σ(I)

  • Rint = 0.050

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.141

  • S = 1.05

  • 2577 reflections

  • 199 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4A⋯N16i 0.86 2.48 3.240 (3) 147
N4—H4B⋯O9ii 0.86 2.35 3.196 (2) 170
N8—H8⋯N4iii 0.86 2.31 3.085 (2) 150
N11—H11⋯O9iv 0.86 2.27 3.015 (2) 145
C6—H6⋯Cg1iii 0.93 2.94 3.836 (3) 162
Symmetry codes: (i) [x-1, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) -x, -y+2, -z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97 and WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The chemical structure of oxalamides favors the formation of intra and intermolecular hydrogen bonding interactions (Martínez-Martínez et al., 1998; Padilla-Martínez et al., 2001; Nguyen et al., 2001). Herein we present the title compound, (I), a new bis-oxalamide.

The title compound (I) forms monoclinic crystals (P21/c, Z = 4). Carbonyl groups are antiperiplanar, with an O9—C9—C10—O10 torsion angle of 173.86 (17)°. The oxalamide group is almost planar, with an N8—C9—C10—N11 torsion angle of 171.92 (17)°. The aminobenzyl groups are twisted by 69.43 (5)° (C1—C7/N4) and 73.78 (5)° (C13—C18/N16) out of the oxalamide group mean plane (C7/N8/C9/O9/C10/O10/N11/C12) and are almost parallel to each other with an angle between the planes of 4.56 (5)°. According to graph-set notation (Bernstein et al., 1995), two S(5) rings are formed through N8—H8···O10 and N11—H11···O9 interactions. N···O distances and N—H···O angles are in the range for strong hydrogen bonding, in agreement with similar structures (Lee and Wang, 2007). The zero dimensional array is given by pairing of two molecules through self complementary strong N11—H11···O9 hydrogen bonding, to form the R22(10) motif characteristic of oxalamides. The molecules are connected by N8—H8···N4 and C6—H6···Cg1 into a zigzag chain running along the b axis; Cg1 is the centroid of the C1–C6 ring. Amine N4—H4A···N16 and N4—H4B···O9 hydrogen bonding interactions give the second and third dimensions, forming C(17) and C(10) chains, respectively.

Related literature top

For bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For related structures, see: Lee & Wang (2007). For background to and applications of oxalamides, see: Martínez-Martínez et al. (1998); Padilla-Martínez et al. (2001); Nguyen et al. (2001).

Experimental top

A mixture of diethyl oxalate (2 ml,14 mmol) and 4-aminobenzylamine (3.34 ml, 28 mmol) in ethanol (30 ml) was refluxed for 6 h. The suspension was filtered and the resulting solid was washed with cold ethyl alcohol to yield 3.25 g (73%) of a pale yellow solid (m.p. 250–252 °C).

IR (neat, cm-1): 3415, 3346, 3202, 3038, 1651. Anal. calcd. for C16H18N4O2: C 64.41, H 6.08, N 18.78%; found: C 64.07, H 6.25, N 18.44%. 1H NMR (300 MHz, DMSOd-6, δ) CH2 4.11 (d, 2H), NH 9.03 (t, 1H), Aromatics: 6.46 (d, 2H), 6.90 (d, 2H), NH2 4.95 (s, 2H). 13C NMR (75.46 MHz, DMSOd-6, δ) 42.7, 114.2, 126.3, 129.1, 148.3, 160.5. ESI MS = calc. m/z 298.14, found m/z 320.8 [M + Na]+.

Refinement top

H atoms bonded to C were positioned geometrically with aromatic C—H = 0.93 Å and aliphatic C—H = 0.97 Å. Their displacement parameters were set at Uiso(H)= 1.2Ueq(C). The amino H atoms were found in a Fourier difference map and refined with the constraints of N—H = 0.86 Å and Uiso(H) = 1.2Ueq(N).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom labeling scheme and 50% probability displacement ellipsoids. Dashed lines indicate intramolecular hydrogen bonding.
[Figure 2] Fig. 2. Packing diagram of the title compound, dashed lines indicate intermolecular hydrogen bonding.
N,N'-Bis(4-aminobenzyl)oxalamide top
Crystal data top
C16H18N4O2F(000) = 632
Mr = 298.34Dx = 1.343 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 600 reflections
a = 10.7970 (9) Åθ = 20–25°
b = 8.0930 (8) ŵ = 0.09 mm1
c = 17.9888 (7) ÅT = 293 K
β = 110.151 (10)°Prism, colorless
V = 1475.7 (2) Å30.40 × 0.30 × 0.20 mm
Z = 4
Data collection top
Bruker APEXII area-detector
diffractometer
2041 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.050
Graphite monochromatorθmax = 25.0°, θmin = 2.4°
ϕ and ω scansh = 1212
13460 measured reflectionsk = 89
2577 independent reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.141H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0744P)2 + 0.3652P]
where P = (Fo2 + 2Fc2)/3
2577 reflections(Δ/σ)max < 0.001
199 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C16H18N4O2V = 1475.7 (2) Å3
Mr = 298.34Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.7970 (9) ŵ = 0.09 mm1
b = 8.0930 (8) ÅT = 293 K
c = 17.9888 (7) Å0.40 × 0.30 × 0.20 mm
β = 110.151 (10)°
Data collection top
Bruker APEXII area-detector
diffractometer
2041 reflections with I > 2σ(I)
13460 measured reflectionsRint = 0.050
2577 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.141H-atom parameters constrained
S = 1.05Δρmax = 0.24 e Å3
2577 reflectionsΔρmin = 0.21 e Å3
199 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O90.04287 (12)0.80255 (17)0.03285 (8)0.0510 (4)
O100.28644 (13)0.6703 (2)0.11061 (9)0.0636 (5)
N40.22384 (17)0.7608 (2)0.35278 (10)0.0581 (6)
N80.04232 (14)0.56568 (19)0.09827 (9)0.0439 (5)
N110.19920 (15)0.8886 (2)0.03145 (9)0.0478 (5)
N160.4741 (2)0.6082 (3)0.21045 (14)0.0872 (9)
C10.12077 (16)0.5601 (2)0.16642 (10)0.0404 (6)
C20.22418 (18)0.6700 (3)0.15269 (11)0.0488 (6)
C30.26137 (18)0.7320 (3)0.21331 (11)0.0505 (7)
C40.19297 (17)0.6871 (2)0.29106 (11)0.0431 (6)
C50.09016 (19)0.5751 (3)0.30558 (11)0.0493 (6)
C60.05570 (18)0.5125 (3)0.24415 (11)0.0488 (6)
C70.08159 (18)0.4955 (3)0.09935 (11)0.0472 (6)
C90.05074 (17)0.7099 (2)0.06609 (10)0.0399 (6)
C100.19201 (18)0.7547 (2)0.07215 (10)0.0430 (6)
C120.3227 (2)0.9461 (3)0.02409 (13)0.0561 (7)
C130.36006 (17)0.8540 (2)0.03788 (11)0.0453 (6)
C140.45884 (18)0.7383 (3)0.01763 (13)0.0542 (7)
C150.4959 (2)0.6559 (3)0.07410 (15)0.0610 (8)
C160.4330 (2)0.6865 (3)0.15412 (13)0.0563 (7)
C170.3328 (2)0.8023 (3)0.17473 (13)0.0667 (8)
C180.2968 (2)0.8838 (3)0.11778 (13)0.0600 (7)
H20.270130.703230.101010.0586*
H30.332540.804160.201980.0606*
H4A0.285230.833930.342510.0696*
H4B0.181440.732960.401020.0696*
H50.044050.541850.357240.0591*
H60.012870.436450.255130.0586*
H7A0.150960.520590.049620.0567*
H7B0.073000.376230.103760.0567*
H80.113640.510100.119730.0527*
H110.128280.943900.008440.0574*
H12A0.314591.062730.010870.0673*
H12B0.392910.933920.074830.0673*
H14A0.502240.714380.035610.0650*
H150.563890.578950.058110.0732*
H16A0.436920.631460.259820.1046*
H16B0.536770.536650.195910.1046*
H170.288770.825810.227940.0801*
H180.228430.960340.133530.0720*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O90.0456 (7)0.0494 (8)0.0576 (8)0.0014 (6)0.0173 (6)0.0056 (6)
O100.0457 (8)0.0741 (10)0.0721 (10)0.0067 (7)0.0219 (7)0.0212 (8)
N40.0659 (11)0.0607 (11)0.0553 (10)0.0091 (9)0.0308 (9)0.0015 (8)
N80.0436 (8)0.0456 (9)0.0468 (9)0.0005 (7)0.0212 (7)0.0029 (7)
N110.0457 (9)0.0467 (9)0.0575 (9)0.0019 (7)0.0261 (7)0.0031 (8)
N160.0781 (13)0.1039 (18)0.1004 (16)0.0224 (13)0.0575 (12)0.0310 (14)
C10.0394 (9)0.0395 (10)0.0437 (10)0.0073 (7)0.0163 (8)0.0001 (8)
C20.0422 (10)0.0619 (13)0.0405 (10)0.0012 (9)0.0119 (8)0.0086 (9)
C30.0406 (10)0.0573 (12)0.0553 (12)0.0093 (9)0.0187 (9)0.0087 (10)
C40.0428 (10)0.0425 (10)0.0489 (10)0.0055 (8)0.0220 (8)0.0014 (8)
C50.0525 (11)0.0547 (12)0.0403 (10)0.0066 (9)0.0156 (8)0.0079 (9)
C60.0480 (10)0.0468 (11)0.0526 (11)0.0088 (9)0.0186 (9)0.0036 (9)
C70.0497 (10)0.0462 (11)0.0500 (11)0.0096 (9)0.0226 (9)0.0050 (9)
C90.0432 (10)0.0431 (10)0.0362 (9)0.0010 (8)0.0173 (8)0.0044 (8)
C100.0442 (10)0.0477 (11)0.0399 (9)0.0013 (9)0.0179 (8)0.0017 (8)
C120.0536 (12)0.0529 (12)0.0691 (13)0.0151 (9)0.0305 (10)0.0055 (10)
C130.0384 (9)0.0474 (11)0.0541 (11)0.0074 (8)0.0210 (8)0.0058 (9)
C140.0426 (10)0.0638 (13)0.0574 (12)0.0010 (10)0.0187 (9)0.0143 (10)
C150.0513 (12)0.0529 (13)0.0876 (16)0.0037 (10)0.0351 (11)0.0096 (12)
C160.0477 (11)0.0610 (13)0.0701 (14)0.0178 (10)0.0329 (10)0.0091 (11)
C170.0548 (12)0.0921 (18)0.0524 (12)0.0055 (12)0.0174 (10)0.0059 (12)
C180.0485 (11)0.0689 (14)0.0639 (13)0.0098 (10)0.0210 (10)0.0134 (11)
Geometric parameters (Å, º) top
O9—C91.235 (2)C9—C101.535 (3)
O10—C101.224 (2)C12—C131.507 (3)
N4—C41.398 (3)C13—C181.384 (3)
N8—C71.460 (3)C13—C141.371 (3)
N8—C91.320 (2)C14—C151.385 (3)
N11—C101.325 (2)C15—C161.386 (3)
N11—C121.461 (3)C16—C171.382 (3)
N16—C161.391 (3)C17—C181.382 (3)
N4—H4A0.8600C2—H20.9300
N4—H4B0.8600C3—H30.9300
N8—H80.8600C5—H50.9300
N11—H110.8600C6—H60.9300
N16—H16A0.8600C7—H7A0.9700
N16—H16B0.8600C7—H7B0.9700
C1—C61.386 (3)C12—H12A0.9700
C1—C71.503 (3)C12—H12B0.9700
C1—C21.382 (3)C14—H14A0.9300
C2—C31.380 (3)C15—H150.9300
C3—C41.386 (3)C17—H170.9300
C4—C51.386 (3)C18—H180.9300
C5—C61.378 (3)
O9···N112.713 (2)H2···C14xi2.9800
O9···N11i3.015 (2)H2···H7A2.3500
O9···N4ii3.196 (2)H2···H14Axi2.3300
O10···C133.382 (2)H3···H4A2.4100
O10···N82.704 (2)H3···C18i3.0400
O9···H11i2.2700H4A···H32.4100
O9···H5iii2.6900H4A···O10iii2.8500
O9···H4Bii2.3500H4A···H8iii2.2500
O9···H7A2.6300H4A···N16vii2.4800
O9···H112.3400H4A···C16vii3.0700
O10···H82.3200H4A···H16Bvii2.0900
O10···H12B2.6100H4B···H52.4500
O10···H4Aiv2.8500H4B···H8iii2.4300
O10···H16Bv2.6000H4B···O9vi2.3500
O10···H16Avi2.8300H5···H4B2.4500
O10···H17vi2.9000H5···O9iv2.6900
N4···N8iii3.085 (2)H5···C9iv3.0300
N4···O9vi3.196 (2)H6···C3iv3.0300
N4···N16vii3.240 (3)H7A···O92.6300
N8···O102.704 (2)H7A···H22.3500
N8···N4iv3.085 (2)H7A···C10ix3.0500
N11···O9i3.015 (2)H8···O102.3200
N11···O92.713 (2)H8···N4iv2.3100
N16···N4viii3.240 (3)H8···C4iv3.0300
N4···H16Bvii2.9300H8···H4Aiv2.2500
N4···H8iii2.3100H8···H4Biv2.4300
N16···H4Aviii2.4800H11···O92.3400
C3···C18i3.509 (3)H11···O9i2.2700
C7···C10ix3.536 (3)H12A···H182.5800
C7···C9ix3.523 (3)H12A···C14x2.9000
C9···C7ix3.523 (3)H12A···C15x3.0100
C10···C7ix3.536 (3)H12B···O102.6100
C12···C14x3.506 (3)H12B···H14A2.3700
C13···O103.382 (2)H14A···C2xii3.0000
C14···C15v3.547 (3)H14A···H2xii2.3300
C14···C12x3.506 (3)H14A···H12B2.3700
C15···C14v3.547 (3)H14A···C15v3.0700
C18···C3i3.509 (3)H14A···H15v2.5500
C2···H18i3.0100H15···H16B2.4200
C2···H14Axi3.0000H15···C14v2.9600
C3···H18i2.9600H15···H14Av2.5500
C3···H6iii3.0300H16A···H172.4500
C4···H8iii3.0300H16A···O10ii2.8300
C9···H5iii3.0300H16B···H152.4200
C10···H7Aix3.0500H16B···O10v2.6000
C14···H2xii2.9800H16B···N4viii2.9300
C14···H15v2.9600H16B···H4Aviii2.0900
C14···H12Ax2.9000H17···H16A2.4500
C15···H14Av3.0700H17···O10ii2.9000
C15···H12Ax3.0100H18···H12A2.5800
C16···H4Aviii3.0700H18···C2i3.0100
C18···H3i3.0400H18···C3i2.9600
C7—N8—C9123.50 (17)C13—C14—C15121.9 (2)
C10—N11—C12122.67 (17)C14—C15—C16120.9 (2)
H4A—N4—H4B120.00N16—C16—C17122.0 (2)
C4—N4—H4B120.00N16—C16—C15120.7 (2)
C4—N4—H4A120.00C15—C16—C17117.3 (2)
C7—N8—H8118.00C16—C17—C18121.3 (2)
C9—N8—H8118.00C13—C18—C17121.5 (2)
C10—N11—H11119.00C1—C2—H2119.00
C12—N11—H11119.00C3—C2—H2119.00
C16—N16—H16A120.00C2—C3—H3120.00
C16—N16—H16B120.00C4—C3—H3120.00
H16A—N16—H16B120.00C4—C5—H5120.00
C2—C1—C6117.19 (17)C6—C5—H5120.00
C6—C1—C7121.88 (17)C1—C6—H6119.00
C2—C1—C7120.93 (16)C5—C6—H6119.00
C1—C2—C3122.01 (18)N8—C7—H7A109.00
C2—C3—C4120.2 (2)N8—C7—H7B109.00
N4—C4—C5121.58 (17)C1—C7—H7A109.00
C3—C4—C5118.37 (18)C1—C7—H7B109.00
N4—C4—C3119.97 (17)H7A—C7—H7B108.00
C4—C5—C6120.60 (18)N11—C12—H12A109.00
C1—C6—C5121.6 (2)N11—C12—H12B109.00
N8—C7—C1112.83 (17)C13—C12—H12A109.00
O9—C9—N8125.51 (18)C13—C12—H12B109.00
O9—C9—C10121.24 (15)H12A—C12—H12B108.00
N8—C9—C10113.25 (15)C13—C14—H14A119.00
O10—C10—C9121.48 (16)C15—C14—H14A119.00
N11—C10—C9113.58 (16)C14—C15—H15120.00
O10—C10—N11124.94 (19)C16—C15—H15120.00
N11—C12—C13113.26 (18)C16—C17—H17119.00
C12—C13—C18121.34 (18)C18—C17—H17119.00
C12—C13—C14121.55 (18)C13—C18—H18119.00
C14—C13—C18117.10 (19)C17—C18—H18119.00
C7—N8—C9—C10179.47 (15)C4—C5—C6—C10.8 (3)
C9—N8—C7—C183.4 (2)O9—C9—C10—O10173.86 (17)
C7—N8—C9—O90.5 (3)O9—C9—C10—N117.1 (2)
C12—N11—C10—O103.8 (3)N8—C9—C10—O107.1 (2)
C10—N11—C12—C1380.5 (2)N8—C9—C10—N11171.93 (15)
C12—N11—C10—C9175.23 (16)N11—C12—C13—C14105.0 (2)
C2—C1—C6—C51.6 (3)N11—C12—C13—C1875.6 (2)
C7—C1—C2—C3179.5 (2)C12—C13—C14—C15178.5 (2)
C6—C1—C7—N872.8 (2)C18—C13—C14—C151.0 (3)
C7—C1—C6—C5178.5 (2)C12—C13—C18—C17178.5 (2)
C6—C1—C2—C30.6 (3)C14—C13—C18—C170.9 (3)
C2—C1—C7—N8107.3 (2)C13—C14—C15—C160.6 (4)
C1—C2—C3—C41.3 (3)C14—C15—C16—N16177.4 (2)
C2—C3—C4—N4174.6 (2)C14—C15—C16—C170.2 (4)
C2—C3—C4—C52.1 (3)N16—C16—C17—C18177.4 (2)
N4—C4—C5—C6175.6 (2)C15—C16—C17—C180.1 (4)
C3—C4—C5—C61.1 (3)C16—C17—C18—C130.5 (4)
Symmetry codes: (i) x, y+2, z; (ii) x, y+3/2, z1/2; (iii) x, y+1/2, z+1/2; (iv) x, y1/2, z+1/2; (v) x+1, y+1, z; (vi) x, y+3/2, z+1/2; (vii) x1, y+3/2, z+1/2; (viii) x+1, y+3/2, z1/2; (ix) x, y+1, z; (x) x+1, y+2, z; (xi) x1, y, z; (xii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
N4—H4A···N16vii0.862.483.240 (3)147
N4—H4B···O9vi0.862.353.196 (2)170
N8—H8···O100.862.322.704 (2)107
N8—H8···N4iv0.862.313.085 (2)150
N11—H11···O90.862.342.713 (2)107
N11—H11···O9i0.862.273.015 (2)145
C6—H6···Cg1iv0.932.943.836 (3)162
Symmetry codes: (i) x, y+2, z; (iv) x, y1/2, z+1/2; (vi) x, y+3/2, z+1/2; (vii) x1, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC16H18N4O2
Mr298.34
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)10.7970 (9), 8.0930 (8), 17.9888 (7)
β (°) 110.151 (10)
V3)1475.7 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.40 × 0.30 × 0.20
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
13460, 2577, 2041
Rint0.050
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.141, 1.05
No. of reflections2577
No. of parameters199
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.21

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
N4—H4A···N16i0.862.483.240 (3)147
N4—H4B···O9ii0.862.353.196 (2)170
N8—H8···O100.862.322.704 (2)107
N8—H8···N4iii0.862.313.085 (2)150
N11—H11···O90.862.342.713 (2)107
N11—H11···O9iv0.862.273.015 (2)145
C6—H6···Cg1iii0.932.943.836 (3)162
Symmetry codes: (i) x1, y+3/2, z+1/2; (ii) x, y+3/2, z+1/2; (iii) x, y1/2, z+1/2; (iv) x, y+2, z.
 

Acknowledgements

The authors gratefully acknowledge financial support from the FRABA-Universidad de Colima, CONACYT 83378 and SIP-IPN.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationLee, G.-H. & Wang, H.-T. (2007). Acta Cryst. C63, m216–m219.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMartínez-Martínez, F. J., Padilla-Martínez, I. I., Brito, M. A., Geniz, E. D., Rojas, R. C., Saavedra, J. B. R., Höpfl, H., Tlahuextl, M. & Contreras, R. (1998). J. Chem. Soc. Perkin Trans. 2, pp. 401–406.  Google Scholar
First citationNguyen, T. L., Fowler, F. W. & Lauher, J. W. (2001). J. Am. Chem. Soc. 123, 11057–11064.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationPadilla-Martínez, I. I., Martínez-Martínez, F. J., García-Báez, E. V., Torres-Valencia, J. M., Rojas-Lima, S. & Höpfl, H. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 1817–1823.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds