organic compounds
Adeninium perchlorate
aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Chemistry, Bengal Engineering and Science University, Shibpur, Howrah 711 103, India
*Correspondence e-mail: hkfun@usm.my
In the title salt (systematic name: 6-amino-9H-purin-1-ium perchlorate), C5H6N5+·ClO4−, the adeninium cation is essentially planar, with a maximum deviation of 0.038 (1) Å. The whole of the perchlorate anion is disordered over two sets of sites with an occupancy ratio of 0.589 (13):0.411 (13). In the crystal, the adeninium cations are linked by pairs of N—H⋯N hydrogen bond into inversion dimers. The dimers and the anions are further interconnected into a three-dimensional supramolecular structure via intermolecular N—H⋯O, C—H⋯O and C—H⋯N hydrogen bonds.
Related literature
For general background to and applications of the title adeninium salt, see: Biradha et al. (2010); Goswami et al. (2007). For a closely related adeninium structure, see: Zeleňák et al. (2004). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2009); cell SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).
Supporting information
10.1107/S1600536811001528/is2652sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811001528/is2652Isup2.hkl
Adenine (150 mg) was dissolved in perchloric acid (70 %, 1.0 ml) with gentle warming and the reaction mixture was kept at room temperature. After several days, colourless single crystals were separated, which were collected and dried.
All H atoms were located in a difference Fourier map, and allowed to refine freely with C—H = 0.942 (19)–0.95 (2) Å and N—H = 0.79 (2)–0.85 (2) Å. The whole molecule of perchlorate anion is disordered over two sites with a refined occupancy ratio of 0.589 (13):0.411 (13). Similarity restraints were applied for the perchlorate anion.
Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).Fig. 1. The molecular structure of the title salt, showing 50% probability displacement ellipsoids for non-H atoms and the atom-numbering scheme. Minor disordered component is shown as open bonds and labelled as suffix X. | |
Fig. 2. The crystal structure of the title salt, viewed along the b axis, showing a 3D supramolecular structure. Minor disordered component is omitted for clarity and intermolecular hydrogen bonds are shown as dashed lines. |
C5H6N5+·ClO4− | F(000) = 480 |
Mr = 235.60 | Dx = 1.896 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 4267 reflections |
a = 8.7614 (2) Å | θ = 3.8–33.0° |
b = 4.8234 (1) Å | µ = 0.47 mm−1 |
c = 21.0758 (4) Å | T = 105 K |
β = 112.070 (1)° | Block, colourless |
V = 825.39 (3) Å3 | 0.29 × 0.28 × 0.20 mm |
Z = 4 |
Bruker SMART APEXII CCD area-detector diffractometer | 3149 independent reflections |
Radiation source: fine-focus sealed tube | 2538 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.037 |
ϕ and ω scans | θmax = 33.2°, θmin = 2.5° |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | h = −13→13 |
Tmin = 0.878, Tmax = 0.911 | k = −7→7 |
13078 measured reflections | l = −30→32 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.039 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.101 | All H-atom parameters refined |
S = 1.04 | w = 1/[σ2(Fo2) + (0.043P)2 + 0.4566P] where P = (Fo2 + 2Fc2)/3 |
3149 reflections | (Δ/σ)max < 0.001 |
200 parameters | Δρmax = 0.45 e Å−3 |
10 restraints | Δρmin = −0.42 e Å−3 |
C5H6N5+·ClO4− | V = 825.39 (3) Å3 |
Mr = 235.60 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 8.7614 (2) Å | µ = 0.47 mm−1 |
b = 4.8234 (1) Å | T = 105 K |
c = 21.0758 (4) Å | 0.29 × 0.28 × 0.20 mm |
β = 112.070 (1)° |
Bruker SMART APEXII CCD area-detector diffractometer | 3149 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | 2538 reflections with I > 2σ(I) |
Tmin = 0.878, Tmax = 0.911 | Rint = 0.037 |
13078 measured reflections |
R[F2 > 2σ(F2)] = 0.039 | 10 restraints |
wR(F2) = 0.101 | All H-atom parameters refined |
S = 1.04 | Δρmax = 0.45 e Å−3 |
3149 reflections | Δρmin = −0.42 e Å−3 |
200 parameters |
Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 105.0 (1)K. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
N1 | 0.14134 (14) | 0.5810 (3) | 0.41768 (6) | 0.0152 (2) | |
N2 | 0.14035 (14) | 0.7456 (3) | 0.52342 (6) | 0.0169 (2) | |
N3 | 0.33327 (15) | 0.4802 (3) | 0.61809 (6) | 0.0177 (2) | |
N4 | 0.43640 (13) | 0.1928 (3) | 0.56071 (6) | 0.0153 (2) | |
N5 | 0.30483 (15) | 0.2191 (3) | 0.40417 (6) | 0.0162 (2) | |
C1 | 0.32179 (15) | 0.3695 (3) | 0.51586 (7) | 0.0137 (2) | |
C2 | 0.25906 (15) | 0.3820 (3) | 0.44387 (7) | 0.0134 (2) | |
C3 | 0.08746 (17) | 0.7514 (3) | 0.45686 (7) | 0.0167 (3) | |
C4 | 0.25733 (16) | 0.5486 (3) | 0.55077 (7) | 0.0148 (2) | |
C5 | 0.43785 (16) | 0.2674 (3) | 0.62123 (7) | 0.0174 (3) | |
Cl1 | 0.7997 (9) | 0.4578 (14) | 0.7670 (3) | 0.0170 (6) | 0.589 (13) |
O1 | 0.9452 (8) | 0.4076 (15) | 0.8255 (3) | 0.0317 (11) | 0.589 (13) |
O2 | 0.7796 (6) | 0.7499 (5) | 0.7523 (3) | 0.0294 (9) | 0.589 (13) |
O3 | 0.8120 (11) | 0.3197 (11) | 0.7080 (3) | 0.0183 (8) | 0.589 (13) |
O4 | 0.6558 (10) | 0.359 (2) | 0.7785 (5) | 0.020 (2) | 0.589 (13) |
Cl1X | 0.8150 (12) | 0.4603 (19) | 0.7747 (5) | 0.0155 (7) | 0.411 (13) |
O1X | 0.9454 (11) | 0.3192 (15) | 0.8286 (5) | 0.0216 (11) | 0.411 (13) |
O2X | 0.8317 (7) | 0.7552 (7) | 0.7882 (5) | 0.0285 (16) | 0.411 (13) |
O3X | 0.8155 (16) | 0.398 (2) | 0.7091 (5) | 0.0242 (16) | 0.411 (13) |
O4X | 0.6614 (13) | 0.362 (3) | 0.7772 (7) | 0.020 (3) | 0.411 (13) |
H1N1 | 0.098 (2) | 0.598 (4) | 0.3760 (10) | 0.024* | |
H1N3 | 0.322 (2) | 0.554 (4) | 0.6494 (11) | 0.024* | |
H1N5 | 0.382 (3) | 0.103 (4) | 0.4224 (10) | 0.024* | |
H2N5 | 0.259 (2) | 0.223 (4) | 0.3606 (10) | 0.024* | |
H3 | 0.005 (2) | 0.880 (4) | 0.4324 (10) | 0.024* | |
H5 | 0.501 (2) | 0.182 (4) | 0.6632 (10) | 0.024* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0165 (5) | 0.0140 (6) | 0.0156 (5) | 0.0027 (4) | 0.0068 (4) | 0.0033 (4) |
N2 | 0.0161 (5) | 0.0142 (6) | 0.0212 (5) | 0.0006 (5) | 0.0079 (4) | −0.0016 (5) |
N3 | 0.0183 (5) | 0.0202 (6) | 0.0150 (5) | 0.0007 (5) | 0.0068 (4) | −0.0037 (5) |
N4 | 0.0143 (5) | 0.0144 (5) | 0.0158 (5) | 0.0004 (4) | 0.0042 (4) | 0.0003 (4) |
N5 | 0.0183 (5) | 0.0157 (6) | 0.0143 (5) | 0.0049 (5) | 0.0058 (4) | 0.0006 (4) |
C1 | 0.0140 (5) | 0.0118 (6) | 0.0151 (5) | −0.0008 (5) | 0.0053 (4) | −0.0007 (5) |
C2 | 0.0140 (5) | 0.0108 (6) | 0.0160 (5) | −0.0001 (5) | 0.0065 (4) | 0.0012 (5) |
C3 | 0.0168 (5) | 0.0121 (6) | 0.0227 (6) | 0.0013 (5) | 0.0091 (5) | 0.0017 (5) |
C4 | 0.0149 (5) | 0.0122 (6) | 0.0176 (6) | −0.0020 (5) | 0.0067 (4) | −0.0022 (5) |
C5 | 0.0159 (5) | 0.0190 (7) | 0.0161 (6) | −0.0006 (5) | 0.0047 (4) | −0.0008 (5) |
Cl1 | 0.0164 (11) | 0.0164 (7) | 0.0169 (10) | −0.0001 (6) | 0.0049 (8) | 0.0010 (5) |
O1 | 0.0236 (13) | 0.050 (3) | 0.0164 (13) | 0.002 (2) | 0.0015 (9) | 0.003 (2) |
O2 | 0.0461 (18) | 0.0134 (10) | 0.035 (2) | −0.0033 (10) | 0.0222 (18) | −0.0004 (10) |
O3 | 0.0203 (13) | 0.020 (2) | 0.0154 (11) | −0.0009 (18) | 0.0073 (9) | 0.0004 (14) |
O4 | 0.016 (3) | 0.026 (4) | 0.024 (4) | −0.007 (2) | 0.015 (3) | −0.001 (3) |
Cl1X | 0.0133 (13) | 0.0132 (9) | 0.021 (2) | −0.0005 (8) | 0.0080 (15) | 0.0022 (11) |
O1X | 0.0182 (16) | 0.026 (3) | 0.0145 (16) | 0.007 (2) | −0.0008 (12) | 0.005 (2) |
O2X | 0.033 (2) | 0.0076 (12) | 0.050 (4) | −0.0005 (13) | 0.022 (2) | −0.0003 (16) |
O3X | 0.0252 (19) | 0.037 (4) | 0.0128 (17) | −0.007 (4) | 0.0098 (13) | 0.003 (3) |
O4X | 0.024 (5) | 0.022 (6) | 0.013 (4) | 0.005 (4) | 0.006 (3) | 0.007 (4) |
N1—C2 | 1.3646 (18) | C1—C4 | 1.3855 (19) |
N1—C3 | 1.3686 (18) | C1—C2 | 1.4075 (18) |
N1—H1N1 | 0.82 (2) | C3—H3 | 0.95 (2) |
N2—C3 | 1.3018 (18) | C5—H5 | 0.942 (19) |
N2—C4 | 1.3571 (18) | Cl1—O1 | 1.423 (7) |
N3—C5 | 1.361 (2) | Cl1—O2 | 1.439 (7) |
N3—C4 | 1.3620 (18) | Cl1—O3 | 1.449 (7) |
N3—H1N3 | 0.79 (2) | Cl1—O4 | 1.450 (7) |
N4—C5 | 1.3208 (18) | Cl1X—O3X | 1.417 (10) |
N4—C1 | 1.3837 (17) | Cl1X—O1X | 1.443 (9) |
N5—C2 | 1.3153 (18) | Cl1X—O4X | 1.446 (10) |
N5—H1N5 | 0.85 (2) | Cl1X—O2X | 1.447 (9) |
N5—H2N5 | 0.85 (2) | ||
C2—N1—C3 | 123.92 (12) | N1—C3—H3 | 115.6 (12) |
C2—N1—H1N1 | 118.7 (14) | N2—C4—N3 | 127.42 (13) |
C3—N1—H1N1 | 117.4 (14) | N2—C4—C1 | 127.20 (12) |
C3—N2—C4 | 112.27 (12) | N3—C4—C1 | 105.37 (12) |
C5—N3—C4 | 106.86 (12) | N4—C5—N3 | 113.36 (12) |
C5—N3—H1N3 | 126.2 (15) | N4—C5—H5 | 125.2 (12) |
C4—N3—H1N3 | 126.9 (15) | N3—C5—H5 | 121.4 (12) |
C5—N4—C1 | 103.49 (12) | O1—Cl1—O2 | 110.5 (5) |
C2—N5—H1N5 | 119.2 (13) | O1—Cl1—O3 | 109.5 (6) |
C2—N5—H2N5 | 122.7 (13) | O2—Cl1—O3 | 108.0 (5) |
H1N5—N5—H2N5 | 118.0 (18) | O1—Cl1—O4 | 110.6 (6) |
N4—C1—C4 | 110.93 (12) | O2—Cl1—O4 | 108.2 (6) |
N4—C1—C2 | 130.69 (12) | O3—Cl1—O4 | 110.0 (7) |
C4—C1—C2 | 118.28 (12) | O3X—Cl1X—O1X | 112.0 (8) |
N5—C2—N1 | 121.84 (12) | O3X—Cl1X—O4X | 108.0 (10) |
N5—C2—C1 | 124.83 (12) | O1X—Cl1X—O4X | 106.8 (8) |
N1—C2—C1 | 113.32 (12) | O3X—Cl1X—O2X | 111.3 (7) |
N2—C3—N1 | 125.00 (13) | O1X—Cl1X—O2X | 108.5 (6) |
N2—C3—H3 | 119.4 (12) | O4X—Cl1X—O2X | 110.0 (9) |
C5—N4—C1—C4 | 0.39 (15) | C3—N2—C4—N3 | −177.16 (14) |
C5—N4—C1—C2 | −175.98 (14) | C3—N2—C4—C1 | 1.0 (2) |
C3—N1—C2—N5 | 178.65 (13) | C5—N3—C4—N2 | 178.41 (14) |
C3—N1—C2—C1 | −0.51 (19) | C5—N3—C4—C1 | −0.11 (15) |
N4—C1—C2—N5 | −1.6 (2) | N4—C1—C4—N2 | −178.70 (13) |
C4—C1—C2—N5 | −177.75 (13) | C2—C1—C4—N2 | −1.8 (2) |
N4—C1—C2—N1 | 177.53 (13) | N4—C1—C4—N3 | −0.17 (16) |
C4—C1—C2—N1 | 1.38 (18) | C2—C1—C4—N3 | 176.70 (12) |
C4—N2—C3—N1 | 0.0 (2) | C1—N4—C5—N3 | −0.47 (16) |
C2—N1—C3—N2 | −0.2 (2) | C4—N3—C5—N4 | 0.38 (17) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N1···O3i | 0.82 (2) | 2.23 (2) | 2.868 (7) | 135.2 (17) |
N3—H1N3···O4ii | 0.79 (2) | 2.07 (2) | 2.818 (10) | 158.2 (19) |
N5—H1N5···N4iii | 0.85 (2) | 2.07 (2) | 2.8938 (19) | 164.3 (19) |
N5—H2N5···O2i | 0.85 (2) | 2.28 (2) | 3.100 (6) | 162.0 (18) |
C3—H3···N2iv | 0.945 (19) | 2.577 (19) | 3.266 (2) | 130.0 (15) |
C3—H3···O1v | 0.945 (19) | 2.35 (2) | 3.055 (6) | 131.2 (16) |
C5—H5···O4 | 0.94 (2) | 2.45 (2) | 3.174 (10) | 133.6 (15) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, y+1/2, −z+3/2; (iii) −x+1, −y, −z+1; (iv) −x, −y+2, −z+1; (v) x−1, −y+3/2, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | C5H6N5+·ClO4− |
Mr | 235.60 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 105 |
a, b, c (Å) | 8.7614 (2), 4.8234 (1), 21.0758 (4) |
β (°) | 112.070 (1) |
V (Å3) | 825.39 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.47 |
Crystal size (mm) | 0.29 × 0.28 × 0.20 |
Data collection | |
Diffractometer | Bruker SMART APEXII CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2009) |
Tmin, Tmax | 0.878, 0.911 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 13078, 3149, 2538 |
Rint | 0.037 |
(sin θ/λ)max (Å−1) | 0.770 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.039, 0.101, 1.04 |
No. of reflections | 3149 |
No. of parameters | 200 |
No. of restraints | 10 |
H-atom treatment | All H-atom parameters refined |
Δρmax, Δρmin (e Å−3) | 0.45, −0.42 |
Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N1···O3i | 0.82 (2) | 2.23 (2) | 2.868 (7) | 135.2 (17) |
N3—H1N3···O4ii | 0.79 (2) | 2.07 (2) | 2.818 (10) | 158.2 (19) |
N5—H1N5···N4iii | 0.85 (2) | 2.07 (2) | 2.8938 (19) | 164.3 (19) |
N5—H2N5···O2i | 0.85 (2) | 2.28 (2) | 3.100 (6) | 162.0 (18) |
C3—H3···N2iv | 0.945 (19) | 2.577 (19) | 3.266 (2) | 130.0 (15) |
C3—H3···O1v | 0.945 (19) | 2.35 (2) | 3.055 (6) | 131.2 (16) |
C5—H5···O4 | 0.94 (2) | 2.45 (2) | 3.174 (10) | 133.6 (15) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, y+1/2, −z+3/2; (iii) −x+1, −y, −z+1; (iv) −x, −y+2, −z+1; (v) x−1, −y+3/2, z−1/2. |
Acknowledgements
HKF and JHG thank Universiti Sains Malaysia for the Research University Grant (No. 1001/PFIZIK/811160). ACM and SG thank the DST [SR/S1/OC-13/2005], Government of India, for financial support. ACM also thanks the UGC, Government of India, for a fellowship.
References
Biradha, K., Samai, S., Maity, A. C. & Goswami, S. (2010). Cryst. Growth Des. 10, 937–942. Web of Science CrossRef CAS Google Scholar
Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107. CrossRef CAS Web of Science IUCr Journals Google Scholar
Goswami, S., Maity, A. C. & Fun, H.-K. (2007). Eur. J. Org. Chem. pp. 4056–4064. Web of Science CSD CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zeleňák, V., Vargová, Z. & Císařová, I. (2004). Acta Cryst. E60, o742–o744. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Adenine is a purine derivative nucleobase. Adenine is probably one of the most widely-used nucleobase in biochemistry (Biradha et al., 2010). It is an integral part of DNA, RNA and ATP. As a nucleobase, adenine exhibits a tendency to self-associate with the help of Watson-Crick and Hoogsteen hydrogen bonds. We have recently reported the unique hydrogen bonding participation of H5O2+ bridging two hydrogen-bonded dimers of lumazine in its co-crystal with aqueous perchloric acid and the supramolecular assembly of protonated xanthine alkaloids in their perchlorate salts (Goswami et al., 2007). In the present work, we report the crystal structure of adenine perchlorate.
The title salt comprises a protonated 6-amino-9H-purin-1-ium cation and a perchlorate anion (Fig. 1). The 6-amino-9H-purin-1-ium cation (C1–C5/N1–N5) is essentially planar, as indicated by the maximum deviation of 0.038 (1) Å at atom C1. The whole molecule of perchlorate anion (Cl/O1–O4) is disordered over two sites with refined occupancies of 0.589 (13) and 0.411 (13). All geometric parameters are consistent to a reported adeninium structure (Zeleňák et al., 2004).
In the crystal packing, all hydrogen atoms take part in hydrogen bonding between the cation and anion. Intermolecular N1—H1N1···O3, N3—H1N3···O4, N5—H1N5···N4, N5—H2N5···O2, C3—H3···O1, C3—H3···N2 and C5—H5···O4 hydrogen bonds (Table 1) interconnect the ions into a three-dimensional supramolecular structure (Fig. 2).