organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 2| February 2011| Pages o435-o436

4-Meth­­oxy­quinolinium-2-carboxyl­ate dihydrate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 27 December 2010; accepted 11 January 2011; online 22 January 2011)

The title hydrated quinoline derivative, C11H9NO3·2H2O, crystallizes as a zwitterion in which the quinoline N atom is protonated. The quinoline ring is essentially planar, with a maximum deviation of 0.017 (2) Å. An intra­molecular N—H⋯O hydrogen bond between the protonated N atom and the O atom of the carboxyl­ate group in the zwitterion forms an S(5) ring motif. In the crystal, the zwitterions are connected into inversion dimers via pairs of N—H⋯O and C—H⋯O hydrogen bonds with R22(4) and R12(6) motifs. The water mol­ecules are connected via O—H⋯O hydrogen bonds, forming supra­molecular chains along the c axis. Furthermore, the chains and the dimers are connected via O—H⋯O hydrogen bonds, forming ladder-like supra­molecular ribbons along the c axis.

Related literature

For background to and the biological activity of quinoline derivatives, see: Morimoto et al. (1991[Morimoto, Y., Matsuda, F. & Shirahama, H. (1991). Synlett, 3, 202-203.]); Michael (1997[Michael, J. P. (1997). Nat. Prod. Rep. 14, 605-608.]); Markees et al. (1970[Markees, D. G., Dewey, V. C. & Kidder, G. W. (1970). J. Med. Chem. 13, 324-326.]); Campbell et al. (1988[Campbell, S. F., Hardstone, J. D. & Palmer, M. J. (1988). J. Med. Chem. 31, 1031-1035.]); Zhou et al. (1989[Zhou, P., O'Hagan, D., Mocek, U., Zeng, Z., Yuen, L.-D., Unkefer, C. J., Beale, J. M. & Floss, H. G. (1989). J. Am. Chem. Soc. 111, 7274-7276.]); Elman et al. (1985[Elman, B., Högberg, S. A. G., Weber, M. & Muhammed, M. (1985). Polyhedron, 4, 1197-1201.]); Loh et al. (2010a[Loh, W.-S., Quah, C. K., Hemamalini, M. & Fun, H.-K. (2010a). Acta Cryst. E66, o2357.],b[Loh, W.-S., Quah, C. K., Hemamalini, M. & Fun, H.-K. (2010b). Acta Cryst. E66, o2396.]); Sasaki et al. (1998[Sasaki, K., Tsurumori, A. & Hirota, T. (1998). J. Chem. Soc. Perkin Trans. 1, pp. 3851-3856.]); Reux et al. (2009[Reux, B., Nevalainen, T., Raitio, K. H. & Koskinen, A. M. P. (2009). Bioorg. Med. Chem. 17, 4441-4447.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C11H9NO3·2H2O

  • Mr = 239.22

  • Monoclinic, P 21 /c

  • a = 5.7674 (11) Å

  • b = 21.196 (4) Å

  • c = 10.0993 (15) Å

  • β = 115.978 (8)°

  • V = 1109.9 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 100 K

  • 0.23 × 0.13 × 0.09 mm

Data collection
  • Bruker APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.974, Tmax = 0.990

  • 8743 measured reflections

  • 3176 independent reflections

  • 2123 reflections with I > 2σ(I)

  • Rint = 0.058

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.140

  • S = 1.01

  • 3176 reflections

  • 155 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.94 1.84 2.7608 (18) 164
O1W—H2⋯O2W 0.86 1.89 2.7478 (19) 176
O1W—H3⋯O2ii 0.91 1.86 2.7685 (16) 177
O2W—H4⋯O2iii 0.88 1.88 2.7498 (18) 171
O2W—H5⋯O1Wiv 0.87 1.91 2.7860 (19) 176
C6—H6A⋯O1Wv 0.93 2.59 3.418 (2) 149
C8—H8A⋯O1i 0.93 2.53 3.229 (2) 132
C11—H11A⋯O1Wvi 0.96 2.58 3.317 (2) 134
C11—H11B⋯O2iii 0.96 2.53 3.272 (2) 134
Symmetry codes: (i) -x-1, -y+2, -z+1; (ii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iii) x+1, y, z; (iv) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (v) -x+1, -y+2, -z+1; (vi) x+1, y, z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Quinolines and their derivatives are very important compounds because of their wide occurrence in natural products (Morimoto et al., 1991; Michael, 1997) and biologically active compounds (Markees et al., 1970; Campbell et al., 1988). Quinoline-2-carboxylic acid (quinaldic acid) and tryptophan metabolite (Zhou et al., 1989) are well-known chelating ligands (Elman et al., 1985). Recently, hydrogen-bonding patterns involving quinoline and its derivatives with organic acid have been investigated (Loh et al., 2010a,b). Syntheses of the quinoline derivatives have been discussed (Sasaki et al., 1998; Reux et al., 2009).

The title molecule, (Fig. 1), crystallizes as a zwitterion in which the quinoline N atom is protonated. The asymmetric unit consists of one 4-methoxyquinolinium-2-carboxylate molecule and two water molecules. The quinoline ring (N1/C1–C9) is essentially planar, with a maximum deviation of 0.017 (2) Å for atom C4.

In the crystal structure (Fig. 2), the 4-methoxyquinolinium-2- carboxylate molecules are connected via N—H···O and C—H···O hydrogen bonds to form R22(4) and R12(6) (Bernstein et al., 1995) motifs. There is an intramolecular N—H···O hydrogen bond observed between the protonated nitrogen atom of the cationic part of the quinolinium and the oxygen atom of anionic part of the carboxylate group in the zwitterion forming an S(5) ring motif. The water molecules are connected via O—H···O hydrogen bonds to form one-dimensional supramolecular chains along the c-axis. Furthermore, the chains formed by water molecules and the 4-methoxyquinolinium-2-carboxylate molecules are connected via O—H···O (Table 1) hydrogen bonds to form ladder-like supramolecular ribbons along the c-axis.

Related literature top

For background to and the biological activity of quinoline derivatives, see: Morimoto et al. (1991); Michael (1997); Markees et al. (1970); Campbell et al. (1988); Zhou et al. (1989); Elman et al. (1985); Loh et al. (2010a,b); Sasaki et al. (1998); Reux et al. (2009). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

A methanol solution (20 ml) of 4-methoxyquinoline-2-carboxylic acid (50. 8 mg, Aldrich) was warmed over a heating magnetic stirrer for 5 minutes. The resulting solution was allowed to cool slowly at room temperature. Crystals of the title compound appeared from the mother liquor after a few days.

Refinement top

All the H atoms were positioned geometrically (N—H = 0.9437 Å; C—H = 0.93 or 0.96 Å and O—H = 0.8586–0.9083 Å) and were refined using a riding model, with Uiso(H) = 1.2 or 1.5Ueq(C,O).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level. Intramolecular hydrogen bonds shown by dotted lines.
[Figure 2] Fig. 2. The crystal packing of the title compound, showing a hydrogen-bonded (dashed lines) ladder-like network.
4-Methoxyquinolinium-2-carboxylate dihydrate top
Crystal data top
C11H9NO3·2H2OF(000) = 504
Mr = 239.22Dx = 1.432 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1896 reflections
a = 5.7674 (11) Åθ = 3.0–29.6°
b = 21.196 (4) ŵ = 0.11 mm1
c = 10.0993 (15) ÅT = 100 K
β = 115.978 (8)°Block, colourless
V = 1109.9 (3) Å30.23 × 0.13 × 0.09 mm
Z = 4
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
3176 independent reflections
Radiation source: fine-focus sealed tube2123 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.058
ϕ and ω scansθmax = 30.0°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 78
Tmin = 0.974, Tmax = 0.990k = 2929
8743 measured reflectionsl = 1014
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.140H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0701P)2]
where P = (Fo2 + 2Fc2)/3
3176 reflections(Δ/σ)max = 0.001
155 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
C11H9NO3·2H2OV = 1109.9 (3) Å3
Mr = 239.22Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.7674 (11) ŵ = 0.11 mm1
b = 21.196 (4) ÅT = 100 K
c = 10.0993 (15) Å0.23 × 0.13 × 0.09 mm
β = 115.978 (8)°
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
3176 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2123 reflections with I > 2σ(I)
Tmin = 0.974, Tmax = 0.990Rint = 0.058
8743 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.140H-atom parameters constrained
S = 1.01Δρmax = 0.32 e Å3
3176 reflectionsΔρmin = 0.34 e Å3
155 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.5092 (2)0.92971 (5)0.52984 (13)0.0215 (3)
O20.2912 (2)0.83869 (5)0.60229 (13)0.0215 (3)
O30.6369 (2)0.91915 (5)0.88880 (13)0.0209 (3)
N10.0747 (2)0.99667 (6)0.64651 (14)0.0164 (3)
H10.23511.01540.58600.020*
C10.0569 (3)0.93435 (7)0.66638 (17)0.0167 (3)
C20.1785 (3)0.90548 (7)0.74844 (17)0.0179 (3)
H2A0.18790.86200.76240.022*
C30.4006 (3)0.94219 (7)0.80976 (17)0.0172 (3)
C40.3838 (3)1.00878 (7)0.78808 (17)0.0165 (3)
C50.6021 (3)1.04912 (7)0.84392 (18)0.0196 (3)
H5A0.76571.03250.89950.024*
C60.5718 (3)1.11260 (8)0.81587 (18)0.0215 (4)
H6A0.71571.13880.85130.026*
C70.3247 (3)1.13855 (7)0.73390 (18)0.0213 (3)
H7A0.30771.18180.71710.026*
C80.1083 (3)1.10119 (7)0.67844 (17)0.0192 (3)
H8A0.05421.11870.62480.023*
C90.1385 (3)1.03559 (7)0.70470 (17)0.0163 (3)
C100.3094 (3)0.89756 (7)0.59208 (17)0.0165 (3)
C110.6630 (3)0.85142 (7)0.91289 (19)0.0229 (4)
H11A0.84090.84110.97260.034*
H11B0.60360.83020.81980.034*
H11C0.56170.83820.96220.034*
O1W0.0737 (2)0.75591 (5)0.16811 (14)0.0248 (3)
H20.13490.75890.26220.037*
H30.04340.72420.14510.037*
O2W0.2854 (2)0.76156 (6)0.47021 (14)0.0283 (3)
H40.40920.78950.50740.042*
H50.21670.75800.53170.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0150 (5)0.0235 (5)0.0221 (7)0.0015 (4)0.0045 (4)0.0012 (4)
O20.0189 (5)0.0199 (5)0.0235 (6)0.0012 (4)0.0073 (5)0.0017 (4)
O30.0162 (5)0.0211 (5)0.0204 (6)0.0024 (4)0.0034 (4)0.0024 (4)
N10.0153 (6)0.0185 (6)0.0135 (7)0.0000 (5)0.0046 (5)0.0006 (5)
C10.0171 (7)0.0205 (7)0.0137 (8)0.0010 (6)0.0077 (6)0.0016 (6)
C20.0172 (7)0.0189 (7)0.0168 (8)0.0004 (6)0.0066 (6)0.0002 (6)
C30.0152 (7)0.0244 (7)0.0118 (8)0.0026 (6)0.0056 (6)0.0004 (6)
C40.0154 (7)0.0216 (7)0.0126 (7)0.0001 (6)0.0061 (5)0.0011 (6)
C50.0160 (7)0.0253 (7)0.0153 (8)0.0016 (6)0.0050 (6)0.0024 (6)
C60.0201 (7)0.0245 (7)0.0196 (9)0.0049 (6)0.0083 (6)0.0049 (6)
C70.0236 (8)0.0191 (7)0.0207 (9)0.0016 (6)0.0094 (6)0.0019 (6)
C80.0199 (7)0.0209 (7)0.0168 (8)0.0010 (6)0.0080 (6)0.0000 (6)
C90.0167 (7)0.0199 (7)0.0122 (7)0.0005 (6)0.0064 (6)0.0011 (6)
C100.0159 (7)0.0201 (7)0.0134 (8)0.0008 (5)0.0061 (6)0.0004 (6)
C110.0214 (8)0.0216 (7)0.0228 (9)0.0042 (6)0.0070 (6)0.0047 (6)
O1W0.0256 (6)0.0228 (5)0.0244 (7)0.0035 (5)0.0093 (5)0.0004 (5)
O2W0.0256 (6)0.0335 (6)0.0255 (7)0.0098 (5)0.0110 (5)0.0068 (5)
Geometric parameters (Å, º) top
O1—C101.2461 (18)C5—H5A0.9300
O2—C101.2528 (18)C6—C71.409 (2)
O3—C31.3337 (18)C6—H6A0.9300
O3—C111.4530 (18)C7—C81.373 (2)
N1—C11.3332 (19)C7—H7A0.9300
N1—C91.3800 (19)C8—C91.412 (2)
N1—H10.9437C8—H8A0.9300
C1—C21.385 (2)C11—H11A0.9600
C1—C101.528 (2)C11—H11B0.9600
C2—C31.391 (2)C11—H11C0.9600
C2—H2A0.9300O1W—H20.8586
C3—C41.425 (2)O1W—H30.9083
C4—C91.411 (2)O2W—H40.8759
C4—C51.419 (2)O2W—H50.8743
C5—C61.370 (2)
C3—O3—C11117.76 (12)C7—C6—H6A119.7
C1—N1—C9122.17 (13)C8—C7—C6121.28 (14)
C1—N1—H1120.2C8—C7—H7A119.4
C9—N1—H1117.5C6—C7—H7A119.4
N1—C1—C2121.24 (14)C7—C8—C9118.44 (14)
N1—C1—C10115.95 (13)C7—C8—H8A120.8
C2—C1—C10122.80 (13)C9—C8—H8A120.8
C1—C2—C3119.30 (14)N1—C9—C4119.14 (13)
C1—C2—H2A120.3N1—C9—C8119.69 (13)
C3—C2—H2A120.3C4—C9—C8121.16 (14)
O3—C3—C2124.18 (14)O1—C10—O2127.72 (14)
O3—C3—C4115.95 (13)O1—C10—C1116.14 (13)
C2—C3—C4119.86 (13)O2—C10—C1116.14 (13)
C9—C4—C5118.55 (14)O3—C11—H11A109.5
C9—C4—C3118.28 (13)O3—C11—H11B109.5
C5—C4—C3123.16 (14)H11A—C11—H11B109.5
C6—C5—C4119.94 (14)O3—C11—H11C109.5
C6—C5—H5A120.0H11A—C11—H11C109.5
C4—C5—H5A120.0H11B—C11—H11C109.5
C5—C6—C7120.61 (15)H2—O1W—H3103.8
C5—C6—H6A119.7H4—O2W—H5106.9
C9—N1—C1—C20.7 (2)C5—C6—C7—C80.8 (3)
C9—N1—C1—C10178.65 (13)C6—C7—C8—C90.3 (2)
N1—C1—C2—C30.8 (2)C1—N1—C9—C40.0 (2)
C10—C1—C2—C3178.50 (15)C1—N1—C9—C8179.18 (15)
C11—O3—C3—C20.4 (2)C5—C4—C9—N1178.33 (14)
C11—O3—C3—C4179.67 (14)C3—C4—C9—N10.5 (2)
C1—C2—C3—O3179.06 (15)C5—C4—C9—C80.9 (2)
C1—C2—C3—C40.2 (2)C3—C4—C9—C8179.68 (15)
O3—C3—C4—C9179.73 (14)C7—C8—C9—N1178.06 (15)
C2—C3—C4—C90.4 (2)C7—C8—C9—C41.1 (2)
O3—C3—C4—C51.0 (2)N1—C1—C10—O15.3 (2)
C2—C3—C4—C5178.38 (15)C2—C1—C10—O1175.42 (15)
C9—C4—C5—C60.3 (2)N1—C1—C10—O2175.44 (14)
C3—C4—C5—C6178.51 (16)C2—C1—C10—O23.9 (2)
C4—C5—C6—C71.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.942.312.6638 (18)102
N1—H1···O1i0.941.842.7608 (18)164
O1W—H2···O2W0.861.892.7478 (19)176
O1W—H3···O2ii0.911.862.7685 (16)177
O2W—H4···O2iii0.881.882.7498 (18)171
O2W—H5···O1Wiv0.871.912.7860 (19)176
C6—H6A···O1Wv0.932.593.418 (2)149
C8—H8A···O1i0.932.533.229 (2)132
C11—H11A···O1Wvi0.962.583.317 (2)134
C11—H11B···O2iii0.962.533.272 (2)134
Symmetry codes: (i) x1, y+2, z+1; (ii) x, y+3/2, z1/2; (iii) x+1, y, z; (iv) x, y+3/2, z+1/2; (v) x+1, y+2, z+1; (vi) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC11H9NO3·2H2O
Mr239.22
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)5.7674 (11), 21.196 (4), 10.0993 (15)
β (°) 115.978 (8)
V3)1109.9 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.23 × 0.13 × 0.09
Data collection
DiffractometerBruker APEXII DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.974, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
8743, 3176, 2123
Rint0.058
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.140, 1.01
No. of reflections3176
No. of parameters155
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.34

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.941.842.7608 (18)164
O1W—H2···O2W0.861.892.7478 (19)176
O1W—H3···O2ii0.911.862.7685 (16)177
O2W—H4···O2iii0.881.882.7498 (18)171
O2W—H5···O1Wiv0.871.912.7860 (19)176
C6—H6A···O1Wv0.932.593.418 (2)149
C8—H8A···O1i0.932.533.229 (2)132
C11—H11A···O1Wvi0.962.583.317 (2)134
C11—H11B···O2iii0.962.533.272 (2)134
Symmetry codes: (i) x1, y+2, z+1; (ii) x, y+3/2, z1/2; (iii) x+1, y, z; (iv) x, y+3/2, z+1/2; (v) x+1, y+2, z+1; (vi) x+1, y, z+1.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

MH and HKF thank the Malaysian Government and Universiti Sains Malaysia for the Research University Golden Goose Grant No. 1001/PFIZIK/811012. MH also thanksro Universiti Sains Malaysia for a post-doctoral research fellowship.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCampbell, S. F., Hardstone, J. D. & Palmer, M. J. (1988). J. Med. Chem. 31, 1031–1035.  CrossRef CAS PubMed Web of Science Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationElman, B., Högberg, S. A. G., Weber, M. & Muhammed, M. (1985). Polyhedron, 4, 1197–1201.  CrossRef CAS Web of Science Google Scholar
First citationLoh, W.-S., Quah, C. K., Hemamalini, M. & Fun, H.-K. (2010a). Acta Cryst. E66, o2357.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLoh, W.-S., Quah, C. K., Hemamalini, M. & Fun, H.-K. (2010b). Acta Cryst. E66, o2396.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMarkees, D. G., Dewey, V. C. & Kidder, G. W. (1970). J. Med. Chem. 13, 324–326.  CrossRef CAS PubMed Web of Science Google Scholar
First citationMichael, J. P. (1997). Nat. Prod. Rep. 14, 605–608.  CrossRef CAS Web of Science Google Scholar
First citationMorimoto, Y., Matsuda, F. & Shirahama, H. (1991). Synlett, 3, 202–203.  CrossRef Google Scholar
First citationReux, B., Nevalainen, T., Raitio, K. H. & Koskinen, A. M. P. (2009). Bioorg. Med. Chem. 17, 4441–4447.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSasaki, K., Tsurumori, A. & Hirota, T. (1998). J. Chem. Soc. Perkin Trans. 1, pp. 3851–3856.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhou, P., O'Hagan, D., Mocek, U., Zeng, Z., Yuen, L.-D., Unkefer, C. J., Beale, J. M. & Floss, H. G. (1989). J. Am. Chem. Soc. 111, 7274–7276.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 2| February 2011| Pages o435-o436
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds