organic compounds
4-Methoxyquinolinium-2-carboxylate dihydrate
aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my
The title hydrated quinoline derivative, C11H9NO3·2H2O, crystallizes as a zwitterion in which the quinoline N atom is protonated. The quinoline ring is essentially planar, with a maximum deviation of 0.017 (2) Å. An intramolecular N—H⋯O hydrogen bond between the protonated N atom and the O atom of the carboxylate group in the zwitterion forms an S(5) ring motif. In the crystal, the are connected into inversion dimers via pairs of N—H⋯O and C—H⋯O hydrogen bonds with R22(4) and R12(6) motifs. The water molecules are connected via O—H⋯O hydrogen bonds, forming supramolecular chains along the c axis. Furthermore, the chains and the dimers are connected via O—H⋯O hydrogen bonds, forming ladder-like supramolecular ribbons along the c axis.
Related literature
For background to and the biological activity of quinoline derivatives, see: Morimoto et al. (1991); Michael (1997); Markees et al. (1970); Campbell et al. (1988); Zhou et al. (1989); Elman et al. (1985); Loh et al. (2010a,b); Sasaki et al. (1998); Reux et al. (2009). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2009); cell SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).
Supporting information
10.1107/S1600536811001541/is2654sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811001541/is2654Isup2.hkl
A methanol solution (20 ml) of 4-methoxyquinoline-2-carboxylic acid (50. 8 mg, Aldrich) was warmed over a heating magnetic stirrer for 5 minutes. The resulting solution was allowed to cool slowly at room temperature. Crystals of the title compound appeared from the mother liquor after a few days.
All the H atoms were positioned geometrically (N—H = 0.9437 Å; C—H = 0.93 or 0.96 Å and O—H = 0.8586–0.9083 Å) and were refined using a riding model, with Uiso(H) = 1.2 or 1.5Ueq(C,O).
Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level. Intramolecular hydrogen bonds shown by dotted lines. | |
Fig. 2. The crystal packing of the title compound, showing a hydrogen-bonded (dashed lines) ladder-like network. |
C11H9NO3·2H2O | F(000) = 504 |
Mr = 239.22 | Dx = 1.432 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 1896 reflections |
a = 5.7674 (11) Å | θ = 3.0–29.6° |
b = 21.196 (4) Å | µ = 0.11 mm−1 |
c = 10.0993 (15) Å | T = 100 K |
β = 115.978 (8)° | Block, colourless |
V = 1109.9 (3) Å3 | 0.23 × 0.13 × 0.09 mm |
Z = 4 |
Bruker APEXII DUO CCD area-detector diffractometer | 3176 independent reflections |
Radiation source: fine-focus sealed tube | 2123 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.058 |
ϕ and ω scans | θmax = 30.0°, θmin = 3.0° |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | h = −7→8 |
Tmin = 0.974, Tmax = 0.990 | k = −29→29 |
8743 measured reflections | l = −10→14 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.051 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.140 | H-atom parameters constrained |
S = 1.01 | w = 1/[σ2(Fo2) + (0.0701P)2] where P = (Fo2 + 2Fc2)/3 |
3176 reflections | (Δ/σ)max = 0.001 |
155 parameters | Δρmax = 0.32 e Å−3 |
0 restraints | Δρmin = −0.34 e Å−3 |
C11H9NO3·2H2O | V = 1109.9 (3) Å3 |
Mr = 239.22 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 5.7674 (11) Å | µ = 0.11 mm−1 |
b = 21.196 (4) Å | T = 100 K |
c = 10.0993 (15) Å | 0.23 × 0.13 × 0.09 mm |
β = 115.978 (8)° |
Bruker APEXII DUO CCD area-detector diffractometer | 3176 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | 2123 reflections with I > 2σ(I) |
Tmin = 0.974, Tmax = 0.990 | Rint = 0.058 |
8743 measured reflections |
R[F2 > 2σ(F2)] = 0.051 | 0 restraints |
wR(F2) = 0.140 | H-atom parameters constrained |
S = 1.01 | Δρmax = 0.32 e Å−3 |
3176 reflections | Δρmin = −0.34 e Å−3 |
155 parameters |
Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K. |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | −0.5092 (2) | 0.92971 (5) | 0.52984 (13) | 0.0215 (3) | |
O2 | −0.2912 (2) | 0.83869 (5) | 0.60229 (13) | 0.0215 (3) | |
O3 | 0.6369 (2) | 0.91915 (5) | 0.88880 (13) | 0.0209 (3) | |
N1 | −0.0747 (2) | 0.99667 (6) | 0.64651 (14) | 0.0164 (3) | |
H1 | −0.2351 | 1.0154 | 0.5860 | 0.020* | |
C1 | −0.0569 (3) | 0.93435 (7) | 0.66638 (17) | 0.0167 (3) | |
C2 | 0.1785 (3) | 0.90548 (7) | 0.74844 (17) | 0.0179 (3) | |
H2A | 0.1879 | 0.8620 | 0.7624 | 0.022* | |
C3 | 0.4006 (3) | 0.94219 (7) | 0.80976 (17) | 0.0172 (3) | |
C4 | 0.3838 (3) | 1.00878 (7) | 0.78808 (17) | 0.0165 (3) | |
C5 | 0.6021 (3) | 1.04912 (7) | 0.84392 (18) | 0.0196 (3) | |
H5A | 0.7657 | 1.0325 | 0.8995 | 0.024* | |
C6 | 0.5718 (3) | 1.11260 (8) | 0.81587 (18) | 0.0215 (4) | |
H6A | 0.7157 | 1.1388 | 0.8513 | 0.026* | |
C7 | 0.3247 (3) | 1.13855 (7) | 0.73390 (18) | 0.0213 (3) | |
H7A | 0.3077 | 1.1818 | 0.7171 | 0.026* | |
C8 | 0.1083 (3) | 1.10119 (7) | 0.67844 (17) | 0.0192 (3) | |
H8A | −0.0542 | 1.1187 | 0.6248 | 0.023* | |
C9 | 0.1385 (3) | 1.03559 (7) | 0.70470 (17) | 0.0163 (3) | |
C10 | −0.3094 (3) | 0.89756 (7) | 0.59208 (17) | 0.0165 (3) | |
C11 | 0.6630 (3) | 0.85142 (7) | 0.91289 (19) | 0.0229 (4) | |
H11A | 0.8409 | 0.8411 | 0.9726 | 0.034* | |
H11B | 0.6036 | 0.8302 | 0.8198 | 0.034* | |
H11C | 0.5617 | 0.8382 | 0.9622 | 0.034* | |
O1W | 0.0737 (2) | 0.75591 (5) | 0.16811 (14) | 0.0248 (3) | |
H2 | 0.1349 | 0.7589 | 0.2622 | 0.037* | |
H3 | −0.0434 | 0.7242 | 0.1451 | 0.037* | |
O2W | 0.2854 (2) | 0.76156 (6) | 0.47021 (14) | 0.0283 (3) | |
H4 | 0.4092 | 0.7895 | 0.5074 | 0.042* | |
H5 | 0.2167 | 0.7580 | 0.5317 | 0.042* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0150 (5) | 0.0235 (5) | 0.0221 (7) | 0.0015 (4) | 0.0045 (4) | 0.0012 (4) |
O2 | 0.0189 (5) | 0.0199 (5) | 0.0235 (6) | −0.0012 (4) | 0.0073 (5) | 0.0017 (4) |
O3 | 0.0162 (5) | 0.0211 (5) | 0.0204 (6) | 0.0024 (4) | 0.0034 (4) | 0.0024 (4) |
N1 | 0.0153 (6) | 0.0185 (6) | 0.0135 (7) | 0.0000 (5) | 0.0046 (5) | −0.0006 (5) |
C1 | 0.0171 (7) | 0.0205 (7) | 0.0137 (8) | −0.0010 (6) | 0.0077 (6) | −0.0016 (6) |
C2 | 0.0172 (7) | 0.0189 (7) | 0.0168 (8) | 0.0004 (6) | 0.0066 (6) | −0.0002 (6) |
C3 | 0.0152 (7) | 0.0244 (7) | 0.0118 (8) | 0.0026 (6) | 0.0056 (6) | 0.0004 (6) |
C4 | 0.0154 (7) | 0.0216 (7) | 0.0126 (7) | 0.0001 (6) | 0.0061 (5) | −0.0011 (6) |
C5 | 0.0160 (7) | 0.0253 (7) | 0.0153 (8) | −0.0016 (6) | 0.0050 (6) | −0.0024 (6) |
C6 | 0.0201 (7) | 0.0245 (7) | 0.0196 (9) | −0.0049 (6) | 0.0083 (6) | −0.0049 (6) |
C7 | 0.0236 (8) | 0.0191 (7) | 0.0207 (9) | −0.0016 (6) | 0.0094 (6) | −0.0019 (6) |
C8 | 0.0199 (7) | 0.0209 (7) | 0.0168 (8) | 0.0010 (6) | 0.0080 (6) | 0.0000 (6) |
C9 | 0.0167 (7) | 0.0199 (7) | 0.0122 (7) | −0.0005 (6) | 0.0064 (6) | −0.0011 (6) |
C10 | 0.0159 (7) | 0.0201 (7) | 0.0134 (8) | −0.0008 (5) | 0.0061 (6) | −0.0004 (6) |
C11 | 0.0214 (8) | 0.0216 (7) | 0.0228 (9) | 0.0042 (6) | 0.0070 (6) | 0.0047 (6) |
O1W | 0.0256 (6) | 0.0228 (5) | 0.0244 (7) | −0.0035 (5) | 0.0093 (5) | 0.0004 (5) |
O2W | 0.0256 (6) | 0.0335 (6) | 0.0255 (7) | −0.0098 (5) | 0.0110 (5) | −0.0068 (5) |
O1—C10 | 1.2461 (18) | C5—H5A | 0.9300 |
O2—C10 | 1.2528 (18) | C6—C7 | 1.409 (2) |
O3—C3 | 1.3337 (18) | C6—H6A | 0.9300 |
O3—C11 | 1.4530 (18) | C7—C8 | 1.373 (2) |
N1—C1 | 1.3332 (19) | C7—H7A | 0.9300 |
N1—C9 | 1.3800 (19) | C8—C9 | 1.412 (2) |
N1—H1 | 0.9437 | C8—H8A | 0.9300 |
C1—C2 | 1.385 (2) | C11—H11A | 0.9600 |
C1—C10 | 1.528 (2) | C11—H11B | 0.9600 |
C2—C3 | 1.391 (2) | C11—H11C | 0.9600 |
C2—H2A | 0.9300 | O1W—H2 | 0.8586 |
C3—C4 | 1.425 (2) | O1W—H3 | 0.9083 |
C4—C9 | 1.411 (2) | O2W—H4 | 0.8759 |
C4—C5 | 1.419 (2) | O2W—H5 | 0.8743 |
C5—C6 | 1.370 (2) | ||
C3—O3—C11 | 117.76 (12) | C7—C6—H6A | 119.7 |
C1—N1—C9 | 122.17 (13) | C8—C7—C6 | 121.28 (14) |
C1—N1—H1 | 120.2 | C8—C7—H7A | 119.4 |
C9—N1—H1 | 117.5 | C6—C7—H7A | 119.4 |
N1—C1—C2 | 121.24 (14) | C7—C8—C9 | 118.44 (14) |
N1—C1—C10 | 115.95 (13) | C7—C8—H8A | 120.8 |
C2—C1—C10 | 122.80 (13) | C9—C8—H8A | 120.8 |
C1—C2—C3 | 119.30 (14) | N1—C9—C4 | 119.14 (13) |
C1—C2—H2A | 120.3 | N1—C9—C8 | 119.69 (13) |
C3—C2—H2A | 120.3 | C4—C9—C8 | 121.16 (14) |
O3—C3—C2 | 124.18 (14) | O1—C10—O2 | 127.72 (14) |
O3—C3—C4 | 115.95 (13) | O1—C10—C1 | 116.14 (13) |
C2—C3—C4 | 119.86 (13) | O2—C10—C1 | 116.14 (13) |
C9—C4—C5 | 118.55 (14) | O3—C11—H11A | 109.5 |
C9—C4—C3 | 118.28 (13) | O3—C11—H11B | 109.5 |
C5—C4—C3 | 123.16 (14) | H11A—C11—H11B | 109.5 |
C6—C5—C4 | 119.94 (14) | O3—C11—H11C | 109.5 |
C6—C5—H5A | 120.0 | H11A—C11—H11C | 109.5 |
C4—C5—H5A | 120.0 | H11B—C11—H11C | 109.5 |
C5—C6—C7 | 120.61 (15) | H2—O1W—H3 | 103.8 |
C5—C6—H6A | 119.7 | H4—O2W—H5 | 106.9 |
C9—N1—C1—C2 | 0.7 (2) | C5—C6—C7—C8 | −0.8 (3) |
C9—N1—C1—C10 | −178.65 (13) | C6—C7—C8—C9 | −0.3 (2) |
N1—C1—C2—C3 | −0.8 (2) | C1—N1—C9—C4 | 0.0 (2) |
C10—C1—C2—C3 | 178.50 (15) | C1—N1—C9—C8 | 179.18 (15) |
C11—O3—C3—C2 | −0.4 (2) | C5—C4—C9—N1 | 178.33 (14) |
C11—O3—C3—C4 | −179.67 (14) | C3—C4—C9—N1 | −0.5 (2) |
C1—C2—C3—O3 | −179.06 (15) | C5—C4—C9—C8 | −0.9 (2) |
C1—C2—C3—C4 | 0.2 (2) | C3—C4—C9—C8 | −179.68 (15) |
O3—C3—C4—C9 | 179.73 (14) | C7—C8—C9—N1 | −178.06 (15) |
C2—C3—C4—C9 | 0.4 (2) | C7—C8—C9—C4 | 1.1 (2) |
O3—C3—C4—C5 | 1.0 (2) | N1—C1—C10—O1 | −5.3 (2) |
C2—C3—C4—C5 | −178.38 (15) | C2—C1—C10—O1 | 175.42 (15) |
C9—C4—C5—C6 | −0.3 (2) | N1—C1—C10—O2 | 175.44 (14) |
C3—C4—C5—C6 | 178.51 (16) | C2—C1—C10—O2 | −3.9 (2) |
C4—C5—C6—C7 | 1.1 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O1 | 0.94 | 2.31 | 2.6638 (18) | 102 |
N1—H1···O1i | 0.94 | 1.84 | 2.7608 (18) | 164 |
O1W—H2···O2W | 0.86 | 1.89 | 2.7478 (19) | 176 |
O1W—H3···O2ii | 0.91 | 1.86 | 2.7685 (16) | 177 |
O2W—H4···O2iii | 0.88 | 1.88 | 2.7498 (18) | 171 |
O2W—H5···O1Wiv | 0.87 | 1.91 | 2.7860 (19) | 176 |
C6—H6A···O1Wv | 0.93 | 2.59 | 3.418 (2) | 149 |
C8—H8A···O1i | 0.93 | 2.53 | 3.229 (2) | 132 |
C11—H11A···O1Wvi | 0.96 | 2.58 | 3.317 (2) | 134 |
C11—H11B···O2iii | 0.96 | 2.53 | 3.272 (2) | 134 |
Symmetry codes: (i) −x−1, −y+2, −z+1; (ii) x, −y+3/2, z−1/2; (iii) x+1, y, z; (iv) x, −y+3/2, z+1/2; (v) −x+1, −y+2, −z+1; (vi) x+1, y, z+1. |
Experimental details
Crystal data | |
Chemical formula | C11H9NO3·2H2O |
Mr | 239.22 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 100 |
a, b, c (Å) | 5.7674 (11), 21.196 (4), 10.0993 (15) |
β (°) | 115.978 (8) |
V (Å3) | 1109.9 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.11 |
Crystal size (mm) | 0.23 × 0.13 × 0.09 |
Data collection | |
Diffractometer | Bruker APEXII DUO CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2009) |
Tmin, Tmax | 0.974, 0.990 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 8743, 3176, 2123 |
Rint | 0.058 |
(sin θ/λ)max (Å−1) | 0.703 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.051, 0.140, 1.01 |
No. of reflections | 3176 |
No. of parameters | 155 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.32, −0.34 |
Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O1i | 0.94 | 1.84 | 2.7608 (18) | 164 |
O1W—H2···O2W | 0.86 | 1.89 | 2.7478 (19) | 176 |
O1W—H3···O2ii | 0.91 | 1.86 | 2.7685 (16) | 177 |
O2W—H4···O2iii | 0.88 | 1.88 | 2.7498 (18) | 171 |
O2W—H5···O1Wiv | 0.87 | 1.91 | 2.7860 (19) | 176 |
C6—H6A···O1Wv | 0.93 | 2.59 | 3.418 (2) | 149 |
C8—H8A···O1i | 0.93 | 2.53 | 3.229 (2) | 132 |
C11—H11A···O1Wvi | 0.96 | 2.58 | 3.317 (2) | 134 |
C11—H11B···O2iii | 0.96 | 2.53 | 3.272 (2) | 134 |
Symmetry codes: (i) −x−1, −y+2, −z+1; (ii) x, −y+3/2, z−1/2; (iii) x+1, y, z; (iv) x, −y+3/2, z+1/2; (v) −x+1, −y+2, −z+1; (vi) x+1, y, z+1. |
Footnotes
‡Thomson Reuters ResearcherID: A-3561-2009.
Acknowledgements
MH and HKF thank the Malaysian Government and Universiti Sains Malaysia for the Research University Golden Goose Grant No. 1001/PFIZIK/811012. MH also thanksro Universiti Sains Malaysia for a post-doctoral research fellowship.
References
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Campbell, S. F., Hardstone, J. D. & Palmer, M. J. (1988). J. Med. Chem. 31, 1031–1035. CrossRef CAS PubMed Web of Science Google Scholar
Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107. CrossRef CAS Web of Science IUCr Journals Google Scholar
Elman, B., Högberg, S. A. G., Weber, M. & Muhammed, M. (1985). Polyhedron, 4, 1197–1201. CrossRef CAS Web of Science Google Scholar
Loh, W.-S., Quah, C. K., Hemamalini, M. & Fun, H.-K. (2010a). Acta Cryst. E66, o2357. Web of Science CSD CrossRef IUCr Journals Google Scholar
Loh, W.-S., Quah, C. K., Hemamalini, M. & Fun, H.-K. (2010b). Acta Cryst. E66, o2396. Web of Science CSD CrossRef IUCr Journals Google Scholar
Markees, D. G., Dewey, V. C. & Kidder, G. W. (1970). J. Med. Chem. 13, 324–326. CrossRef CAS PubMed Web of Science Google Scholar
Michael, J. P. (1997). Nat. Prod. Rep. 14, 605–608. CrossRef CAS Web of Science Google Scholar
Morimoto, Y., Matsuda, F. & Shirahama, H. (1991). Synlett, 3, 202–203. CrossRef Google Scholar
Reux, B., Nevalainen, T., Raitio, K. H. & Koskinen, A. M. P. (2009). Bioorg. Med. Chem. 17, 4441–4447. Web of Science CrossRef PubMed CAS Google Scholar
Sasaki, K., Tsurumori, A. & Hirota, T. (1998). J. Chem. Soc. Perkin Trans. 1, pp. 3851–3856. Web of Science CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zhou, P., O'Hagan, D., Mocek, U., Zeng, Z., Yuen, L.-D., Unkefer, C. J., Beale, J. M. & Floss, H. G. (1989). J. Am. Chem. Soc. 111, 7274–7276. CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Quinolines and their derivatives are very important compounds because of their wide occurrence in natural products (Morimoto et al., 1991; Michael, 1997) and biologically active compounds (Markees et al., 1970; Campbell et al., 1988). Quinoline-2-carboxylic acid (quinaldic acid) and tryptophan metabolite (Zhou et al., 1989) are well-known chelating ligands (Elman et al., 1985). Recently, hydrogen-bonding patterns involving quinoline and its derivatives with organic acid have been investigated (Loh et al., 2010a,b). Syntheses of the quinoline derivatives have been discussed (Sasaki et al., 1998; Reux et al., 2009).
The title molecule, (Fig. 1), crystallizes as a zwitterion in which the quinoline N atom is protonated. The asymmetric unit consists of one 4-methoxyquinolinium-2-carboxylate molecule and two water molecules. The quinoline ring (N1/C1–C9) is essentially planar, with a maximum deviation of 0.017 (2) Å for atom C4.
In the crystal structure (Fig. 2), the 4-methoxyquinolinium-2- carboxylate molecules are connected via N—H···O and C—H···O hydrogen bonds to form R22(4) and R12(6) (Bernstein et al., 1995) motifs. There is an intramolecular N—H···O hydrogen bond observed between the protonated nitrogen atom of the cationic part of the quinolinium and the oxygen atom of anionic part of the carboxylate group in the zwitterion forming an S(5) ring motif. The water molecules are connected via O—H···O hydrogen bonds to form one-dimensional supramolecular chains along the c-axis. Furthermore, the chains formed by water molecules and the 4-methoxyquinolinium-2-carboxylate molecules are connected via O—H···O (Table 1) hydrogen bonds to form ladder-like supramolecular ribbons along the c-axis.