organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Iso­butyl-N,N-di­methyl-1H-imidazo[4,5-c]quinolin-4-amine

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Chemistry, Mangalore University, Karnataka, India
*Correspondence e-mail: hkfun@usm.my

(Received 27 December 2010; accepted 11 January 2011; online 15 January 2011)

In the title compound, C16H20N4, the 1H-imidazo[4,5-c]quinoline ring system is approximately planar, with a maximum deviation of 0.0719 (15) Å. An intra­molecular C—H⋯N hydrogen bond contributes to the stabilization of the mol­ecule, forming an S(6) ring motif. In the crystal, the mol­ecules are stacked along the b axis through weak aromatic ππ inter­actions between benzene and imidazole and benzene and pyridine rings [centroid–centroid distances = 3.6055 (10) and 3.5342 (10) Å, respectively].

Related literature

For background to quinolines and their microbial activity, see: Jampilek et al. (2005[Jampilek, J., Dolezal, M., Kunes, J., Buchta, V. & Kralova, K. (2005). Med. Chem. 1, 591-599.]); Gershon et al. (2004[Gershon, H., Gershon, M. & Clarke, D. D. (2004). Mycopathologia, 158, 131-135.]); Dardari et al. (2004[Dardari, Z., Lemrani, M., Bahloul, A., Sebban, A., Hassar, M., Kitane, S., Berrada, M. & Boudouma, M. (2004). Farmaco, 59, 195-199.]). For the syntheses of 1H-imidazo[4,5-c]quinolin-4-amines, see: Gabriel (1918[Gabriel, S. (1918). Chem. Ber. 51, 1506-1515.]); Izumi et al. (2003[Izumi, T., Sakaguchi, J., Takeshita, M., Tawara, H., Kato, K.-I., Dose, H., Tsujino, T., Watanabe, Y. & Kato, H. (2003). Bioorg. Med. Chem. 11, 2541-2550.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C16H20N4

  • Mr = 268.36

  • Monoclinic, P 21 /c

  • a = 9.2804 (2) Å

  • b = 18.5492 (6) Å

  • c = 8.5147 (2) Å

  • β = 101.051 (2)°

  • V = 1438.57 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.39 × 0.29 × 0.14 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.971, Tmax = 0.989

  • 13134 measured reflections

  • 3456 independent reflections

  • 2271 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.146

  • S = 1.02

  • 3456 reflections

  • 185 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15A⋯N3 0.96 2.16 2.918 (3) 135

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Compounds bearing a quinoline moiety are well known due to their broad biological activity (Jampilek et al., 2005). For example, hydroxyquinoline and its derivatives were introduced as antifungal agents in clinical practice and the novel compounds of this type are still being investigated (Gershon et al., 2004; Dardari et al., 2004). 1H-imidazo[4,5-c]quinolin-4-amines were synthesized by using two main synthetic routes. The first route started with 4-hydroxy-3-nitro-1H-quinolin-2-one, employing a modification of the method of Gabriel (Gabriel, 1918) to give 2,4-dichloro-3-nitroquinoline. Alternatively, the chlorination can be accomplished using phenylphosphonicdichloride (Izumi et al., 2003). Reaction of the N-oxide with POCl3 in dichloromethane gave the 4-chloro-1H-imidazo[4,5-c]quinoline analogue, which was converted to 1-(2-methylpropyl)-1H-imidazo[4,5-c]quinolin-4-amine by treatment with NH3 in methanol at 150 °C. 1H-Imidazo-[4,5-c]quinolines are potential antiviral agents and also induce the production of cytokines, especially interferon (IFN). This promoted us to react 4-chloro-1-(2-methylpropyl)-1H-imidazo[4,5-c]quinolone with dimethylformide to give 1-isobutyl-N,N-dimethyl-1H-imidazo[4,5-c]quinolin-4-amine.

In the title compound (Fig. 1), the 1H-imidazo[4,5-c]quinoline ring system (C1–C6/N1/C7/C8/N3/C10/N2/C9) is approximately planar with a maximum deviation of 0.0719 (15) Å at atom N3. The torsion angle, C10—N2—C11—C12, formed between this ring system and the isobutyl unit is 100.8 (2)°. An intramolecular C15—H15A···N3 hydrogen bond (Table 1) contributes to the stabilization of the molecule, forming an S(6) ring motif (Bernstein et al., 1995). Bond lengths (Allen et al., 1987) and angles are within the normal ranges.

There is no significant intermolecular hydrogen bond observed in the crystal packing (Fig. 2). The molecules are stacked along the b axis by way of weak aromatic ππ interactions of the benzene C1–C6 ring (centroid Cg3) with the imidazole N2/C9/C8/N3/C10 (centroid Cg1) and pyridine N1/C6/C1/C9/C8/C7 (centroid Cg2) rings [Cg3···Cg1 separation = 3.6055 (10) Å; Cg3···Cg2 separation = 3.5342 (10) Å].

Related literature top

For background to quinolines and their microbial activity, see: Jampilek et al. (2005); Gershon et al. (2004); Dardari et al. (2004). For the syntheses of 1H-imidazo[4,5-c]quinolin-4-amines, see: Gabriel (1918); Izumi et al. (2003). For bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

4-Chloro-1-(2-methylpropyl)-1H-imidazo[4,5-c]quinolone (2 g, 0.00771 mole), methanol (30 ml) and 3.3 ml of DMF were heated to reflux for 72 h. The solid formed was separated, filtered off and washed with methanol. Yield, 1.99 g (58.5%). Crystals suitable for x-ray analysis were obtained from ethanol by slow evaporation.

Refinement top

All H atoms were positioned geometrically (C—H = 0.93 to 0.98 Å) and refined using the riding model with Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating group model was applied to the methyl groups.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme. The dashed line indicates the intramolecular hydrogen bond.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the b axis.
1-Isobutyl-N,N-dimethyl-1H- imidazo[4,5-c]quinolin-4-amine top
Crystal data top
C16H20N4F(000) = 576
Mr = 268.36Dx = 1.239 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3031 reflections
a = 9.2804 (2) Åθ = 2.2–27.4°
b = 18.5492 (6) ŵ = 0.08 mm1
c = 8.5147 (2) ÅT = 296 K
β = 101.051 (2)°Block, colourless
V = 1438.57 (7) Å30.39 × 0.29 × 0.14 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3456 independent reflections
Radiation source: fine-focus sealed tube2271 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ϕ and ω scansθmax = 28.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1212
Tmin = 0.971, Tmax = 0.989k = 1924
13134 measured reflectionsl = 1011
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.146H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0604P)2 + 0.3608P]
where P = (Fo2 + 2Fc2)/3
3456 reflections(Δ/σ)max = 0.001
185 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C16H20N4V = 1438.57 (7) Å3
Mr = 268.36Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.2804 (2) ŵ = 0.08 mm1
b = 18.5492 (6) ÅT = 296 K
c = 8.5147 (2) Å0.39 × 0.29 × 0.14 mm
β = 101.051 (2)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3456 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2271 reflections with I > 2σ(I)
Tmin = 0.971, Tmax = 0.989Rint = 0.037
13134 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.146H-atom parameters constrained
S = 1.02Δρmax = 0.26 e Å3
3456 reflectionsΔρmin = 0.18 e Å3
185 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.44302 (15)0.08084 (8)0.74563 (17)0.0430 (4)
N30.31258 (17)0.18631 (8)0.3740 (2)0.0512 (4)
N20.51431 (15)0.14182 (8)0.30069 (17)0.0418 (4)
N40.22238 (16)0.14021 (9)0.68830 (19)0.0520 (4)
C70.35046 (18)0.12102 (9)0.6440 (2)0.0400 (4)
C60.57198 (17)0.05715 (9)0.7062 (2)0.0386 (4)
C50.66567 (19)0.01562 (10)0.8208 (2)0.0467 (5)
H5A0.63870.00590.91840.056*
C40.7957 (2)0.01084 (11)0.7918 (2)0.0500 (5)
H4A0.85630.03780.86980.060*
C30.8376 (2)0.00247 (10)0.6460 (2)0.0499 (5)
H3A0.92620.01550.62690.060*
C20.74870 (18)0.04200 (9)0.5307 (2)0.0428 (4)
H2A0.77710.05000.43330.051*
C10.61517 (17)0.07070 (8)0.55699 (19)0.0358 (4)
C90.51360 (17)0.11474 (8)0.45202 (19)0.0363 (4)
C80.38711 (18)0.14192 (9)0.4938 (2)0.0395 (4)
C100.3921 (2)0.18403 (10)0.2632 (2)0.0510 (5)
H10A0.36770.20900.16700.061*
C110.61699 (19)0.12704 (10)0.1942 (2)0.0449 (4)
H11A0.56820.13620.08480.054*
H11B0.64340.07640.20240.054*
C120.7563 (2)0.17189 (10)0.2307 (2)0.0466 (4)
H12A0.79800.16690.34500.056*
C130.8672 (2)0.14245 (12)0.1367 (3)0.0684 (6)
H13A0.88400.09230.16090.103*
H13B0.95790.16840.16570.103*
H13C0.82980.14810.02420.103*
C140.7246 (3)0.25132 (11)0.1958 (3)0.0689 (6)
H14A0.81370.27850.22540.103*
H14B0.65390.26800.25640.103*
H14C0.68620.25760.08370.103*
C150.1048 (2)0.17851 (13)0.5909 (3)0.0690 (6)
H15A0.12120.18070.48300.103*
H15B0.10020.22650.63180.103*
H15C0.01390.15400.59230.103*
C160.1954 (2)0.11825 (15)0.8435 (3)0.0716 (7)
H16A0.28650.11750.91930.107*
H16B0.15270.07090.83550.107*
H16C0.12920.15170.87840.107*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0436 (8)0.0471 (8)0.0387 (8)0.0035 (7)0.0084 (6)0.0017 (7)
N30.0483 (8)0.0502 (9)0.0556 (10)0.0094 (7)0.0110 (7)0.0128 (8)
N20.0434 (8)0.0424 (8)0.0401 (8)0.0001 (6)0.0093 (6)0.0054 (7)
N40.0468 (8)0.0622 (10)0.0497 (10)0.0129 (8)0.0161 (7)0.0038 (8)
C70.0396 (9)0.0384 (9)0.0425 (10)0.0003 (7)0.0089 (7)0.0055 (8)
C60.0388 (8)0.0368 (9)0.0395 (9)0.0017 (7)0.0058 (7)0.0033 (7)
C50.0525 (11)0.0512 (11)0.0354 (10)0.0042 (9)0.0062 (8)0.0028 (8)
C40.0479 (10)0.0540 (11)0.0456 (11)0.0095 (9)0.0023 (8)0.0075 (9)
C30.0428 (10)0.0512 (11)0.0568 (12)0.0086 (8)0.0126 (8)0.0068 (9)
C20.0446 (9)0.0405 (9)0.0453 (10)0.0015 (8)0.0137 (8)0.0049 (8)
C10.0376 (8)0.0309 (8)0.0385 (9)0.0022 (7)0.0064 (7)0.0010 (7)
C90.0410 (9)0.0311 (8)0.0367 (9)0.0036 (7)0.0069 (7)0.0000 (7)
C80.0400 (9)0.0342 (8)0.0432 (10)0.0001 (7)0.0052 (7)0.0016 (8)
C100.0502 (10)0.0514 (11)0.0508 (11)0.0071 (9)0.0080 (9)0.0145 (9)
C110.0500 (10)0.0485 (10)0.0368 (10)0.0018 (8)0.0100 (8)0.0018 (8)
C120.0483 (10)0.0483 (10)0.0449 (10)0.0000 (8)0.0132 (8)0.0083 (8)
C130.0610 (13)0.0689 (14)0.0824 (16)0.0028 (11)0.0312 (12)0.0030 (13)
C140.0788 (15)0.0514 (12)0.0844 (17)0.0004 (11)0.0352 (13)0.0129 (12)
C150.0460 (11)0.0844 (16)0.0790 (16)0.0166 (11)0.0183 (10)0.0156 (13)
C160.0606 (13)0.1034 (19)0.0566 (13)0.0146 (12)0.0256 (11)0.0048 (13)
Geometric parameters (Å, º) top
N1—C71.325 (2)C1—C91.425 (2)
N1—C61.376 (2)C9—C81.385 (2)
N3—C101.305 (2)C10—H10A0.9300
N3—C81.388 (2)C11—C121.519 (3)
N2—C101.365 (2)C11—H11A0.9700
N2—C91.384 (2)C11—H11B0.9700
N2—C111.461 (2)C12—C141.521 (3)
N4—C71.361 (2)C12—C131.521 (3)
N4—C151.427 (2)C12—H12A0.9800
N4—C161.450 (2)C13—H13A0.9600
C7—C81.439 (2)C13—H13B0.9600
C6—C51.406 (2)C13—H13C0.9600
C6—C11.426 (2)C14—H14A0.9600
C5—C41.368 (2)C14—H14B0.9600
C5—H5A0.9300C14—H14C0.9600
C4—C31.393 (3)C15—H15A0.9600
C4—H4A0.9300C15—H15B0.9600
C3—C21.368 (2)C15—H15C0.9600
C3—H3A0.9300C16—H16A0.9600
C2—C11.405 (2)C16—H16B0.9600
C2—H2A0.9300C16—H16C0.9600
C7—N1—C6120.37 (15)N2—C10—H10A122.9
C10—N3—C8103.93 (14)N2—C11—C12113.65 (15)
C10—N2—C9105.91 (14)N2—C11—H11A108.8
C10—N2—C11125.01 (15)C12—C11—H11A108.8
C9—N2—C11129.00 (14)N2—C11—H11B108.8
C7—N4—C15125.46 (16)C12—C11—H11B108.8
C7—N4—C16119.42 (16)H11A—C11—H11B107.7
C15—N4—C16115.06 (16)C11—C12—C14111.44 (16)
N1—C7—N4117.22 (16)C11—C12—C13109.34 (16)
N1—C7—C8119.85 (15)C14—C12—C13111.73 (17)
N4—C7—C8122.93 (16)C11—C12—H12A108.1
N1—C6—C5117.17 (15)C14—C12—H12A108.1
N1—C6—C1124.58 (15)C13—C12—H12A108.1
C5—C6—C1118.24 (15)C12—C13—H13A109.5
C4—C5—C6121.37 (17)C12—C13—H13B109.5
C4—C5—H5A119.3H13A—C13—H13B109.5
C6—C5—H5A119.3C12—C13—H13C109.5
C5—C4—C3120.26 (17)H13A—C13—H13C109.5
C5—C4—H4A119.9H13B—C13—H13C109.5
C3—C4—H4A119.9C12—C14—H14A109.5
C2—C3—C4120.10 (17)C12—C14—H14B109.5
C2—C3—H3A119.9H14A—C14—H14B109.5
C4—C3—H3A119.9C12—C14—H14C109.5
C3—C2—C1121.20 (16)H14A—C14—H14C109.5
C3—C2—H2A119.4H14B—C14—H14C109.5
C1—C2—H2A119.4N4—C15—H15A109.5
C2—C1—C9127.93 (15)N4—C15—H15B109.5
C2—C1—C6118.81 (15)H15A—C15—H15B109.5
C9—C1—C6113.24 (14)N4—C15—H15C109.5
N2—C9—C8105.21 (14)H15A—C15—H15C109.5
N2—C9—C1132.15 (15)H15B—C15—H15C109.5
C8—C9—C1122.60 (15)N4—C16—H16A109.5
C9—C8—N3110.77 (15)N4—C16—H16B109.5
C9—C8—C7119.13 (15)H16A—C16—H16B109.5
N3—C8—C7130.09 (15)N4—C16—H16C109.5
N3—C10—N2114.14 (16)H16A—C16—H16C109.5
N3—C10—H10A122.9H16B—C16—H16C109.5
C6—N1—C7—N4177.51 (15)C11—N2—C9—C16.5 (3)
C6—N1—C7—C82.0 (2)C2—C1—C9—N20.3 (3)
C15—N4—C7—N1175.07 (19)C6—C1—C9—N2178.26 (16)
C16—N4—C7—N11.9 (3)C2—C1—C9—C8177.77 (16)
C15—N4—C7—C84.4 (3)C6—C1—C9—C80.8 (2)
C16—N4—C7—C8178.62 (18)N2—C9—C8—N31.55 (19)
C7—N1—C6—C5179.12 (15)C1—C9—C8—N3176.52 (15)
C7—N1—C6—C12.1 (3)N2—C9—C8—C7177.37 (14)
N1—C6—C5—C4179.43 (17)C1—C9—C8—C74.6 (2)
C1—C6—C5—C40.5 (3)C10—N3—C8—C91.2 (2)
C6—C5—C4—C30.6 (3)C10—N3—C8—C7177.58 (18)
C5—C4—C3—C20.1 (3)N1—C7—C8—C95.2 (2)
C4—C3—C2—C10.8 (3)N4—C7—C8—C9174.26 (16)
C3—C2—C1—C9177.63 (17)N1—C7—C8—N3176.11 (17)
C3—C2—C1—C60.8 (3)N4—C7—C8—N34.4 (3)
N1—C6—C1—C2178.65 (15)C8—N3—C10—N20.4 (2)
C5—C6—C1—C20.1 (2)C9—N2—C10—N30.6 (2)
N1—C6—C1—C92.7 (2)C11—N2—C10—N3176.48 (16)
C5—C6—C1—C9178.54 (15)C10—N2—C11—C12100.8 (2)
C10—N2—C9—C81.26 (18)C9—N2—C11—C1282.9 (2)
C11—N2—C9—C8175.65 (16)N2—C11—C12—C1467.1 (2)
C10—N2—C9—C1176.54 (18)N2—C11—C12—C13168.91 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15A···N30.962.162.918 (3)135

Experimental details

Crystal data
Chemical formulaC16H20N4
Mr268.36
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)9.2804 (2), 18.5492 (6), 8.5147 (2)
β (°) 101.051 (2)
V3)1438.57 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.39 × 0.29 × 0.14
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.971, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
13134, 3456, 2271
Rint0.037
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.146, 1.02
No. of reflections3456
No. of parameters185
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.18

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15A···N30.962.162.918 (3)135
 

Footnotes

Thomson Reuters ResearcherID: C-7581-2009.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

HKF and WSL thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). WSL also thanks the Malaysian Government and USM for the award of a Research Fellowship.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDardari, Z., Lemrani, M., Bahloul, A., Sebban, A., Hassar, M., Kitane, S., Berrada, M. & Boudouma, M. (2004). Farmaco, 59, 195–199.  CrossRef PubMed CAS Google Scholar
First citationGabriel, S. (1918). Chem. Ber. 51, 1506–1515.  Google Scholar
First citationGershon, H., Gershon, M. & Clarke, D. D. (2004). Mycopathologia, 158, 131–135.  Web of Science CrossRef PubMed CAS Google Scholar
First citationIzumi, T., Sakaguchi, J., Takeshita, M., Tawara, H., Kato, K.-I., Dose, H., Tsujino, T., Watanabe, Y. & Kato, H. (2003). Bioorg. Med. Chem. 11, 2541–2550.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJampilek, J., Dolezal, M., Kunes, J., Buchta, V. & Kralova, K. (2005). Med. Chem. 1, 591–599.  CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds