organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Hydrazinyl-1-iso­butyl-1H-imidazo[4,5-c]quinoline

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Chemistry, Mangalore University, Karnataka, India
*Correspondence e-mail: hkfun@usm.my

(Received 27 December 2010; accepted 11 January 2011; online 15 January 2011)

In the title compound, C14H17N5, the 1H-imidazo[4,5-c]quinoline ring system is essentially planar, with a maximum deviation of 0.0325 (7) Å. In the crystal, a pair of inter­molecular N—H⋯N hydrogen bonds link neighbouring mol­ecules, forming an inversion dimer and generate an R22(10) ring motif. These dimers are further connected into a chain along the b axis via inter­molecular C—H⋯N hydrogen bonds, resulting in an R22(14) ring motif.

Related literature

For background to quinolines and their microbial activity, see: Roth & Fenner (2000[Roth, H. J. & Fenner, H. (2000). Arzneistoffe, pp. 51-114.]); Miller et al. (1999[Miller, R. L., Gerster, J. F., Owens, M. L., Slade, H. B. & Tomai, M. A. (1999). Int. J. Immunopharmacol. 21, 1-14.]); Hirota et al. (2002[Hirota, K., Kazaoka, K., Niimoto, I., Kumihara, H., Sajiki, H., Isobe, Y., Takaku, H., Tobe, M., Ogita, H., Ogino, T., Ichii, S., Kurimoto, A. & Kawakami, H. (2002). J. Med. Chem. 45, 5419-5422.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For a related structure, see: Loh et al. (2011[Loh, W.-S., Fun, H.-K., Kayarmar, R., Viveka, S. & Nagaraja, G. K. (2011). Acta Cryst. E67, o405.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C14H17N5

  • Mr = 255.33

  • Triclinic, [P \overline 1]

  • a = 5.4735 (2) Å

  • b = 9.1275 (3) Å

  • c = 13.3814 (5) Å

  • α = 98.076 (1)°

  • β = 101.787 (1)°

  • γ = 96.269 (1)°

  • V = 641.35 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 100 K

  • 0.68 × 0.42 × 0.09 mm

Data collection
  • Bruker SMART APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.945, Tmax = 0.992

  • 20646 measured reflections

  • 5797 independent reflections

  • 4836 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.137

  • S = 1.12

  • 5797 reflections

  • 240 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H1N4⋯N3i 0.883 (16) 2.130 (15) 2.9429 (9) 152.9 (15)
C5—H5⋯N5ii 1.012 (12) 2.437 (11) 3.3700 (10) 152.9 (10)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x, -y, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The quinoline scaffold is present in many classes of biologically active compounds (Roth & Fenner, 2000), as for example, in 1H-imidazo-[4,5-c]quinolines that induce IFN, as well as other cytokines, in mice, rats, guinea pigs, monkeys and humans (Miller et al., 1999). This initiated the syntheses of a series of compounds with differing substitution at N-1, C-2, C-4 and on substitution on the benzene ring. Phenoxymethyl and benzyl groups at C-2 increase the activity. All other C-4 substituents investigated fail to induce IFN production. This investigation encouraged us to substitute C-4 by- NHNH2 in continuation of our research to explore novel series of immune response modifiers in an effort to find small molecules that treat diseases involving the immune system (Hirota et al., 2002).

In the title compound (Fig. 1), the 1H-imidazo[4,5-c]quinoline ring (C1–C6/N1/C7/C8/N3/C10/N2/C9) is approximately planar with a maximum deviation of 0.0325 (7) Å at atom C1. The torsion angle formed between this ring system and the isobutyl moiety, C10–N2–C11–C12, is 101.17 (8)°. Bond lengths (Allen et al., 1987) and angles are within the normal ranges and are comparable to the related structure (Loh et al., 2011).

In the crystal packing (Fig. 2), intermolecular N4—H1N4···N3 hydrogen bonds (Table 1) link the neighbouring molecules to form dimers and generate R22(10) ring motifs (Bernstein et al., 1995). These dimers are further connected into chains down the b axis via intermolecular C5—H5···N5 hydrogen bonds (Table 1), resulting in R22(14) ring motifs (Bernstein et al., 1995).

Related literature top

For background to quinolines and their microbial activity, see: Roth & Fenner (2000); Miller et al. (1999); Hirota et al. (2002). For bond-length data, see: Allen et al. (1987). For a related structure, see: Loh et al. (2011). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

4-Chloro-1-(2-methylpropyl)-1H-imidazo[4,5-c]quinolone (10 g, 0.0385 mole) and hydrazine-hydrate (80%, 19.3 g, 0.385 mole) in ethanol was refluxed for 9 h during which white solids separated out. After cooling to room temperature, the resulting 4-hydrazinyl-1-(2-methylpropyl)-1H-imidazo[4,5-c]quinoline was filtered off, dried and crystallized from ethanol. Yield, 7.4 g (74%). Crystals suitable for X-ray analysis were obtained from ethanol by slow evaporation.

Refinement top

All H atoms were located from difference Fourier map and were refined freely [N—H = 0.883 (15) to 0.909 (14) Å; C—H = 0.978 (13) to 1.037 (12) Å].

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The crystal packing of the title compound, showing the chains along the b axis. H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity.
4-Hydrazinyl-1-isobutyl-1H-imidazo[4,5-c]quinoline top
Crystal data top
C14H17N5Z = 2
Mr = 255.33F(000) = 272
Triclinic, P1Dx = 1.322 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.4735 (2) ÅCell parameters from 9851 reflections
b = 9.1275 (3) Åθ = 2.5–35.6°
c = 13.3814 (5) ŵ = 0.08 mm1
α = 98.076 (1)°T = 100 K
β = 101.787 (1)°Plate, yellow
γ = 96.269 (1)°0.68 × 0.42 × 0.09 mm
V = 641.35 (4) Å3
Data collection top
Bruker SMART APEXII DUO CCD area-detector
diffractometer
5797 independent reflections
Radiation source: fine-focus sealed tube4836 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ϕ and ω scansθmax = 35.6°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 88
Tmin = 0.945, Tmax = 0.992k = 1414
20646 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.137H atoms treated by a mixture of independent and constrained refinement
S = 1.12 w = 1/[σ2(Fo2) + (0.0821P)2 + 0.0687P]
where P = (Fo2 + 2Fc2)/3
5797 reflections(Δ/σ)max = 0.001
240 parametersΔρmax = 0.53 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
C14H17N5γ = 96.269 (1)°
Mr = 255.33V = 641.35 (4) Å3
Triclinic, P1Z = 2
a = 5.4735 (2) ÅMo Kα radiation
b = 9.1275 (3) ŵ = 0.08 mm1
c = 13.3814 (5) ÅT = 100 K
α = 98.076 (1)°0.68 × 0.42 × 0.09 mm
β = 101.787 (1)°
Data collection top
Bruker SMART APEXII DUO CCD area-detector
diffractometer
5797 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
4836 reflections with I > 2σ(I)
Tmin = 0.945, Tmax = 0.992Rint = 0.023
20646 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.137H atoms treated by a mixture of independent and constrained refinement
S = 1.12Δρmax = 0.53 e Å3
5797 reflectionsΔρmin = 0.32 e Å3
240 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N30.66263 (12)0.41343 (6)0.40530 (5)0.01739 (12)
N20.83913 (11)0.28950 (6)0.28779 (4)0.01494 (11)
N10.29129 (11)0.04458 (6)0.39588 (4)0.01382 (11)
N40.27467 (12)0.27155 (7)0.49606 (5)0.01719 (12)
N50.09896 (12)0.21044 (7)0.54799 (5)0.01683 (11)
C90.66447 (12)0.18519 (7)0.31040 (5)0.01294 (11)
C10.58776 (12)0.02794 (7)0.27674 (5)0.01284 (11)
C20.68633 (13)0.06582 (7)0.20610 (5)0.01545 (12)
C30.60210 (14)0.21733 (7)0.18278 (5)0.01727 (13)
C40.41445 (14)0.27919 (7)0.22854 (6)0.01769 (13)
C50.31322 (13)0.19005 (7)0.29698 (5)0.01611 (12)
C60.39780 (12)0.03437 (7)0.32402 (5)0.01301 (11)
C70.37122 (12)0.18938 (7)0.42576 (5)0.01334 (11)
C80.55945 (13)0.26428 (7)0.38309 (5)0.01385 (11)
C100.82902 (15)0.42279 (7)0.34703 (5)0.01813 (13)
C111.00391 (12)0.26889 (7)0.21544 (5)0.01498 (12)
C120.86854 (13)0.26095 (7)0.10230 (5)0.01536 (12)
C131.04956 (16)0.22187 (9)0.03277 (6)0.02337 (15)
C140.77216 (15)0.40809 (8)0.08500 (6)0.02100 (14)
H120.714 (2)0.1783 (13)0.0858 (9)0.022 (3)*
H50.188 (2)0.2330 (14)0.3351 (9)0.023 (3)*
H11A1.082 (2)0.1765 (14)0.2249 (9)0.021 (3)*
H11B1.135 (2)0.3583 (12)0.2340 (8)0.016 (2)*
H30.684 (3)0.2852 (15)0.1362 (10)0.030 (3)*
H14A0.647 (2)0.4297 (15)0.1284 (10)0.028 (3)*
H20.824 (3)0.0234 (15)0.1744 (10)0.028 (3)*
H14B0.684 (2)0.4015 (15)0.0128 (10)0.027 (3)*
H13A1.198 (3)0.3048 (16)0.0476 (10)0.035 (3)*
H13B0.967 (3)0.2083 (16)0.0425 (11)0.042 (4)*
H14C0.914 (3)0.4902 (15)0.1002 (10)0.027 (3)*
H2N50.034 (3)0.1553 (16)0.5007 (11)0.034 (3)*
H1N50.168 (2)0.1427 (14)0.5847 (9)0.026 (3)*
H40.351 (3)0.3897 (15)0.2119 (11)0.033 (3)*
H1N40.338 (3)0.3668 (17)0.5163 (11)0.039 (4)*
H100.947 (2)0.5153 (13)0.3482 (9)0.023 (3)*
H13C1.111 (3)0.1258 (16)0.0456 (11)0.036 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N30.0241 (3)0.0107 (2)0.0180 (2)0.00015 (19)0.0094 (2)0.00037 (18)
N20.0186 (2)0.0106 (2)0.0163 (2)0.00019 (17)0.00804 (18)0.00044 (17)
N10.0166 (2)0.0107 (2)0.0146 (2)0.00162 (17)0.00618 (18)0.00006 (16)
N40.0236 (3)0.0116 (2)0.0184 (2)0.00107 (19)0.0123 (2)0.00060 (18)
N50.0190 (3)0.0158 (2)0.0174 (2)0.00174 (19)0.00878 (19)0.00190 (18)
C90.0160 (3)0.0101 (2)0.0132 (2)0.00083 (19)0.00551 (19)0.00118 (17)
C10.0152 (3)0.0103 (2)0.0134 (2)0.00142 (18)0.00501 (19)0.00076 (18)
C20.0191 (3)0.0117 (2)0.0168 (3)0.0018 (2)0.0085 (2)0.00019 (19)
C30.0211 (3)0.0121 (2)0.0196 (3)0.0017 (2)0.0096 (2)0.0009 (2)
C40.0209 (3)0.0107 (2)0.0215 (3)0.0000 (2)0.0091 (2)0.0015 (2)
C50.0180 (3)0.0112 (2)0.0195 (3)0.0001 (2)0.0082 (2)0.0001 (2)
C60.0145 (2)0.0109 (2)0.0140 (2)0.00148 (18)0.00531 (19)0.00056 (18)
C70.0164 (3)0.0112 (2)0.0131 (2)0.00201 (19)0.00547 (19)0.00073 (18)
C80.0180 (3)0.0106 (2)0.0135 (2)0.00126 (19)0.00616 (19)0.00052 (18)
C100.0244 (3)0.0108 (2)0.0195 (3)0.0011 (2)0.0096 (2)0.0006 (2)
C110.0157 (3)0.0136 (2)0.0166 (2)0.0008 (2)0.0067 (2)0.00201 (19)
C120.0174 (3)0.0133 (2)0.0162 (2)0.0012 (2)0.0064 (2)0.00193 (19)
C130.0275 (4)0.0252 (3)0.0210 (3)0.0058 (3)0.0129 (3)0.0032 (2)
C140.0244 (3)0.0170 (3)0.0226 (3)0.0049 (2)0.0055 (2)0.0048 (2)
Geometric parameters (Å, º) top
N3—C101.3179 (9)C3—H31.020 (13)
N3—C81.3821 (8)C4—C51.3798 (9)
N2—C101.3687 (9)C4—H41.008 (14)
N2—C91.3828 (8)C5—C61.4170 (9)
N2—C111.4590 (9)C5—H51.011 (12)
N1—C71.3236 (8)C7—C81.4322 (9)
N1—C61.3820 (8)C10—H101.002 (12)
N4—C71.3484 (8)C11—C121.5315 (9)
N4—N51.4085 (9)C11—H11A0.999 (12)
N4—H1N40.883 (15)C11—H11B0.993 (11)
N5—H2N50.909 (14)C12—C141.5258 (10)
N5—H1N50.909 (13)C12—C131.5282 (10)
C9—C81.3854 (9)C12—H121.037 (12)
C9—C11.4314 (9)C13—H13A1.014 (14)
C1—C21.4138 (9)C13—H13B1.000 (14)
C1—C61.4302 (9)C13—H13C0.998 (14)
C2—C31.3795 (9)C14—H14A1.001 (13)
C2—H21.008 (14)C14—H14B0.978 (13)
C3—C41.4058 (10)C14—H14C0.985 (14)
C10—N3—C8103.93 (5)N1—C7—C8121.10 (6)
C10—N2—C9106.32 (6)N4—C7—C8117.90 (6)
C10—N2—C11124.73 (6)N3—C8—C9111.27 (6)
C9—N2—C11128.95 (5)N3—C8—C7128.47 (6)
C7—N1—C6118.55 (6)C9—C8—C7120.25 (6)
C7—N4—N5123.58 (6)N3—C10—N2113.44 (6)
C7—N4—H1N4118.2 (10)N3—C10—H10124.7 (7)
N5—N4—H1N4117.8 (10)N2—C10—H10121.7 (7)
N4—N5—H2N5109.3 (9)N2—C11—C12113.35 (6)
N4—N5—H1N5109.3 (8)N2—C11—H11A108.6 (7)
H2N5—N5—H1N5104.1 (12)C12—C11—H11A110.6 (7)
N2—C9—C8105.04 (5)N2—C11—H11B106.1 (6)
N2—C9—C1134.08 (6)C12—C11—H11B107.6 (6)
C8—C9—C1120.87 (6)H11A—C11—H11B110.5 (9)
C2—C1—C6119.84 (6)C14—C12—C13111.16 (6)
C2—C1—C9126.25 (6)C14—C12—C11110.90 (5)
C6—C1—C9113.89 (6)C13—C12—C11108.94 (6)
C3—C2—C1120.58 (6)C14—C12—H12107.7 (6)
C3—C2—H2119.1 (7)C13—C12—H12110.1 (7)
C1—C2—H2120.3 (7)C11—C12—H12108.0 (6)
C2—C3—C4119.88 (6)C12—C13—H13A109.6 (8)
C2—C3—H3120.0 (8)C12—C13—H13B112.4 (9)
C4—C3—H3120.0 (8)H13A—C13—H13B108.1 (11)
C5—C4—C3120.75 (6)C12—C13—H13C109.9 (8)
C5—C4—H4118.6 (8)H13A—C13—H13C109.8 (12)
C3—C4—H4120.6 (8)H13B—C13—H13C106.9 (12)
C4—C5—C6120.97 (6)C12—C14—H14A110.3 (7)
C4—C5—H5122.2 (7)C12—C14—H14B110.4 (8)
C6—C5—H5116.6 (7)H14A—C14—H14B106.7 (10)
N1—C6—C5116.69 (6)C12—C14—H14C110.4 (8)
N1—C6—C1125.32 (6)H14A—C14—H14C111.1 (11)
C5—C6—C1117.98 (6)H14B—C14—H14C107.9 (11)
N1—C7—N4120.99 (6)
C10—N2—C9—C80.05 (7)C6—N1—C7—N4179.65 (6)
C11—N2—C9—C8179.38 (6)C6—N1—C7—C81.52 (10)
C10—N2—C9—C1178.69 (7)N5—N4—C7—N14.70 (11)
C11—N2—C9—C11.98 (12)N5—N4—C7—C8176.43 (6)
N2—C9—C1—C20.80 (12)C10—N3—C8—C90.50 (8)
C8—C9—C1—C2177.67 (6)C10—N3—C8—C7178.70 (7)
N2—C9—C1—C6178.97 (7)N2—C9—C8—N30.34 (8)
C8—C9—C1—C60.50 (9)C1—C9—C8—N3179.20 (6)
C6—C1—C2—C30.43 (10)N2—C9—C8—C7178.94 (6)
C9—C1—C2—C3177.64 (6)C1—C9—C8—C70.07 (10)
C1—C2—C3—C40.77 (11)N1—C7—C8—N3179.87 (6)
C2—C3—C4—C50.14 (11)N4—C7—C8—N31.00 (11)
C3—C4—C5—C60.84 (11)N1—C7—C8—C90.99 (10)
C7—N1—C6—C5177.81 (6)N4—C7—C8—C9179.86 (6)
C7—N1—C6—C11.08 (10)C8—N3—C10—N20.48 (8)
C4—C5—C6—N1177.81 (6)C9—N2—C10—N30.28 (8)
C4—C5—C6—C11.16 (10)C11—N2—C10—N3179.09 (6)
C2—C1—C6—N1178.35 (6)C10—N2—C11—C12101.17 (8)
C9—C1—C6—N10.05 (10)C9—N2—C11—C1278.06 (8)
C2—C1—C6—C50.52 (10)N2—C11—C12—C1463.65 (7)
C9—C1—C6—C5178.82 (6)N2—C11—C12—C13173.69 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H1N4···N3i0.883 (16)2.130 (15)2.9429 (9)152.9 (15)
C5—H5···N5ii1.012 (12)2.437 (11)3.3700 (10)152.9 (10)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC14H17N5
Mr255.33
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)5.4735 (2), 9.1275 (3), 13.3814 (5)
α, β, γ (°)98.076 (1), 101.787 (1), 96.269 (1)
V3)641.35 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.68 × 0.42 × 0.09
Data collection
DiffractometerBruker SMART APEXII DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.945, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
20646, 5797, 4836
Rint0.023
(sin θ/λ)max1)0.819
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.137, 1.12
No. of reflections5797
No. of parameters240
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.53, 0.32

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H1N4···N3i0.883 (16)2.130 (15)2.9429 (9)152.9 (15)
C5—H5···N5ii1.012 (12)2.437 (11)3.3700 (10)152.9 (10)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y, z+1.
 

Footnotes

Thomson Reuters ResearcherID: C-7581-2009.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

HKF and WSL thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). WSL also thanks the Malaysian Government and USM for the award of a Research Fellowship.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHirota, K., Kazaoka, K., Niimoto, I., Kumihara, H., Sajiki, H., Isobe, Y., Takaku, H., Tobe, M., Ogita, H., Ogino, T., Ichii, S., Kurimoto, A. & Kawakami, H. (2002). J. Med. Chem. 45, 5419–5422.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLoh, W.-S., Fun, H.-K., Kayarmar, R., Viveka, S. & Nagaraja, G. K. (2011). Acta Cryst. E67, o405.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMiller, R. L., Gerster, J. F., Owens, M. L., Slade, H. B. & Tomai, M. A. (1999). Int. J. Immunopharmacol. 21, 1–14.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRoth, H. J. & Fenner, H. (2000). Arzneistoffe, pp. 51–114.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds