organic compounds
4-Hydrazinyl-1-isobutyl-1H-imidazo[4,5-c]quinoline
aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Chemistry, Mangalore University, Karnataka, India
*Correspondence e-mail: hkfun@usm.my
In the title compound, C14H17N5, the 1H-imidazo[4,5-c]quinoline ring system is essentially planar, with a maximum deviation of 0.0325 (7) Å. In the crystal, a pair of intermolecular N—H⋯N hydrogen bonds link neighbouring molecules, forming an inversion dimer and generate an R22(10) ring motif. These dimers are further connected into a chain along the b axis via intermolecular C—H⋯N hydrogen bonds, resulting in an R22(14) ring motif.
Related literature
For background to quinolines and their microbial activity, see: Roth & Fenner (2000); Miller et al. (1999); Hirota et al. (2002). For bond-length data, see: Allen et al. (1987). For a related structure, see: Loh et al. (2011). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2009); cell SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).
Supporting information
10.1107/S1600536811001553/is2657sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811001553/is2657Isup2.hkl
4-Chloro-1-(2-methylpropyl)-1H-imidazo[4,5-c]quinolone (10 g, 0.0385 mole) and hydrazine-hydrate (80%, 19.3 g, 0.385 mole) in ethanol was refluxed for 9 h during which white solids separated out. After cooling to room temperature, the resulting 4-hydrazinyl-1-(2-methylpropyl)-1H-imidazo[4,5-c]quinoline was filtered off, dried and crystallized from ethanol. Yield, 7.4 g (74%). Crystals suitable for X-ray analysis were obtained from ethanol by slow evaporation.
All H atoms were located from difference Fourier map and were refined freely [N—H = 0.883 (15) to 0.909 (14) Å; C—H = 0.978 (13) to 1.037 (12) Å].
Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).C14H17N5 | Z = 2 |
Mr = 255.33 | F(000) = 272 |
Triclinic, P1 | Dx = 1.322 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 5.4735 (2) Å | Cell parameters from 9851 reflections |
b = 9.1275 (3) Å | θ = 2.5–35.6° |
c = 13.3814 (5) Å | µ = 0.08 mm−1 |
α = 98.076 (1)° | T = 100 K |
β = 101.787 (1)° | Plate, yellow |
γ = 96.269 (1)° | 0.68 × 0.42 × 0.09 mm |
V = 641.35 (4) Å3 |
Bruker SMART APEXII DUO CCD area-detector diffractometer | 5797 independent reflections |
Radiation source: fine-focus sealed tube | 4836 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.023 |
ϕ and ω scans | θmax = 35.6°, θmin = 1.6° |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | h = −8→8 |
Tmin = 0.945, Tmax = 0.992 | k = −14→14 |
20646 measured reflections | l = −21→21 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.040 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.137 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.12 | w = 1/[σ2(Fo2) + (0.0821P)2 + 0.0687P] where P = (Fo2 + 2Fc2)/3 |
5797 reflections | (Δ/σ)max = 0.001 |
240 parameters | Δρmax = 0.53 e Å−3 |
0 restraints | Δρmin = −0.32 e Å−3 |
C14H17N5 | γ = 96.269 (1)° |
Mr = 255.33 | V = 641.35 (4) Å3 |
Triclinic, P1 | Z = 2 |
a = 5.4735 (2) Å | Mo Kα radiation |
b = 9.1275 (3) Å | µ = 0.08 mm−1 |
c = 13.3814 (5) Å | T = 100 K |
α = 98.076 (1)° | 0.68 × 0.42 × 0.09 mm |
β = 101.787 (1)° |
Bruker SMART APEXII DUO CCD area-detector diffractometer | 5797 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | 4836 reflections with I > 2σ(I) |
Tmin = 0.945, Tmax = 0.992 | Rint = 0.023 |
20646 measured reflections |
R[F2 > 2σ(F2)] = 0.040 | 0 restraints |
wR(F2) = 0.137 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.12 | Δρmax = 0.53 e Å−3 |
5797 reflections | Δρmin = −0.32 e Å−3 |
240 parameters |
Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
N3 | 0.66263 (12) | 0.41343 (6) | 0.40530 (5) | 0.01739 (12) | |
N2 | 0.83913 (11) | 0.28950 (6) | 0.28779 (4) | 0.01494 (11) | |
N1 | 0.29129 (11) | 0.04458 (6) | 0.39588 (4) | 0.01382 (11) | |
N4 | 0.27467 (12) | 0.27155 (7) | 0.49606 (5) | 0.01719 (12) | |
N5 | 0.09896 (12) | 0.21044 (7) | 0.54799 (5) | 0.01683 (11) | |
C9 | 0.66447 (12) | 0.18519 (7) | 0.31040 (5) | 0.01294 (11) | |
C1 | 0.58776 (12) | 0.02794 (7) | 0.27674 (5) | 0.01284 (11) | |
C2 | 0.68633 (13) | −0.06582 (7) | 0.20610 (5) | 0.01545 (12) | |
C3 | 0.60210 (14) | −0.21733 (7) | 0.18278 (5) | 0.01727 (13) | |
C4 | 0.41445 (14) | −0.27919 (7) | 0.22854 (6) | 0.01769 (13) | |
C5 | 0.31322 (13) | −0.19005 (7) | 0.29698 (5) | 0.01611 (12) | |
C6 | 0.39780 (12) | −0.03437 (7) | 0.32402 (5) | 0.01301 (11) | |
C7 | 0.37122 (12) | 0.18938 (7) | 0.42576 (5) | 0.01334 (11) | |
C8 | 0.55945 (13) | 0.26428 (7) | 0.38309 (5) | 0.01385 (11) | |
C10 | 0.82902 (15) | 0.42279 (7) | 0.34703 (5) | 0.01813 (13) | |
C11 | 1.00391 (12) | 0.26889 (7) | 0.21544 (5) | 0.01498 (12) | |
C12 | 0.86854 (13) | 0.26095 (7) | 0.10230 (5) | 0.01536 (12) | |
C13 | 1.04956 (16) | 0.22187 (9) | 0.03277 (6) | 0.02337 (15) | |
C14 | 0.77216 (15) | 0.40809 (8) | 0.08500 (6) | 0.02100 (14) | |
H12 | 0.714 (2) | 0.1783 (13) | 0.0858 (9) | 0.022 (3)* | |
H5 | 0.188 (2) | −0.2330 (14) | 0.3351 (9) | 0.023 (3)* | |
H11A | 1.082 (2) | 0.1765 (14) | 0.2249 (9) | 0.021 (3)* | |
H11B | 1.135 (2) | 0.3583 (12) | 0.2340 (8) | 0.016 (2)* | |
H3 | 0.684 (3) | −0.2852 (15) | 0.1362 (10) | 0.030 (3)* | |
H14A | 0.647 (2) | 0.4297 (15) | 0.1284 (10) | 0.028 (3)* | |
H2 | 0.824 (3) | −0.0234 (15) | 0.1744 (10) | 0.028 (3)* | |
H14B | 0.684 (2) | 0.4015 (15) | 0.0128 (10) | 0.027 (3)* | |
H13A | 1.198 (3) | 0.3048 (16) | 0.0476 (10) | 0.035 (3)* | |
H13B | 0.967 (3) | 0.2083 (16) | −0.0425 (11) | 0.042 (4)* | |
H14C | 0.914 (3) | 0.4902 (15) | 0.1002 (10) | 0.027 (3)* | |
H2N5 | −0.034 (3) | 0.1553 (16) | 0.5007 (11) | 0.034 (3)* | |
H1N5 | 0.168 (2) | 0.1427 (14) | 0.5847 (9) | 0.026 (3)* | |
H4 | 0.351 (3) | −0.3897 (15) | 0.2119 (11) | 0.033 (3)* | |
H1N4 | 0.338 (3) | 0.3668 (17) | 0.5163 (11) | 0.039 (4)* | |
H10 | 0.947 (2) | 0.5153 (13) | 0.3482 (9) | 0.023 (3)* | |
H13C | 1.111 (3) | 0.1258 (16) | 0.0456 (11) | 0.036 (3)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N3 | 0.0241 (3) | 0.0107 (2) | 0.0180 (2) | −0.00015 (19) | 0.0094 (2) | −0.00037 (18) |
N2 | 0.0186 (2) | 0.0106 (2) | 0.0163 (2) | −0.00019 (17) | 0.00804 (18) | 0.00044 (17) |
N1 | 0.0166 (2) | 0.0107 (2) | 0.0146 (2) | 0.00162 (17) | 0.00618 (18) | −0.00006 (16) |
N4 | 0.0236 (3) | 0.0116 (2) | 0.0184 (2) | 0.00107 (19) | 0.0123 (2) | −0.00060 (18) |
N5 | 0.0190 (3) | 0.0158 (2) | 0.0174 (2) | 0.00174 (19) | 0.00878 (19) | 0.00190 (18) |
C9 | 0.0160 (3) | 0.0101 (2) | 0.0132 (2) | 0.00083 (19) | 0.00551 (19) | 0.00118 (17) |
C1 | 0.0152 (3) | 0.0103 (2) | 0.0134 (2) | 0.00142 (18) | 0.00501 (19) | 0.00076 (18) |
C2 | 0.0191 (3) | 0.0117 (2) | 0.0168 (3) | 0.0018 (2) | 0.0085 (2) | 0.00019 (19) |
C3 | 0.0211 (3) | 0.0121 (2) | 0.0196 (3) | 0.0017 (2) | 0.0096 (2) | −0.0009 (2) |
C4 | 0.0209 (3) | 0.0107 (2) | 0.0215 (3) | 0.0000 (2) | 0.0091 (2) | −0.0015 (2) |
C5 | 0.0180 (3) | 0.0112 (2) | 0.0195 (3) | −0.0001 (2) | 0.0082 (2) | −0.0001 (2) |
C6 | 0.0145 (2) | 0.0109 (2) | 0.0140 (2) | 0.00148 (18) | 0.00531 (19) | 0.00056 (18) |
C7 | 0.0164 (3) | 0.0112 (2) | 0.0131 (2) | 0.00201 (19) | 0.00547 (19) | 0.00073 (18) |
C8 | 0.0180 (3) | 0.0106 (2) | 0.0135 (2) | 0.00126 (19) | 0.00616 (19) | 0.00052 (18) |
C10 | 0.0244 (3) | 0.0108 (2) | 0.0195 (3) | −0.0011 (2) | 0.0096 (2) | −0.0006 (2) |
C11 | 0.0157 (3) | 0.0136 (2) | 0.0166 (2) | 0.0008 (2) | 0.0067 (2) | 0.00201 (19) |
C12 | 0.0174 (3) | 0.0133 (2) | 0.0162 (2) | 0.0012 (2) | 0.0064 (2) | 0.00193 (19) |
C13 | 0.0275 (4) | 0.0252 (3) | 0.0210 (3) | 0.0058 (3) | 0.0129 (3) | 0.0032 (2) |
C14 | 0.0244 (3) | 0.0170 (3) | 0.0226 (3) | 0.0049 (2) | 0.0055 (2) | 0.0048 (2) |
N3—C10 | 1.3179 (9) | C3—H3 | 1.020 (13) |
N3—C8 | 1.3821 (8) | C4—C5 | 1.3798 (9) |
N2—C10 | 1.3687 (9) | C4—H4 | 1.008 (14) |
N2—C9 | 1.3828 (8) | C5—C6 | 1.4170 (9) |
N2—C11 | 1.4590 (9) | C5—H5 | 1.011 (12) |
N1—C7 | 1.3236 (8) | C7—C8 | 1.4322 (9) |
N1—C6 | 1.3820 (8) | C10—H10 | 1.002 (12) |
N4—C7 | 1.3484 (8) | C11—C12 | 1.5315 (9) |
N4—N5 | 1.4085 (9) | C11—H11A | 0.999 (12) |
N4—H1N4 | 0.883 (15) | C11—H11B | 0.993 (11) |
N5—H2N5 | 0.909 (14) | C12—C14 | 1.5258 (10) |
N5—H1N5 | 0.909 (13) | C12—C13 | 1.5282 (10) |
C9—C8 | 1.3854 (9) | C12—H12 | 1.037 (12) |
C9—C1 | 1.4314 (9) | C13—H13A | 1.014 (14) |
C1—C2 | 1.4138 (9) | C13—H13B | 1.000 (14) |
C1—C6 | 1.4302 (9) | C13—H13C | 0.998 (14) |
C2—C3 | 1.3795 (9) | C14—H14A | 1.001 (13) |
C2—H2 | 1.008 (14) | C14—H14B | 0.978 (13) |
C3—C4 | 1.4058 (10) | C14—H14C | 0.985 (14) |
C10—N3—C8 | 103.93 (5) | N1—C7—C8 | 121.10 (6) |
C10—N2—C9 | 106.32 (6) | N4—C7—C8 | 117.90 (6) |
C10—N2—C11 | 124.73 (6) | N3—C8—C9 | 111.27 (6) |
C9—N2—C11 | 128.95 (5) | N3—C8—C7 | 128.47 (6) |
C7—N1—C6 | 118.55 (6) | C9—C8—C7 | 120.25 (6) |
C7—N4—N5 | 123.58 (6) | N3—C10—N2 | 113.44 (6) |
C7—N4—H1N4 | 118.2 (10) | N3—C10—H10 | 124.7 (7) |
N5—N4—H1N4 | 117.8 (10) | N2—C10—H10 | 121.7 (7) |
N4—N5—H2N5 | 109.3 (9) | N2—C11—C12 | 113.35 (6) |
N4—N5—H1N5 | 109.3 (8) | N2—C11—H11A | 108.6 (7) |
H2N5—N5—H1N5 | 104.1 (12) | C12—C11—H11A | 110.6 (7) |
N2—C9—C8 | 105.04 (5) | N2—C11—H11B | 106.1 (6) |
N2—C9—C1 | 134.08 (6) | C12—C11—H11B | 107.6 (6) |
C8—C9—C1 | 120.87 (6) | H11A—C11—H11B | 110.5 (9) |
C2—C1—C6 | 119.84 (6) | C14—C12—C13 | 111.16 (6) |
C2—C1—C9 | 126.25 (6) | C14—C12—C11 | 110.90 (5) |
C6—C1—C9 | 113.89 (6) | C13—C12—C11 | 108.94 (6) |
C3—C2—C1 | 120.58 (6) | C14—C12—H12 | 107.7 (6) |
C3—C2—H2 | 119.1 (7) | C13—C12—H12 | 110.1 (7) |
C1—C2—H2 | 120.3 (7) | C11—C12—H12 | 108.0 (6) |
C2—C3—C4 | 119.88 (6) | C12—C13—H13A | 109.6 (8) |
C2—C3—H3 | 120.0 (8) | C12—C13—H13B | 112.4 (9) |
C4—C3—H3 | 120.0 (8) | H13A—C13—H13B | 108.1 (11) |
C5—C4—C3 | 120.75 (6) | C12—C13—H13C | 109.9 (8) |
C5—C4—H4 | 118.6 (8) | H13A—C13—H13C | 109.8 (12) |
C3—C4—H4 | 120.6 (8) | H13B—C13—H13C | 106.9 (12) |
C4—C5—C6 | 120.97 (6) | C12—C14—H14A | 110.3 (7) |
C4—C5—H5 | 122.2 (7) | C12—C14—H14B | 110.4 (8) |
C6—C5—H5 | 116.6 (7) | H14A—C14—H14B | 106.7 (10) |
N1—C6—C5 | 116.69 (6) | C12—C14—H14C | 110.4 (8) |
N1—C6—C1 | 125.32 (6) | H14A—C14—H14C | 111.1 (11) |
C5—C6—C1 | 117.98 (6) | H14B—C14—H14C | 107.9 (11) |
N1—C7—N4 | 120.99 (6) | ||
C10—N2—C9—C8 | −0.05 (7) | C6—N1—C7—N4 | −179.65 (6) |
C11—N2—C9—C8 | −179.38 (6) | C6—N1—C7—C8 | 1.52 (10) |
C10—N2—C9—C1 | −178.69 (7) | N5—N4—C7—N1 | 4.70 (11) |
C11—N2—C9—C1 | 1.98 (12) | N5—N4—C7—C8 | −176.43 (6) |
N2—C9—C1—C2 | 0.80 (12) | C10—N3—C8—C9 | −0.50 (8) |
C8—C9—C1—C2 | −177.67 (6) | C10—N3—C8—C7 | 178.70 (7) |
N2—C9—C1—C6 | 178.97 (7) | N2—C9—C8—N3 | 0.34 (8) |
C8—C9—C1—C6 | 0.50 (9) | C1—C9—C8—N3 | 179.20 (6) |
C6—C1—C2—C3 | −0.43 (10) | N2—C9—C8—C7 | −178.94 (6) |
C9—C1—C2—C3 | 177.64 (6) | C1—C9—C8—C7 | −0.07 (10) |
C1—C2—C3—C4 | 0.77 (11) | N1—C7—C8—N3 | 179.87 (6) |
C2—C3—C4—C5 | −0.14 (11) | N4—C7—C8—N3 | 1.00 (11) |
C3—C4—C5—C6 | −0.84 (11) | N1—C7—C8—C9 | −0.99 (10) |
C7—N1—C6—C5 | 177.81 (6) | N4—C7—C8—C9 | −179.86 (6) |
C7—N1—C6—C1 | −1.08 (10) | C8—N3—C10—N2 | 0.48 (8) |
C4—C5—C6—N1 | −177.81 (6) | C9—N2—C10—N3 | −0.28 (8) |
C4—C5—C6—C1 | 1.16 (10) | C11—N2—C10—N3 | 179.09 (6) |
C2—C1—C6—N1 | 178.35 (6) | C10—N2—C11—C12 | −101.17 (8) |
C9—C1—C6—N1 | 0.05 (10) | C9—N2—C11—C12 | 78.06 (8) |
C2—C1—C6—C5 | −0.52 (10) | N2—C11—C12—C14 | 63.65 (7) |
C9—C1—C6—C5 | −178.82 (6) | N2—C11—C12—C13 | −173.69 (6) |
D—H···A | D—H | H···A | D···A | D—H···A |
N4—H1N4···N3i | 0.883 (16) | 2.130 (15) | 2.9429 (9) | 152.9 (15) |
C5—H5···N5ii | 1.012 (12) | 2.437 (11) | 3.3700 (10) | 152.9 (10) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x, −y, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C14H17N5 |
Mr | 255.33 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 100 |
a, b, c (Å) | 5.4735 (2), 9.1275 (3), 13.3814 (5) |
α, β, γ (°) | 98.076 (1), 101.787 (1), 96.269 (1) |
V (Å3) | 641.35 (4) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.08 |
Crystal size (mm) | 0.68 × 0.42 × 0.09 |
Data collection | |
Diffractometer | Bruker SMART APEXII DUO CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2009) |
Tmin, Tmax | 0.945, 0.992 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 20646, 5797, 4836 |
Rint | 0.023 |
(sin θ/λ)max (Å−1) | 0.819 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.040, 0.137, 1.12 |
No. of reflections | 5797 |
No. of parameters | 240 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.53, −0.32 |
Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
N4—H1N4···N3i | 0.883 (16) | 2.130 (15) | 2.9429 (9) | 152.9 (15) |
C5—H5···N5ii | 1.012 (12) | 2.437 (11) | 3.3700 (10) | 152.9 (10) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x, −y, −z+1. |
Acknowledgements
HKF and WSL thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). WSL also thanks the Malaysian Government and USM for the award of a Research Fellowship.
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107. CrossRef CAS Web of Science IUCr Journals Google Scholar
Hirota, K., Kazaoka, K., Niimoto, I., Kumihara, H., Sajiki, H., Isobe, Y., Takaku, H., Tobe, M., Ogita, H., Ogino, T., Ichii, S., Kurimoto, A. & Kawakami, H. (2002). J. Med. Chem. 45, 5419–5422. Web of Science CrossRef PubMed CAS Google Scholar
Loh, W.-S., Fun, H.-K., Kayarmar, R., Viveka, S. & Nagaraja, G. K. (2011). Acta Cryst. E67, o405. Web of Science CSD CrossRef IUCr Journals Google Scholar
Miller, R. L., Gerster, J. F., Owens, M. L., Slade, H. B. & Tomai, M. A. (1999). Int. J. Immunopharmacol. 21, 1–14. Web of Science CrossRef PubMed CAS Google Scholar
Roth, H. J. & Fenner, H. (2000). Arzneistoffe, pp. 51–114. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The quinoline scaffold is present in many classes of biologically active compounds (Roth & Fenner, 2000), as for example, in 1H-imidazo-[4,5-c]quinolines that induce IFN, as well as other cytokines, in mice, rats, guinea pigs, monkeys and humans (Miller et al., 1999). This initiated the syntheses of a series of compounds with differing substitution at N-1, C-2, C-4 and on substitution on the benzene ring. Phenoxymethyl and benzyl groups at C-2 increase the activity. All other C-4 substituents investigated fail to induce IFN production. This investigation encouraged us to substitute C-4 by- NHNH2 in continuation of our research to explore novel series of immune response modifiers in an effort to find small molecules that treat diseases involving the immune system (Hirota et al., 2002).
In the title compound (Fig. 1), the 1H-imidazo[4,5-c]quinoline ring (C1–C6/N1/C7/C8/N3/C10/N2/C9) is approximately planar with a maximum deviation of 0.0325 (7) Å at atom C1. The torsion angle formed between this ring system and the isobutyl moiety, C10–N2–C11–C12, is 101.17 (8)°. Bond lengths (Allen et al., 1987) and angles are within the normal ranges and are comparable to the related structure (Loh et al., 2011).
In the crystal packing (Fig. 2), intermolecular N4—H1N4···N3 hydrogen bonds (Table 1) link the neighbouring molecules to form dimers and generate R22(10) ring motifs (Bernstein et al., 1995). These dimers are further connected into chains down the b axis via intermolecular C5—H5···N5 hydrogen bonds (Table 1), resulting in R22(14) ring motifs (Bernstein et al., 1995).