organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 2| February 2011| Pages o420-o421

Benzyl N-{2-[5-(4-chloro­phen­yl)-1,2,4-oxa­diazol-3-yl]propan-2-yl}carbamate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Karnatak State, India, and cCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
*Correspondence e-mail: hkfun@usm.my

(Received 28 December 2010; accepted 11 January 2011; online 15 January 2011)

In the title 1,2,4-oxadiazole derivative, C19H18ClN3O3, the 1,2,4-oxadiazole ring makes dihedral angles of 12.83 (8) and 4.89 (8)°, respectively, with the benzyl and 4-chloro­phenyl rings, while the dihedral angle between the benzyl and 4-chloro­phenyl rings is 11.53 (7)°. In the crystal, mol­ecules are linked by N—H⋯N hydrogen bonds into helical chains along the b axis. A weak C—H⋯π inter­action is also present.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For background to and applications of 1,2,4-oxadiazole derivatives, see: Chen et al. (1994[Chen, C.-Y., Senanayake, C. H., Bill, T. J., Larsen, R. D., Verhoeven, T. R. & Reider, P. J. (1994). J. Org. Chem. 59, 3738-3741.]); Chimirri et al. (1996[Chimirri, A., Grasso, S., Montforte, A.-M., Rao, A. & Zappala, M. (1996). Farmaco, 51, 125-129.]); Clitherow et al. (1996[Clitherow, J. W., Beswick, P., Irving, W. J., Scopes, D. I. C., Barnes, J. C., Clapham, J., Brown, J. D., Evans, D. J. & Hayes, A. G. (1996). Bioorg. Med. Chem. Lett. 6, 833-838.]); Nicolaides et al. (1998[Nicolaides, D. N., Fylaktakidou, K. C., Litinas, K. E. & Hadjipavlou-Litina, D. (1998). Eur. J. Med. Chem. 33, 715-724.]); Saunders et al. (1990[Saunders, J., Cassidy, M., Freedman, S. B., Harley, E. A., Iversen, L. L., Kneen, C., MacLeod, A. M., Merchant, K. J., Snow, R. J. & Baker, R. (1990). J. Med. Chem. 33, 1128-1138.]); Showell et al. (1991[Showell, G. A., Gibbons, T. L., Kneen, C. O., MacLeod, A. M., Merchant, K., Saunders, J., Freedman, S. B., Patel, S. & Baker, R. (1991). J. Med. Chem. 34, 1086-1094.]); Swain et al. (1991[Swain, C. J., Baker, R., Kneen, C., Moseley, J., Saunders, J., Seward, E. M., Stevenson, G., Beer, M., Stanton, J. & Watling, K. (1991). J. Med. Chem. 34, 140-151.]); Tully et al. (1991[Tully, W. R., Gardner, C. R., Gillespie, R. J. & Westwood, R. (1991). J. Med. Chem. 34, 2060-2062.]); Watjen et al. (1989[Watjen, F., Baker, R., Engelstoff, M., Herbert, R., MacLeod, A., Knight, A., Merchant, K., Moseley, J., Saunders, J., Swain, C. J., Wang, E. & Springer, J. P. (1989). J. Med. Chem. 32, 2282-2291.]). For a related structure, see: Fun et al. (2011[Fun, H.-K., Sumangala, V., Prasad, D. J., Poojary, B. & Chantrapromma, S. (2011). Acta Cryst. E67, o274.]).

[Scheme 1]

Experimental

Crystal data
  • C19H18ClN3O3

  • Mr = 371.81

  • Orthorhombic, P 21 21 21

  • a = 7.7501 (1) Å

  • b = 11.0052 (2) Å

  • c = 20.9834 (3) Å

  • V = 1789.70 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 297 K

  • 0.41 × 0.35 × 0.21 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.908, Tmax = 0.951

  • 15995 measured reflections

  • 4556 independent reflections

  • 3620 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.087

  • S = 1.02

  • 4556 reflections

  • 241 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.21 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1950 Friedel pairs

  • Flack parameter: 0.01 (6)

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C12–C17 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H1N3⋯N2i 0.840 (16) 2.428 (15) 3.2492 (18) 165.7 (14)
C16—H16ACg1ii 0.93 2.91 3.6700 (18) 140
Symmetry codes: (i) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x-1, y+{\script{3\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The 1,2,4-oxadiazole ring occurs frequently in biologically active synthetic compounds and 1,2,4-oxadiazole derivatives are suggested as potential agonists for cortical muscarinic (Saunders et al., 1990; Showell et al., 1991), benzodiazepine (Watjen et al., 1989; Tully et al., 1991) and 5-HT1D (5-hydroxytryptamine) as receptors (Chen et al., 1994) as well as antagonists for 5-HT3 (Swain et al., 1991) or histamine H3 receptors (Clitherow et al., 1996). They also demonstrate anti-inflammatory (Nicolaides et al., 1998) and antitumor activities (Chimirri et al., 1996). These interesting and important properties of 1,2,4-oxadiazole derivatives lead us to synthesize the title compound (I) and its crystal structure was reported.

In the molecule of (I), (Fig. 1), the 1,2,4-oxadiazole ring is nearly co-planar with the 4-chlorophenyl with a dihedral angle between the two rings being 4.89 (8)°, whereas it is inclined to the benzyl (C11–C17) unit with a dihedral angle of 12.48 (9)°. The dihedral angle between the benzyl group and the phenyl (C1–C6) ring is 11.53 (7)°. The oxycarbonylamino unit (atoms C10, N3, O2 and O3) is planar with an r.m.s. 0.0009 (1) Å. This unit makes dihedral angles of 79.99 (9), 89.15 (9) and 89.64 (9)°, respectively, with the benzyl, 1,2,4-oxadiazole and 4-chlorophenyl rings. The bond distances are of normal values (Allen et al., 1987) and are comparable to the related structure (Fun et al., 2011).

In the crystal packing (Fig. 2), the molecules are linked by by N—H···N hydrogen bonds (Table 1) into helical chains along the b axis. The crystal is stabilized by N—H···O hydrogen bonds and weak C—H···π interactions (Table 1).

Related literature top

For bond-length data, see: Allen et al. (1987). For background to and applications of 1,2,4-oxadiazole derivatives, see: Chen et al. (1994); Chimirri et al. (1996); Clitherow et al. (1996); Nicolaides et al. (1998); Saunders et al. (1990); Showell et al. (1991); Swain et al. (1991); Tully et al. (1991); Watjen et al. (1989). For a related structure, see: Fun et al. (2011).

Experimental top

The title compound was synthesized by taking benzyl [(2E)-2-amino-2-(hydroxyimino)-1,1-dimethylethyl]carbamate (0.1 mole) in 5 mol volume of pyridine and treated with 0.1 mole of 4-chlorobenzoylchloride. The reaction mixture is heated to reflux for 3–4 hrs. After the reaction is completed, the excess pyridine is distilled out under low pressure and the resultant quenched onto ice water. The solid thus formed is filtered and washed with water. The sample is dried and recrystallized in ethanol yielding 95% product. Colorless plate-shaped single crystals of the title compound suitable for x-ray structure determination were recrystalized from ethanol by the slow evaporation of the solvent at room temperature after several days (m.p. 405–409 K).

Refinement top

NH hydrogen atom is located in a difference map and refined isotropically. The remaining H atoms were positioned geometrically and allowed to ride on their parent atoms, with d(C—H) = 0.93 Å for aromatic and 0.96 Å for CH3 atoms. The Uiso values were constrained to be 1.5Ueq of the carrier atom for methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups. A total of 1950 Friedel pairs were used to determined the absolute configuration

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 40% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along the a axis, showing helical chains along the b axis. N—H···N hydrogen bonds are shown as dashed lines.
Benzyl N-{2-[5-(4-chlorophenyl)-1,2,4-oxadiazol-3-yl]propan-2-yl}carbamate top
Crystal data top
C19H18ClN3O3Dx = 1.380 Mg m3
Mr = 371.81Melting point = 405–409 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 4556 reflections
a = 7.7501 (1) Åθ = 1.9–28.5°
b = 11.0052 (2) ŵ = 0.24 mm1
c = 20.9834 (3) ÅT = 297 K
V = 1789.70 (5) Å3Plate, colorless
Z = 40.41 × 0.35 × 0.21 mm
F(000) = 776
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4556 independent reflections
Radiation source: sealed tube3620 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ϕ and ω scansθmax = 28.5°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 108
Tmin = 0.908, Tmax = 0.951k = 1414
15995 measured reflectionsl = 2328
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.087 w = 1/[σ2(Fo2) + (0.0458P)2 + 0.0092P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
4556 reflectionsΔρmax = 0.14 e Å3
241 parametersΔρmin = 0.21 e Å3
0 restraintsAbsolute structure: Flack (1983), 1950 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (6)
Crystal data top
C19H18ClN3O3V = 1789.70 (5) Å3
Mr = 371.81Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.7501 (1) ŵ = 0.24 mm1
b = 11.0052 (2) ÅT = 297 K
c = 20.9834 (3) Å0.41 × 0.35 × 0.21 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4556 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3620 reflections with I > 2σ(I)
Tmin = 0.908, Tmax = 0.951Rint = 0.028
15995 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.036H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.087Δρmax = 0.14 e Å3
S = 1.02Δρmin = 0.21 e Å3
4556 reflectionsAbsolute structure: Flack (1983), 1950 Friedel pairs
241 parametersAbsolute structure parameter: 0.01 (6)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.06337 (9)0.74415 (5)0.14993 (2)0.08010 (19)
O10.90644 (16)0.42996 (9)0.11883 (5)0.0490 (3)
O20.62272 (16)0.60054 (11)0.29142 (7)0.0631 (4)
O30.71211 (14)0.79437 (9)0.30763 (6)0.0501 (3)
N11.00418 (18)0.59694 (10)0.16396 (6)0.0422 (3)
N20.89957 (19)0.41084 (11)0.18577 (6)0.0487 (3)
N30.90781 (17)0.65050 (11)0.29774 (6)0.0401 (3)
C11.0718 (2)0.70094 (14)0.03799 (7)0.0470 (4)
H1A1.10940.74460.07330.056*
C21.0945 (2)0.74801 (15)0.02232 (8)0.0522 (4)
H2A1.14700.82330.02790.063*
C31.0385 (2)0.68209 (16)0.07420 (7)0.0499 (4)
C40.9627 (2)0.56952 (14)0.06747 (8)0.0517 (4)
H4A0.92830.52550.10310.062*
C50.9386 (2)0.52308 (13)0.00694 (7)0.0469 (4)
H5A0.88590.44780.00170.056*
C60.9930 (2)0.58868 (12)0.04632 (7)0.0393 (3)
C70.96954 (19)0.54258 (12)0.11114 (7)0.0386 (3)
C80.9582 (2)0.51195 (12)0.20882 (7)0.0371 (3)
C90.9872 (2)0.53376 (12)0.27932 (7)0.0417 (4)
C100.7365 (2)0.67374 (13)0.29808 (7)0.0414 (3)
C110.5372 (2)0.83404 (16)0.32187 (8)0.0528 (4)
H11A0.45520.77440.30640.063*
H11B0.51410.91060.30070.063*
C120.51699 (19)0.84918 (13)0.39282 (7)0.0423 (3)
C130.5898 (2)0.94799 (14)0.42406 (9)0.0545 (4)
H13A0.64801.00700.40080.065*
C140.5766 (3)0.95920 (16)0.48927 (9)0.0621 (5)
H14A0.62701.02530.50960.074*
C150.4903 (3)0.87436 (17)0.52416 (9)0.0591 (5)
H15A0.48260.88250.56820.071*
C160.4146 (2)0.77656 (16)0.49429 (8)0.0572 (4)
H16A0.35410.71910.51790.069*
C170.4292 (2)0.76457 (13)0.42877 (8)0.0496 (4)
H17A0.37880.69810.40870.060*
C181.1805 (2)0.54871 (16)0.28978 (9)0.0562 (5)
H18A1.22200.61550.26470.084*
H18B1.23890.47560.27730.084*
H18C1.20240.56450.33400.084*
C190.9170 (3)0.42786 (14)0.31875 (8)0.0592 (5)
H19A0.79700.41620.30920.089*
H19B0.93020.44560.36330.089*
H19C0.97990.35520.30850.089*
H1N30.973 (2)0.7115 (14)0.2985 (7)0.036 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1106 (5)0.0857 (4)0.0440 (2)0.0012 (3)0.0132 (3)0.0075 (2)
O10.0635 (7)0.0416 (5)0.0418 (6)0.0124 (5)0.0050 (6)0.0044 (4)
O20.0508 (7)0.0552 (7)0.0833 (10)0.0086 (6)0.0013 (7)0.0010 (6)
O30.0486 (7)0.0433 (5)0.0584 (7)0.0076 (5)0.0118 (6)0.0012 (5)
N10.0508 (8)0.0373 (6)0.0384 (7)0.0039 (5)0.0004 (6)0.0046 (5)
N20.0609 (9)0.0431 (7)0.0422 (7)0.0097 (6)0.0013 (7)0.0010 (5)
N30.0438 (8)0.0338 (6)0.0425 (7)0.0013 (6)0.0046 (6)0.0040 (5)
C10.0536 (10)0.0451 (8)0.0422 (8)0.0064 (7)0.0001 (8)0.0097 (6)
C20.0575 (10)0.0478 (8)0.0514 (9)0.0079 (8)0.0081 (8)0.0012 (7)
C30.0530 (10)0.0577 (9)0.0389 (8)0.0070 (8)0.0062 (8)0.0006 (7)
C40.0598 (11)0.0534 (9)0.0420 (8)0.0038 (8)0.0090 (8)0.0110 (7)
C50.0536 (11)0.0415 (8)0.0457 (8)0.0013 (7)0.0070 (8)0.0065 (6)
C60.0399 (8)0.0388 (7)0.0390 (8)0.0034 (6)0.0000 (7)0.0060 (5)
C70.0376 (8)0.0352 (7)0.0431 (8)0.0002 (6)0.0026 (7)0.0057 (6)
C80.0374 (8)0.0328 (6)0.0410 (7)0.0000 (6)0.0007 (6)0.0021 (5)
C90.0507 (10)0.0357 (7)0.0389 (8)0.0043 (6)0.0017 (7)0.0032 (6)
C100.0496 (9)0.0419 (7)0.0327 (7)0.0033 (7)0.0047 (7)0.0044 (6)
C110.0474 (10)0.0591 (10)0.0518 (10)0.0146 (8)0.0031 (8)0.0053 (7)
C120.0345 (8)0.0425 (7)0.0499 (9)0.0088 (6)0.0019 (7)0.0026 (6)
C130.0503 (10)0.0438 (8)0.0692 (12)0.0025 (8)0.0048 (9)0.0023 (8)
C140.0618 (12)0.0539 (10)0.0705 (12)0.0008 (9)0.0075 (11)0.0185 (8)
C150.0585 (12)0.0680 (11)0.0507 (10)0.0107 (9)0.0034 (9)0.0074 (8)
C160.0589 (11)0.0567 (10)0.0561 (10)0.0002 (9)0.0101 (9)0.0080 (7)
C170.0506 (10)0.0423 (8)0.0560 (9)0.0043 (8)0.0001 (8)0.0035 (7)
C180.0540 (11)0.0618 (10)0.0528 (10)0.0117 (8)0.0128 (9)0.0138 (8)
C190.0924 (15)0.0401 (8)0.0452 (9)0.0039 (9)0.0064 (10)0.0028 (6)
Geometric parameters (Å, º) top
Cl1—C31.7404 (16)C8—C91.515 (2)
O1—C71.3422 (16)C9—C181.523 (2)
O1—N21.4213 (17)C9—C191.529 (2)
O2—C101.2023 (19)C11—C121.506 (2)
O3—C101.3558 (18)C11—H11A0.9700
O3—C111.455 (2)C11—H11B0.9700
N1—C71.2877 (18)C12—C171.378 (2)
N1—C81.3740 (19)C12—C131.390 (2)
N2—C81.2955 (18)C13—C141.378 (3)
N3—C101.352 (2)C13—H13A0.9300
N3—C91.4758 (18)C14—C151.362 (3)
N3—H1N30.841 (16)C14—H14A0.9300
C1—C21.379 (2)C15—C161.377 (3)
C1—C61.389 (2)C15—H15A0.9300
C1—H1A0.9300C16—C171.386 (2)
C2—C31.378 (2)C16—H16A0.9300
C2—H2A0.9300C17—H17A0.9300
C3—C41.378 (2)C18—H18A0.9600
C4—C51.382 (2)C18—H18B0.9600
C4—H4A0.9300C18—H18C0.9600
C5—C61.3957 (19)C19—H19A0.9600
C5—H5A0.9300C19—H19B0.9600
C6—C71.463 (2)C19—H19C0.9600
C7—O1—N2105.61 (10)O2—C10—O3124.84 (16)
C10—O3—C11116.99 (13)N3—C10—O3108.82 (14)
C7—N1—C8102.66 (12)O3—C11—C12109.46 (13)
C8—N2—O1103.21 (11)O3—C11—H11A109.8
C10—N3—C9125.11 (13)C12—C11—H11A109.8
C10—N3—H1N3116.2 (10)O3—C11—H11B109.8
C9—N3—H1N3116.6 (10)C12—C11—H11B109.8
C2—C1—C6120.39 (14)H11A—C11—H11B108.2
C2—C1—H1A119.8C17—C12—C13118.11 (15)
C6—C1—H1A119.8C17—C12—C11121.18 (14)
C3—C2—C1119.14 (15)C13—C12—C11120.70 (15)
C3—C2—H2A120.4C14—C13—C12120.56 (16)
C1—C2—H2A120.4C14—C13—H13A119.7
C2—C3—C4121.76 (15)C12—C13—H13A119.7
C2—C3—Cl1118.67 (13)C15—C14—C13120.61 (17)
C4—C3—Cl1119.56 (13)C15—C14—H14A119.7
C3—C4—C5118.97 (14)C13—C14—H14A119.7
C3—C4—H4A120.5C14—C15—C16120.02 (18)
C5—C4—H4A120.5C14—C15—H15A120.0
C4—C5—C6120.26 (15)C16—C15—H15A120.0
C4—C5—H5A119.9C15—C16—C17119.42 (16)
C6—C5—H5A119.9C15—C16—H16A120.3
C1—C6—C5119.47 (14)C17—C16—H16A120.3
C1—C6—C7118.68 (13)C12—C17—C16121.27 (15)
C5—C6—C7121.84 (14)C12—C17—H17A119.4
N1—C7—O1113.68 (13)C16—C17—H17A119.4
N1—C7—C6127.82 (13)C9—C18—H18A109.5
O1—C7—C6118.50 (12)C9—C18—H18B109.5
N2—C8—N1114.83 (13)H18A—C18—H18B109.5
N2—C8—C9123.53 (13)C9—C18—H18C109.5
N1—C8—C9121.50 (12)H18A—C18—H18C109.5
N3—C9—C8109.39 (12)H18B—C18—H18C109.5
N3—C9—C18106.14 (13)C9—C19—H19A109.5
C8—C9—C18107.66 (13)C9—C19—H19B109.5
N3—C9—C19111.94 (13)H19A—C19—H19B109.5
C8—C9—C19110.79 (12)C9—C19—H19C109.5
C18—C9—C19110.72 (15)H19A—C19—H19C109.5
O2—C10—N3126.34 (14)H19B—C19—H19C109.5
C7—O1—N2—C80.08 (16)C10—N3—C9—C18177.07 (15)
C6—C1—C2—C30.2 (3)C10—N3—C9—C1956.2 (2)
C1—C2—C3—C41.0 (3)N2—C8—C9—N3131.00 (16)
C1—C2—C3—Cl1178.49 (14)N1—C8—C9—N353.48 (19)
C2—C3—C4—C51.6 (3)N2—C8—C9—C18114.08 (17)
Cl1—C3—C4—C5177.88 (13)N1—C8—C9—C1861.44 (18)
C3—C4—C5—C61.0 (3)N2—C8—C9—C197.1 (2)
C2—C1—C6—C50.7 (2)N1—C8—C9—C19177.35 (15)
C2—C1—C6—C7179.32 (15)C9—N3—C10—O29.9 (3)
C4—C5—C6—C10.1 (2)C9—N3—C10—O3170.43 (13)
C4—C5—C6—C7179.93 (15)C11—O3—C10—O211.3 (2)
C8—N1—C7—O10.38 (18)C11—O3—C10—N3168.37 (12)
C8—N1—C7—C6179.60 (15)C10—O3—C11—C1298.05 (16)
N2—O1—C7—N10.30 (18)O3—C11—C12—C17104.15 (17)
N2—O1—C7—C6179.60 (13)O3—C11—C12—C1374.49 (18)
C1—C6—C7—N14.6 (2)C17—C12—C13—C141.1 (2)
C5—C6—C7—N1175.44 (16)C11—C12—C13—C14177.57 (16)
C1—C6—C7—O1174.60 (14)C12—C13—C14—C150.7 (3)
C5—C6—C7—O15.4 (2)C13—C14—C15—C160.3 (3)
O1—N2—C8—N10.16 (18)C14—C15—C16—C170.9 (3)
O1—N2—C8—C9175.95 (14)C13—C12—C17—C160.5 (2)
C7—N1—C8—N20.33 (19)C11—C12—C17—C16178.18 (15)
C7—N1—C8—C9176.22 (14)C15—C16—C17—C120.5 (3)
C10—N3—C9—C867.03 (18)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C12–C17 ring.
D—H···AD—HH···AD···AD—H···A
N3—H1N3···N2i0.840 (16)2.428 (15)3.2492 (18)165.7 (14)
C16—H16A···Cg1ii0.932.913.6700 (18)140
Symmetry codes: (i) x+2, y+1/2, z+1/2; (ii) x1, y+3/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC19H18ClN3O3
Mr371.81
Crystal system, space groupOrthorhombic, P212121
Temperature (K)297
a, b, c (Å)7.7501 (1), 11.0052 (2), 20.9834 (3)
V3)1789.70 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.41 × 0.35 × 0.21
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.908, 0.951
No. of measured, independent and
observed [I > 2σ(I)] reflections
15995, 4556, 3620
Rint0.028
(sin θ/λ)max1)0.672
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.087, 1.02
No. of reflections4556
No. of parameters241
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.14, 0.21
Absolute structureFlack (1983), 1950 Friedel pairs
Absolute structure parameter0.01 (6)

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C12–C17 ring.
D—H···AD—HH···AD···AD—H···A
N3—H1N3···N2i0.840 (16)2.428 (15)3.2492 (18)165.7 (14)
C16—H16A···Cg1ii0.932.913.6700 (18)140
Symmetry codes: (i) x+2, y+1/2, z+1/2; (ii) x1, y+3/2, z+3/2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Additional correspondence author, e-mail: suchada.c@psu.ac.th. Thomson Reuters ResearcherID: A-5085-2009.

Acknowledgements

VS, GKN and BP thank Mangalore University for a research grant. SC thanks the Prince of Songkla University for generous support. The authors thank Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, C.-Y., Senanayake, C. H., Bill, T. J., Larsen, R. D., Verhoeven, T. R. & Reider, P. J. (1994). J. Org. Chem. 59, 3738–3741.  CrossRef CAS Web of Science Google Scholar
First citationChimirri, A., Grasso, S., Montforte, A.-M., Rao, A. & Zappala, M. (1996). Farmaco, 51, 125–129.  CAS PubMed Web of Science Google Scholar
First citationClitherow, J. W., Beswick, P., Irving, W. J., Scopes, D. I. C., Barnes, J. C., Clapham, J., Brown, J. D., Evans, D. J. & Hayes, A. G. (1996). Bioorg. Med. Chem. Lett. 6, 833–838.  CrossRef CAS Web of Science Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFun, H.-K., Sumangala, V., Prasad, D. J., Poojary, B. & Chantrapromma, S. (2011). Acta Cryst. E67, o274.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNicolaides, D. N., Fylaktakidou, K. C., Litinas, K. E. & Hadjipavlou-Litina, D. (1998). Eur. J. Med. Chem. 33, 715–724.  Web of Science CrossRef CAS Google Scholar
First citationSaunders, J., Cassidy, M., Freedman, S. B., Harley, E. A., Iversen, L. L., Kneen, C., MacLeod, A. M., Merchant, K. J., Snow, R. J. & Baker, R. (1990). J. Med. Chem. 33, 1128–1138.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShowell, G. A., Gibbons, T. L., Kneen, C. O., MacLeod, A. M., Merchant, K., Saunders, J., Freedman, S. B., Patel, S. & Baker, R. (1991). J. Med. Chem. 34, 1086–1094.  CSD CrossRef CAS PubMed Web of Science Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSwain, C. J., Baker, R., Kneen, C., Moseley, J., Saunders, J., Seward, E. M., Stevenson, G., Beer, M., Stanton, J. & Watling, K. (1991). J. Med. Chem. 34, 140–151.  CrossRef PubMed CAS Web of Science Google Scholar
First citationTully, W. R., Gardner, C. R., Gillespie, R. J. & Westwood, R. (1991). J. Med. Chem. 34, 2060–2062.  CrossRef PubMed CAS Web of Science Google Scholar
First citationWatjen, F., Baker, R., Engelstoff, M., Herbert, R., MacLeod, A., Knight, A., Merchant, K., Moseley, J., Saunders, J., Swain, C. J., Wang, E. & Springer, J. P. (1989). J. Med. Chem. 32, 2282–2291.  CSD CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 2| February 2011| Pages o420-o421
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds