organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 2| February 2011| Pages o437-o438

3-[5-(2,4-Di­chloro­phen­yl)-1-phenyl-4,5-di­hydro-1H-pyrazol-3-yl]-4-hy­dr­oxy-2H-chromen-2-one

aSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 28 December 2010; accepted 11 January 2011; online 22 January 2011)

In the title compound, C24H16Cl2N2O3, the chromene ring system is almost planar, with a maximum deviation of 0.042 (1) Å. It makes dihedral angles of 3.72 (6), 73.37 (5) and 12.00 (5)° with the dihydro­pyrazole, benzene and phenyl rings, respectively. An intra­molecular O—H⋯N hydrogen bond forms an S(6) ring motif. In the crystal, mol­ecules are linked via C—H⋯O inter­actions, forming an infinite chain along the a axis. The crystal packing is further stabilized by a ππ stacking inter­action [centroid–centroid distance = 3.5471 (7) Å] and a Cl⋯Cl short contact [Cl⋯Cl = 3.214 (1) Å].

Related literature

For a related structure, see: Asad et al. (2010[Asad, M., Oo, C.-W., Osman, H., Quah, C. K. & Fun, H.-K. (2010). Acta Cryst. E66, o3022-o3023.]). For the biological activity of pyrazoline derivatives, see: Bernstein et al. (1947[Bernstein, J., Stearns, B., Dexter, M. & Lott, W. A. (1947). J. Am. Chem. Soc. 69, 1147-1150.]); Chimenti et al. (2004[Chimenti, F., Bolasco, A., Manna, F., Secci, D., Chimenti, P., Befani, O., Turini, P., Giovannini, V., Mondovi, B., Cirilli, R. & La Torre, F. (2004). J. Med. Chem. 47, 2071-2074.]); Goodell et al. (2006[Goodell, J. R., Puig-Basagoiti, F., Forshey, B. M., Shi, P.-Y. & Ferguson, D. M. (2006). J. Med. Chem. 49, 2127-2137.]); Hollis et al. (1984[Hollis Showalter, H. D., Johnson, J. L., Werbel, L. M., Leopold, W. R., Jackson, R. C. & Eislager, E. F. (1984). J. Med. Chem. 27, 253-255.]); Mohammad et al. (2008[Mohammad, A., Harish, K. & Khan, S. A. (2008). Bioorg. Med. Chem. Lett. 18, 918-920.]); Siddiqui et al. (2008[Siddiqui, Z. N., Asad, M. & Praveen, S. (2008). Med. Chem. Res. 17, 318-325.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C24H16Cl2N2O3

  • Mr = 451.29

  • Triclinic, [P \overline 1]

  • a = 6.2583 (2) Å

  • b = 11.5136 (5) Å

  • c = 14.2248 (5) Å

  • α = 87.242 (1)°

  • β = 88.821 (1)°

  • γ = 76.181 (1)°

  • V = 994.11 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.36 mm−1

  • T = 100 K

  • 0.46 × 0.15 × 0.13 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.852, Tmax = 0.955

  • 22849 measured reflections

  • 5747 independent reflections

  • 5151 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.106

  • S = 1.03

  • 5747 reflections

  • 284 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.11 e Å−3

  • Δρmin = −0.88 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H1O3⋯N1 0.86 (2) 1.80 (3) 2.5655 (14) 148 (2)
C14—H14A⋯O2i 0.93 2.40 3.2747 (17) 157
Symmetry code: (i) x-1, y, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In our earlier work we have reported the crystal structure of chalcone (Asad et al., 2010). In continuation of our work, we reported here the crystal structure of pyrazoline (title compound) which was afforded by the condensation of chalcone with phenylhydrazine. A large number of pyrazoline derivatives showed a broad range of biological properties such as antibacterial (Siddiqui et al., 2008), antiviral (Goodell et al., 2006), antiparasitic (Bernstein et al., 1947), anti-inflammatory (Mohammad et al., 2008), antidepressant (Chimenti et al., 2004) and anticancer (Hollis et al., 1984) activities.

All geometrical parameters of the title compound, (I), are within normal ranges. The chromene group is almost planar with a maximum deviation of 0.042 (1) Å for atom C1. It makes dihedral angles of 3.72 (6), 73.37 (5) and 12.00 (5)° with C10-C12/N1-N1 pyrazole and C13-C18 benzene and C19-C24 phenyl rings, respectively. An intramolecular interaction of O3—H1O3···N1 (Table 1) forms an S(6) hydrogen ring motif.

In the crystal structure, the molecules are linked via C14—H14···O2i (Table 1) to form infinite chains along the a axis. The crystal packing is further stabilized by ππ stacking interactions with CgCg distance of 3.5471 (7) Å (Cg = centroid of O1/C1-C2/C7-C9) together with Cl1···Cl1 short contact [Cl1···Cl1(1-x, 2-y, -z) = 3.214 (1) Å].

Related literature top

For a related structure, see: Asad et al. (2010). For the biological activity of pyrazoline derivatives, see: Bernstein et al. (1947); Chimenti et al. (2004); Goodell et al. (2006); Hollis et al. (1984); Mohammad et al. (2008); Siddiqui et al. (2008). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

The compound, 3-[(E)-3-(2,4-dichlorophenyl)prop-2-enoyl]-4-hydroxy-2H-chromen-2-one (2.76 mmol, 1.00 g) was dissolved in acetic acid (20 ml) and phenylhydrazine (2.76 mmol, 0.30 g) was added to it. The reaction mixture was refluxed on a heating mantle for 2 h. After the reaction was over, the reaction mixture was cooled to room temperature and poured into ice cold water. The yellow-colour solid formed was filtered, washed with water, dried and recrystallized from chloroform-methanol (80:20 v/v) to get the pure title compound in 62.5% yield.

Refinement top

H1O3 was located in a difference Fourier map and freely refined. The remaining H atoms were positioned geometrically and refined using a riding model (C—H = 0.97 Å for methylene, 0.98 Å for methine and 0.93 Å for the rest of H atoms) with Uiso(H) = 1.2Ueq(C). The highest residual electron density peak is located 0.78 Å from atom Cl2.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme. Hydrogen atoms are shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along the c axis, showing a molecular chain along the a axis. Dashed lines indicate hydrogen bonds. H atoms not involved in the hydrogen bond interactions have been omitted for clarity.
3-[5-(2,4-Dichlorophenyl)-1-phenyl-4,5-dihydro-1H-pyrazol-3-yl]-4- hydroxy-2H-chromen-2-one top
Crystal data top
C24H16Cl2N2O3Z = 2
Mr = 451.29F(000) = 464
Triclinic, P1Dx = 1.508 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.2583 (2) ÅCell parameters from 9965 reflections
b = 11.5136 (5) Åθ = 2.3–32.7°
c = 14.2248 (5) ŵ = 0.36 mm1
α = 87.242 (1)°T = 100 K
β = 88.821 (1)°Block, yellow
γ = 76.181 (1)°0.46 × 0.15 × 0.13 mm
V = 994.11 (6) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5747 independent reflections
Radiation source: fine-focus sealed tube5151 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ϕ and ω scansθmax = 30.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 88
Tmin = 0.852, Tmax = 0.955k = 1616
22849 measured reflectionsl = 2018
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0484P)2 + 0.7425P]
where P = (Fo2 + 2Fc2)/3
5747 reflections(Δ/σ)max = 0.001
284 parametersΔρmax = 1.11 e Å3
0 restraintsΔρmin = 0.88 e Å3
Crystal data top
C24H16Cl2N2O3γ = 76.181 (1)°
Mr = 451.29V = 994.11 (6) Å3
Triclinic, P1Z = 2
a = 6.2583 (2) ÅMo Kα radiation
b = 11.5136 (5) ŵ = 0.36 mm1
c = 14.2248 (5) ÅT = 100 K
α = 87.242 (1)°0.46 × 0.15 × 0.13 mm
β = 88.821 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5747 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
5151 reflections with I > 2σ(I)
Tmin = 0.852, Tmax = 0.955Rint = 0.020
22849 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.106H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 1.11 e Å3
5747 reflectionsΔρmin = 0.88 e Å3
284 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.35949 (7)0.90740 (4)0.03853 (2)0.03009 (10)
Cl20.14981 (8)0.62457 (3)0.06976 (3)0.03714 (11)
O10.71612 (15)0.58755 (9)0.51861 (7)0.01973 (19)
O20.72747 (16)0.66920 (10)0.37635 (7)0.0251 (2)
O30.06651 (15)0.75993 (9)0.55672 (7)0.02046 (19)
N10.07093 (17)0.86134 (9)0.39234 (7)0.0162 (2)
N20.00154 (18)0.92564 (10)0.31061 (7)0.0192 (2)
C10.6146 (2)0.66136 (11)0.44534 (9)0.0177 (2)
C20.6117 (2)0.57587 (11)0.60307 (9)0.0173 (2)
C30.7375 (2)0.50505 (11)0.67383 (10)0.0205 (2)
H3A0.88360.46640.66300.025*
C40.6386 (2)0.49384 (12)0.76082 (10)0.0217 (3)
H4A0.72020.44760.80910.026*
C50.4182 (2)0.55092 (12)0.77721 (9)0.0218 (3)
H5A0.35500.54310.83620.026*
C60.2942 (2)0.61889 (12)0.70583 (9)0.0203 (2)
H6A0.14690.65550.71640.024*
C70.3911 (2)0.63252 (11)0.61735 (9)0.0170 (2)
C80.2763 (2)0.70665 (11)0.54083 (9)0.0164 (2)
C90.38412 (19)0.72235 (11)0.45724 (8)0.0156 (2)
C100.2732 (2)0.80047 (11)0.38073 (8)0.0153 (2)
C110.3638 (2)0.82338 (11)0.28433 (9)0.0168 (2)
H11A0.42550.74910.25380.020*
H11B0.47540.86880.28750.020*
C120.1564 (2)0.89691 (11)0.23291 (8)0.0157 (2)
H12A0.18580.97070.20430.019*
C130.07859 (19)0.82708 (11)0.15820 (9)0.0153 (2)
C140.0757 (2)0.75932 (11)0.17822 (10)0.0199 (2)
H14A0.13270.75660.23900.024*
C150.1455 (2)0.69604 (12)0.10939 (11)0.0248 (3)
H15A0.24860.65140.12370.030*
C160.0596 (2)0.69996 (12)0.01883 (10)0.0244 (3)
C170.0968 (2)0.76382 (12)0.00390 (10)0.0243 (3)
H17A0.15580.76480.06440.029*
C180.1630 (2)0.82658 (12)0.06681 (9)0.0189 (2)
C190.2083 (2)1.00293 (10)0.30513 (8)0.0154 (2)
C200.3406 (2)1.03064 (11)0.38552 (9)0.0177 (2)
H20A0.28800.99970.44440.021*
C210.5506 (2)1.10448 (12)0.37687 (9)0.0201 (2)
H21A0.63831.12160.43040.024*
C220.6326 (2)1.15338 (12)0.28987 (10)0.0212 (2)
H22A0.77431.20180.28480.025*
C230.4991 (2)1.12856 (12)0.21073 (9)0.0207 (2)
H23A0.55091.16230.15240.025*
C240.2890 (2)1.05397 (11)0.21745 (9)0.0186 (2)
H24A0.20171.03790.16370.022*
H1O30.016 (4)0.804 (2)0.5079 (18)0.048 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0363 (2)0.0397 (2)0.01977 (16)0.02068 (16)0.01019 (13)0.00255 (13)
Cl20.0479 (2)0.02154 (17)0.0407 (2)0.00267 (15)0.02561 (18)0.00634 (14)
O10.0146 (4)0.0231 (4)0.0190 (4)0.0003 (3)0.0009 (3)0.0002 (3)
O20.0161 (4)0.0323 (5)0.0233 (5)0.0001 (4)0.0039 (4)0.0024 (4)
O30.0141 (4)0.0267 (5)0.0172 (4)0.0011 (3)0.0017 (3)0.0027 (4)
N10.0159 (5)0.0181 (5)0.0129 (4)0.0009 (4)0.0002 (4)0.0001 (4)
N20.0168 (5)0.0244 (5)0.0121 (5)0.0032 (4)0.0022 (4)0.0013 (4)
C10.0146 (5)0.0193 (5)0.0181 (5)0.0016 (4)0.0010 (4)0.0018 (4)
C20.0175 (5)0.0167 (5)0.0172 (5)0.0027 (4)0.0019 (4)0.0023 (4)
C30.0196 (6)0.0174 (5)0.0229 (6)0.0005 (4)0.0054 (5)0.0025 (4)
C40.0268 (6)0.0166 (5)0.0206 (6)0.0024 (5)0.0073 (5)0.0002 (4)
C50.0267 (6)0.0199 (6)0.0178 (6)0.0039 (5)0.0007 (5)0.0007 (4)
C60.0196 (6)0.0206 (6)0.0190 (6)0.0022 (5)0.0004 (4)0.0011 (4)
C70.0169 (5)0.0166 (5)0.0168 (5)0.0024 (4)0.0015 (4)0.0008 (4)
C80.0144 (5)0.0168 (5)0.0172 (5)0.0019 (4)0.0009 (4)0.0016 (4)
C90.0132 (5)0.0175 (5)0.0153 (5)0.0019 (4)0.0006 (4)0.0021 (4)
C100.0140 (5)0.0170 (5)0.0147 (5)0.0033 (4)0.0003 (4)0.0024 (4)
C110.0140 (5)0.0205 (5)0.0156 (5)0.0035 (4)0.0008 (4)0.0015 (4)
C120.0149 (5)0.0176 (5)0.0139 (5)0.0028 (4)0.0021 (4)0.0011 (4)
C130.0135 (5)0.0155 (5)0.0157 (5)0.0013 (4)0.0001 (4)0.0001 (4)
C140.0157 (5)0.0183 (5)0.0249 (6)0.0031 (4)0.0022 (5)0.0005 (5)
C150.0178 (6)0.0176 (6)0.0392 (8)0.0047 (5)0.0043 (5)0.0005 (5)
C160.0274 (7)0.0161 (5)0.0281 (7)0.0003 (5)0.0130 (5)0.0035 (5)
C170.0325 (7)0.0220 (6)0.0167 (6)0.0026 (5)0.0037 (5)0.0017 (5)
C180.0207 (6)0.0201 (6)0.0162 (5)0.0055 (5)0.0006 (4)0.0003 (4)
C190.0154 (5)0.0144 (5)0.0156 (5)0.0018 (4)0.0003 (4)0.0015 (4)
C200.0188 (6)0.0183 (5)0.0148 (5)0.0020 (4)0.0012 (4)0.0016 (4)
C210.0191 (6)0.0199 (6)0.0197 (6)0.0011 (5)0.0041 (4)0.0029 (4)
C220.0176 (6)0.0195 (6)0.0240 (6)0.0010 (4)0.0001 (5)0.0018 (5)
C230.0218 (6)0.0192 (6)0.0184 (6)0.0003 (5)0.0024 (5)0.0007 (4)
C240.0202 (6)0.0178 (5)0.0157 (5)0.0005 (4)0.0013 (4)0.0001 (4)
Geometric parameters (Å, º) top
Cl1—C181.7408 (14)C11—C121.5464 (17)
Cl2—C161.7402 (14)C11—H11A0.9700
O1—C21.3720 (16)C11—H11B0.9700
O1—C11.3770 (15)C12—C131.5175 (17)
O2—C11.2097 (16)C12—H12A0.9800
O3—C81.3294 (15)C13—C181.3929 (17)
O3—H1O30.86 (3)C13—C141.3958 (17)
N1—C101.3037 (16)C14—C151.385 (2)
N1—N21.3726 (14)C14—H14A0.9300
N2—C191.3857 (15)C15—C161.388 (2)
N2—C121.4634 (15)C15—H15A0.9300
C1—C91.4560 (17)C16—C171.383 (2)
C2—C31.3944 (17)C17—C181.3911 (18)
C2—C71.3946 (17)C17—H17A0.9300
C3—C41.386 (2)C19—C201.4019 (17)
C3—H3A0.9300C19—C241.4033 (17)
C4—C51.399 (2)C20—C211.3884 (18)
C4—H4A0.9300C20—H20A0.9300
C5—C61.3828 (18)C21—C221.3904 (19)
C5—H5A0.9300C21—H21A0.9300
C6—C71.4041 (18)C22—C231.3876 (19)
C6—H6A0.9300C22—H22A0.9300
C7—C81.4420 (17)C23—C241.3907 (18)
C8—C91.3807 (17)C23—H23A0.9300
C9—C101.4540 (17)C24—H24A0.9300
C10—C111.5085 (17)
C2—O1—C1122.30 (10)N2—C12—C13112.71 (10)
C8—O3—H1O3108.6 (17)N2—C12—C11102.00 (9)
C10—N1—N2109.48 (10)C13—C12—C11112.55 (10)
N1—N2—C19121.38 (10)N2—C12—H12A109.8
N1—N2—C12112.49 (10)C13—C12—H12A109.8
C19—N2—C12126.03 (10)C11—C12—H12A109.8
O2—C1—O1116.12 (11)C18—C13—C14117.41 (12)
O2—C1—C9125.99 (12)C18—C13—C12120.73 (11)
O1—C1—C9117.88 (11)C14—C13—C12121.85 (11)
O1—C2—C3116.69 (11)C15—C14—C13121.30 (13)
O1—C2—C7121.53 (11)C15—C14—H14A119.4
C3—C2—C7121.78 (12)C13—C14—H14A119.4
C4—C3—C2118.17 (12)C14—C15—C16119.24 (13)
C4—C3—H3A120.9C14—C15—H15A120.4
C2—C3—H3A120.9C16—C15—H15A120.4
C3—C4—C5121.11 (12)C17—C16—C15121.55 (12)
C3—C4—H4A119.4C17—C16—Cl2118.24 (12)
C5—C4—H4A119.4C15—C16—Cl2120.21 (11)
C6—C5—C4120.11 (13)C16—C17—C18117.73 (13)
C6—C5—H5A119.9C16—C17—H17A121.1
C4—C5—H5A119.9C18—C17—H17A121.1
C5—C6—C7119.86 (12)C17—C18—C13122.74 (12)
C5—C6—H6A120.1C17—C18—Cl1117.93 (10)
C7—C6—H6A120.1C13—C18—Cl1119.33 (10)
C2—C7—C6118.95 (11)N2—C19—C20121.34 (11)
C2—C7—C8117.75 (11)N2—C19—C24119.68 (11)
C6—C7—C8123.25 (11)C20—C19—C24118.98 (11)
O3—C8—C9122.99 (11)C21—C20—C19119.77 (12)
O3—C8—C7116.36 (11)C21—C20—H20A120.1
C9—C8—C7120.63 (11)C19—C20—H20A120.1
C8—C9—C10121.34 (11)C20—C21—C22121.39 (12)
C8—C9—C1119.77 (11)C20—C21—H21A119.3
C10—C9—C1118.88 (11)C22—C21—H21A119.3
N1—C10—C9119.64 (11)C23—C22—C21118.75 (12)
N1—C10—C11112.43 (10)C23—C22—H22A120.6
C9—C10—C11127.92 (11)C21—C22—H22A120.6
C10—C11—C12102.04 (9)C22—C23—C24120.94 (12)
C10—C11—H11A111.4C22—C23—H23A119.5
C12—C11—H11A111.4C24—C23—H23A119.5
C10—C11—H11B111.4C23—C24—C19120.14 (12)
C12—C11—H11B111.4C23—C24—H24A119.9
H11A—C11—H11B109.2C19—C24—H24A119.9
C10—N1—N2—C19176.79 (11)C9—C10—C11—C12171.31 (12)
C10—N1—N2—C126.61 (15)N1—N2—C12—C13109.17 (12)
C2—O1—C1—O2176.03 (12)C19—N2—C12—C1367.25 (16)
C2—O1—C1—C94.01 (17)N1—N2—C12—C1111.76 (13)
C1—O1—C2—C3175.51 (11)C19—N2—C12—C11171.82 (12)
C1—O1—C2—C74.23 (18)C10—C11—C12—N211.62 (12)
O1—C2—C3—C4178.39 (11)C10—C11—C12—C13109.42 (11)
C7—C2—C3—C41.36 (19)N2—C12—C13—C18157.95 (11)
C2—C3—C4—C50.6 (2)C11—C12—C13—C1887.35 (14)
C3—C4—C5—C60.7 (2)N2—C12—C13—C1423.34 (16)
C4—C5—C6—C71.3 (2)C11—C12—C13—C1491.36 (14)
O1—C2—C7—C6178.93 (12)C18—C13—C14—C151.30 (19)
C3—C2—C7—C60.81 (19)C12—C13—C14—C15179.95 (11)
O1—C2—C7—C81.45 (18)C13—C14—C15—C160.2 (2)
C3—C2—C7—C8178.28 (11)C14—C15—C16—C171.2 (2)
C5—C6—C7—C20.53 (19)C14—C15—C16—Cl2178.28 (10)
C5—C6—C7—C8176.79 (12)C15—C16—C17—C181.3 (2)
C2—C7—C8—O3179.67 (11)Cl2—C16—C17—C18178.16 (10)
C6—C7—C8—O32.31 (18)C16—C17—C18—C130.1 (2)
C2—C7—C8—C91.31 (18)C16—C17—C18—Cl1179.87 (10)
C6—C7—C8—C9176.04 (12)C14—C13—C18—C171.17 (19)
O3—C8—C9—C100.68 (19)C12—C13—C18—C17179.93 (12)
C7—C8—C9—C10177.57 (11)C14—C13—C18—Cl1178.87 (9)
O3—C8—C9—C1179.66 (11)C12—C13—C18—Cl10.10 (16)
C7—C8—C9—C11.41 (18)N1—N2—C19—C208.45 (19)
O2—C1—C9—C8178.87 (13)C12—N2—C19—C20175.43 (12)
O1—C1—C9—C81.18 (18)N1—N2—C19—C24170.94 (11)
O2—C1—C9—C100.1 (2)C12—N2—C19—C245.18 (19)
O1—C1—C9—C10179.82 (11)N2—C19—C20—C21177.32 (12)
N2—N1—C10—C9178.26 (11)C24—C19—C20—C212.08 (18)
N2—N1—C10—C112.11 (14)C19—C20—C21—C220.9 (2)
C8—C9—C10—N13.12 (18)C20—C21—C22—C230.9 (2)
C1—C9—C10—N1175.87 (11)C21—C22—C23—C241.5 (2)
C8—C9—C10—C11177.31 (12)C22—C23—C24—C190.3 (2)
C1—C9—C10—C113.70 (19)N2—C19—C24—C23177.91 (12)
N1—C10—C11—C129.10 (13)C20—C19—C24—C231.49 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H1O3···N10.86 (2)1.80 (3)2.5655 (14)148 (2)
C14—H14A···O2i0.932.403.2747 (17)157
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formulaC24H16Cl2N2O3
Mr451.29
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)6.2583 (2), 11.5136 (5), 14.2248 (5)
α, β, γ (°)87.242 (1), 88.821 (1), 76.181 (1)
V3)994.11 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.36
Crystal size (mm)0.46 × 0.15 × 0.13
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.852, 0.955
No. of measured, independent and
observed [I > 2σ(I)] reflections
22849, 5747, 5151
Rint0.020
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.106, 1.03
No. of reflections5747
No. of parameters284
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.11, 0.88

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H1O3···N10.86 (2)1.80 (3)2.5655 (14)148 (2)
C14—H14A···O2i0.932.403.2747 (17)157
Symmetry code: (i) x1, y, z.
 

Footnotes

Additional correspondence author, e-mail: oocw@usm.my.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

The authors are thankful to Universiti Sains Malaysia (USM) for providing necessary research facilities and RU research funding under grant No. 1001/PKIMIA/811134. MA also thanks USM for the award of a postdoctoral fellowship. HKF and MMR thank USM for the Research University Grant (No. 1001/PFIZIK/811160).

References

First citationAsad, M., Oo, C.-W., Osman, H., Quah, C. K. & Fun, H.-K. (2010). Acta Cryst. E66, o3022–o3023.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Stearns, B., Dexter, M. & Lott, W. A. (1947). J. Am. Chem. Soc. 69, 1147–1150.  CrossRef CAS PubMed Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChimenti, F., Bolasco, A., Manna, F., Secci, D., Chimenti, P., Befani, O., Turini, P., Giovannini, V., Mondovi, B., Cirilli, R. & La Torre, F. (2004). J. Med. Chem. 47, 2071–2074.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGoodell, J. R., Puig-Basagoiti, F., Forshey, B. M., Shi, P.-Y. & Ferguson, D. M. (2006). J. Med. Chem. 49, 2127–2137.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHollis Showalter, H. D., Johnson, J. L., Werbel, L. M., Leopold, W. R., Jackson, R. C. & Eislager, E. F. (1984). J. Med. Chem. 27, 253–255.  PubMed Web of Science Google Scholar
First citationMohammad, A., Harish, K. & Khan, S. A. (2008). Bioorg. Med. Chem. Lett. 18, 918–920.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiddiqui, Z. N., Asad, M. & Praveen, S. (2008). Med. Chem. Res. 17, 318–325.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 2| February 2011| Pages o437-o438
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds