organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 2| February 2011| Pages o430-o431

1-(10H-Pheno­thia­zin-2-yl)ethanone

aDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India, and cDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India
*Correspondence e-mail: jjasinski@keene.edu

(Received 5 January 2011; accepted 12 January 2011; online 22 January 2011)

In the title compound, C14H11NOS, the thia­zine ring adopts a slightly distorted boat conformation. The dihedral angle between the mean planes of the two benzene rings is 20.2 (9)°. An inter­molecular N—H⋯O hydrogen bond and a weak C—H⋯π inter­action occur in the crystal, creating a two-dimensional network parallel to the bc plane.

Related literature

For applications of phenothia­zines in drugs and medicine, see: Miller et al. (1999[Miller, M. T., Gantzel, P. K. & Karpishin, T. B. (1999). J. Am. Chem. Soc. 121, 4292-4293.]); Wermuth (2003[Wermuth, C. G. (2003). The Practice of Medicinal Chemistry, 2nd ed. London: Acdemic Press.]); Wang et al. (2008[Wang, J., Dong, M., Liang, J., Chang, Z., Feng, S., Wang, H. & Ding, N. (2008). Chin. J. Lab. Diagn. 12, 381-382.]); Lam et al. (2001[Lam, M., Oleinick, N. L. & Nieminen, A. L. (2001). J. Biol. Chem. 276, 47379-47386.]); Kojilo et al. (2001[Kojilo, A., Karpinska, J., Kuzmicka, L., Misiuk, W., Puzanowska-Tarasiewicz, H. & Tarasiewicz, M. (2001). J. Trace Microprobe Technol. 19, 45-70.]). For related structures, see: Bell et al. (1968[Bell, J. D., Blount, J. F., Briscoe, O. V. & Freeman, H. C. (1968). Chem. Commun. (London), pp. 1656-1657.]); McDowell (1969[McDowell, J. J. H. (1969). Acta Cryst. B25, 2175-2181.], 1970[McDowell, J. J. H. (1970). Acta Cryst. B26, 954-964.], 1975[McDowell, J. J. H. (1975). Acta Cryst. B31, 2256-2264.], 1976[McDowell, J. J. H. (1976). Acta Cryst. B32, 5-10.], 1978[McDowell, J. J. H. (1978). Acta Cryst. B34, 686-689.], 1980[McDowell, J. J. H. (1980). Acta Cryst. B36, 2178-2181.]); Chu & Van der Helm (1974[Chu, S. S. C. & Van der Helm, D. (1974). Acta Cryst. B30, 2489-2490.], 1975[Chu, S. S. C. & Van der Helm, D. (1975). Acta Cryst. B31, 1179-1183.], 1977)[Chu, S. S. C. & van der Helm, D. (1977). Acta Cryst. B33, 873-876.]); Phelps & Cordes (1974[Phelps, D. W. & Cordes, A. W. (1974). Acta Cryst. B30, 2812-2816.], 1975[Phelps, D. W. & Cordes, A. W. (1975). Acta Cryst. B31, 2542-2544.]); Harrison et al. (2007[Harrison, W. T. A., Ashok, M. A., Yathirajan, H. S. & Narayana Achar, B. (2007). Acta Cryst. E63, o3322.]); Wang et al. (2009[Wang, Q., Yang, L., Xu, Z. & Sun, Y. (2009). Acta Cryst. E65, o1978.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C14H11NOS

  • Mr = 241.30

  • Monoclinic, P 21 /c

  • a = 14.3445 (18) Å

  • b = 5.5425 (7) Å

  • c = 15.694 (2) Å

  • β = 114.494 (2)°

  • V = 1135.4 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 100 K

  • 0.55 × 0.55 × 0.10 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA]) Tmin = 0.868, Tmax = 0.974

  • 8194 measured reflections

  • 3331 independent reflections

  • 2828 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.108

  • S = 1.04

  • 3331 reflections

  • 159 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the C7–C12 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H15⋯O1i 0.829 (18) 2.198 (18) 3.0042 (15) 164.3 (17)
C9—H14⋯Cg3ii 0.93 2.64 3.306 (7) 130
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Phenothiazine is a well known heterocycle. The phenothiazine structure occurs in many synthetic dyes, electroluminescent materials (Miller et al., 1999) and drugs, especially various antipsychotic drugs, e.g. chlorpromazine and antihistaminic drugs, e.g. promethazine (Wermuth, 2003). Recently, researchers have found new applications for phenothiazine derivatives in medicine related to antitubercular (Wang et al., 2008) and antitumor activities (Lam et al., 2001). A review of various aspects of phenothiazines has been published (Kojilo et al., 2001). The crystal and molecular structure studies of phenothiazine (Bell et al., 1968), chlorpromazine, thiethylperazine, thioridazine, phenothiazine, perphenazine, trifluperazine hydrochloride (McDowell, 1969, 1970, 1975, 1976, 1978, 1980), N-methylphenothiazine, N-ethylphenothiazine, N-benzylphenothiazine (Chu & Van der Helm, 1974, 1975, 1977), triflupromazine, 2-methoxyphenothiazine (Phelps & Cordes, 1974, 1975), Phenothiazine-picric acid (1/1) (Harrison et al., 2007) and 10-acetyl-10H-phenothiazine 5-oxide (Wang et al., 2009) have been reported. In view of the importance of phenothiazines, this paper reports the crystal structure of the title compound, 1-(10H-phenothiazin-2-yl)ethanone.

The title compound, C14H11NOS, consists of benzene and phenyl-ethanone rings fused to a thiazine ring which adopts a slightly distorted boat conformation with puckering parameters Q, θ and ϕ of 0.371 (4) Å, 100.1 (2)° and 181.457 (4)°, respectively (Cremer & Pople, 1975) (Fig. 1). For an ideal boat Phi= k x 60. The dihedral angles between the mean planes of the two 6-membered benzene rings, and thiazine ring are 10.5 (5) and 10.3 (6)°. An N—H···O intermolecular hydrogen bond and a weak C—H···π interaction (Table 1) contributes to crystal packing creating a 2-D network structure parallel to the bc plane (Fig. 2).

Related literature top

For applications of phenothiazines in drugs and medicine, see: Miller et al. (1999); Wermuth (2003); Wang et al. (2008); Lam et al. (2001); Kojilo et al. (2001). For related structures, see: Bell et al. (1968); McDowell (1969, 1970, 1975, 1976, 1978, 1980); Chu & Van der Helm (1974, 1975, 1977)); Phelps & Cordes (1974, 1975); Harrison et al. (2007); Wang et al. (2009). For puckering parameters, see: Cremer & Pople (1975).

Experimental top

1-(10H-Phenothiazin-3-yl)ethanone was obtained from Aldrich and it was crystallized from a dimethylformamide solution (m.p. 455–457 K)

Refinement top

The H15 atom bonded to N1 was freely refined. All of the other H atoms were placed in their calculated positions and then refined using the riding model with C—H lengths of 0.93 Å (CH), or 0.96 Å (CH3). Isotropic displacement parameters for these atoms were set to 1.18–1.20 (CH) or 1.51 (CH3) times Ueq of the parent atom.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of C14H11N O S, showing the atom labeling scheme and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing diagram of the title compound viewed down the a axis. Dashed lines indicate N—H···O hydrogen bonding creating a 2-D network structure parallel to the bc plane.
1-(10H-Phenothiazin-2-yl)ethanone top
Crystal data top
C14H11NOSF(000) = 504
Mr = 241.30Dx = 1.412 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2781 reflections
a = 14.3445 (18) Åθ = 2.6–30.6°
b = 5.5425 (7) ŵ = 0.27 mm1
c = 15.694 (2) ÅT = 100 K
β = 114.494 (2)°Plate, orange
V = 1135.4 (2) Å30.55 × 0.55 × 0.10 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
3331 independent reflections
Radiation source: fine-focus sealed tube2828 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ω scansθmax = 31.2°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 2018
Tmin = 0.868, Tmax = 0.974k = 87
8194 measured reflectionsl = 2122
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0553P)2 + 0.4353P]
where P = (Fo2 + 2Fc2)/3
3331 reflections(Δ/σ)max < 0.001
159 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C14H11NOSV = 1135.4 (2) Å3
Mr = 241.30Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.3445 (18) ŵ = 0.27 mm1
b = 5.5425 (7) ÅT = 100 K
c = 15.694 (2) Å0.55 × 0.55 × 0.10 mm
β = 114.494 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
3331 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2828 reflections with I > 2σ(I)
Tmin = 0.868, Tmax = 0.974Rint = 0.025
8194 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.49 e Å3
3331 reflectionsΔρmin = 0.29 e Å3
159 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.26560 (3)0.41617 (6)0.15897 (2)0.01761 (10)
O10.65447 (8)0.81327 (19)0.54988 (7)0.0213 (2)
N10.30331 (9)0.8588 (2)0.28579 (8)0.0165 (2)
C110.55267 (10)0.5672 (2)0.42245 (9)0.0140 (2)
C80.37282 (10)0.4732 (2)0.26461 (9)0.0139 (2)
C120.47152 (10)0.7316 (2)0.39393 (9)0.0143 (2)
H110.47780.87230.42820.017*
C130.64777 (10)0.6258 (2)0.50679 (9)0.0158 (3)
C50.17254 (10)0.5996 (2)0.17352 (9)0.0158 (3)
C70.38142 (10)0.6876 (2)0.31481 (9)0.0137 (2)
C100.54264 (10)0.3531 (2)0.37268 (9)0.0148 (2)
H90.59600.24200.39180.018*
C60.20076 (10)0.8030 (2)0.23161 (9)0.0154 (2)
C140.73624 (11)0.4520 (3)0.53624 (10)0.0212 (3)
H13A0.76450.45220.49050.032*
H13B0.71270.29270.54120.032*
H13C0.78790.50030.59590.032*
C20.02171 (11)0.9054 (3)0.17891 (11)0.0228 (3)
H20.02861.00980.17990.027*
C40.06974 (11)0.5477 (3)0.12089 (10)0.0201 (3)
H40.05140.40870.08450.024*
C10.12425 (11)0.9539 (3)0.23424 (10)0.0199 (3)
H10.14201.08810.27330.024*
C30.00598 (11)0.7028 (3)0.12236 (10)0.0231 (3)
H30.07470.67030.08560.028*
C90.45264 (10)0.3070 (2)0.29454 (9)0.0150 (2)
H140.44560.16340.26180.018*
H150.3129 (13)0.971 (3)0.3234 (12)0.018 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01602 (18)0.01739 (18)0.01652 (17)0.00026 (12)0.00384 (13)0.00450 (11)
O10.0212 (5)0.0192 (5)0.0192 (5)0.0004 (4)0.0041 (4)0.0037 (4)
N10.0149 (5)0.0108 (5)0.0202 (5)0.0003 (4)0.0036 (4)0.0024 (4)
C110.0145 (6)0.0128 (6)0.0148 (5)0.0002 (4)0.0061 (5)0.0008 (4)
C80.0137 (6)0.0131 (6)0.0150 (5)0.0022 (4)0.0059 (5)0.0003 (4)
C120.0162 (6)0.0112 (6)0.0156 (6)0.0004 (4)0.0067 (5)0.0008 (4)
C130.0159 (6)0.0159 (6)0.0160 (6)0.0009 (5)0.0070 (5)0.0015 (5)
C50.0155 (6)0.0153 (6)0.0150 (6)0.0007 (5)0.0045 (5)0.0019 (4)
C70.0147 (6)0.0113 (6)0.0155 (6)0.0003 (5)0.0065 (5)0.0012 (4)
C100.0150 (6)0.0124 (6)0.0177 (6)0.0014 (5)0.0074 (5)0.0012 (5)
C60.0147 (6)0.0142 (6)0.0154 (6)0.0003 (5)0.0042 (5)0.0018 (4)
C140.0158 (7)0.0205 (7)0.0233 (7)0.0024 (5)0.0041 (6)0.0005 (5)
C20.0164 (7)0.0238 (7)0.0252 (7)0.0043 (5)0.0055 (6)0.0004 (5)
C40.0189 (7)0.0203 (7)0.0177 (6)0.0022 (5)0.0043 (5)0.0019 (5)
C10.0181 (7)0.0179 (7)0.0219 (6)0.0019 (5)0.0063 (6)0.0020 (5)
C30.0141 (6)0.0273 (8)0.0225 (7)0.0005 (5)0.0022 (5)0.0011 (6)
C90.0175 (6)0.0104 (6)0.0190 (6)0.0007 (5)0.0096 (5)0.0015 (4)
Geometric parameters (Å, º) top
S1—C81.7606 (13)C5—C61.4003 (18)
S1—C51.7664 (14)C10—C91.3868 (18)
O1—C131.2216 (16)C10—H90.9300
N1—C71.3930 (16)C6—C11.3939 (18)
N1—C61.3948 (17)C14—H13A0.9600
N1—H150.829 (18)C14—H13B0.9600
C11—C101.3946 (18)C14—H13C0.9600
C11—C121.3980 (18)C2—C31.384 (2)
C11—C131.4903 (18)C2—C11.390 (2)
C8—C91.3908 (18)C2—H20.9300
C8—C71.4026 (18)C4—C31.393 (2)
C12—C71.3932 (18)C4—H40.9300
C12—H110.9300C1—H10.9300
C13—C141.5051 (19)C3—H30.9300
C5—C41.3891 (19)C9—H140.9300
C8—S1—C5100.77 (6)C1—C6—N1119.56 (12)
C7—N1—C6123.39 (11)C1—C6—C5118.93 (12)
C7—N1—H15113.9 (12)N1—C6—C5121.51 (12)
C6—N1—H15115.0 (12)C13—C14—H13A109.5
C10—C11—C12119.76 (12)C13—C14—H13B109.5
C10—C11—C13121.79 (12)H13A—C14—H13B109.5
C12—C11—C13118.44 (11)C13—C14—H13C109.5
C9—C8—C7120.20 (12)H13A—C14—H13C109.5
C9—C8—S1118.33 (10)H13B—C14—H13C109.5
C7—C8—S1121.34 (10)C3—C2—C1120.39 (13)
C7—C12—C11120.84 (12)C3—C2—H2119.8
C7—C12—H11119.6C1—C2—H2119.8
C11—C12—H11119.6C5—C4—C3120.36 (13)
O1—C13—C11120.67 (12)C5—C4—H4119.8
O1—C13—C14120.76 (12)C3—C4—H4119.8
C11—C13—C14118.55 (12)C2—C1—C6120.52 (13)
C4—C5—C6120.19 (12)C2—C1—H1119.7
C4—C5—S1118.48 (10)C6—C1—H1119.7
C6—C5—S1121.18 (10)C2—C3—C4119.54 (13)
N1—C7—C12119.68 (11)C2—C3—H3120.2
N1—C7—C8121.47 (12)C4—C3—H3120.2
C12—C7—C8118.83 (12)C10—C9—C8120.71 (12)
C9—C10—C11119.62 (12)C10—C9—H14119.6
C9—C10—H9120.2C8—C9—H14119.6
C11—C10—H9120.2
C5—S1—C8—C9159.37 (10)C12—C11—C10—C90.86 (18)
C5—S1—C8—C724.72 (12)C13—C11—C10—C9179.90 (11)
C10—C11—C12—C71.68 (18)C7—N1—C6—C1156.10 (12)
C13—C11—C12—C7179.06 (11)C7—N1—C6—C524.60 (19)
C10—C11—C13—O1179.23 (12)C4—C5—C6—C11.17 (19)
C12—C11—C13—O10.02 (18)S1—C5—C6—C1174.31 (10)
C10—C11—C13—C142.26 (18)C4—C5—C6—N1179.53 (13)
C12—C11—C13—C14178.50 (12)S1—C5—C6—N15.00 (18)
C8—S1—C5—C4158.90 (11)C6—C5—C4—C32.7 (2)
C8—S1—C5—C625.55 (12)S1—C5—C4—C3172.88 (11)
C6—N1—C7—C12156.23 (12)C3—C2—C1—C61.8 (2)
C6—N1—C7—C825.55 (19)N1—C6—C1—C2178.23 (13)
C11—C12—C7—N1177.47 (11)C5—C6—C1—C21.1 (2)
C11—C12—C7—C80.80 (18)C1—C2—C3—C40.3 (2)
C9—C8—C7—N1179.12 (11)C5—C4—C3—C22.0 (2)
S1—C8—C7—N13.28 (17)C11—C10—C9—C80.82 (19)
C9—C8—C7—C120.89 (18)C7—C8—C9—C101.71 (19)
S1—C8—C7—C12174.95 (9)S1—C8—C9—C10174.25 (10)
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C7–C12 ring.
D—H···AD—HH···AD···AD—H···A
N1—H15···O1i0.829 (18)2.198 (18)3.0042 (15)164.3 (17)
C9—H14···Cg3ii0.932.643.306 (7)130
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H11NOS
Mr241.30
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)14.3445 (18), 5.5425 (7), 15.694 (2)
β (°) 114.494 (2)
V3)1135.4 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.55 × 0.55 × 0.10
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.868, 0.974
No. of measured, independent and
observed [I > 2σ(I)] reflections
8194, 3331, 2828
Rint0.025
(sin θ/λ)max1)0.729
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.108, 1.04
No. of reflections3331
No. of parameters159
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.49, 0.29

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C7–C12 ring.
D—H···AD—HH···AD···AD—H···A
N1—H15···O1i0.829 (18)2.198 (18)3.0042 (15)164.3 (17)
C9—H14···Cg3ii0.932.643.306 (7)130
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y1/2, z+1/2.
 

Acknowledgements

JPJ thanks Dr Matthias Zeller and the YSU Department of Chemistry for their assistance with the data collection. The diffractometer was funded by NSF grant 0087210, by Ohio Board of Regents grant CAP-491, and by YSU. BN thanks Mangalore University for the research facilities and the UGC for financial assistance through a SAP chemical grant. HSY thanks the University of Mysore for sabbatical leave.

References

First citationBell, J. D., Blount, J. F., Briscoe, O. V. & Freeman, H. C. (1968). Chem. Commun. (London), pp. 1656–1657.  Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA  Google Scholar
First citationChu, S. S. C. & Van der Helm, D. (1974). Acta Cryst. B30, 2489–2490.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationChu, S. S. C. & Van der Helm, D. (1975). Acta Cryst. B31, 1179–1183.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationChu, S. S. C. & van der Helm, D. (1977). Acta Cryst. B33, 873–876.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationHarrison, W. T. A., Ashok, M. A., Yathirajan, H. S. & Narayana Achar, B. (2007). Acta Cryst. E63, o3322.  CSD CrossRef IUCr Journals Google Scholar
First citationKojilo, A., Karpinska, J., Kuzmicka, L., Misiuk, W., Puzanowska-Tarasiewicz, H. & Tarasiewicz, M. (2001). J. Trace Microprobe Technol. 19, 45–70.  Google Scholar
First citationLam, M., Oleinick, N. L. & Nieminen, A. L. (2001). J. Biol. Chem. 276, 47379–47386.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMcDowell, J. J. H. (1969). Acta Cryst. B25, 2175–2181.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationMcDowell, J. J. H. (1970). Acta Cryst. B26, 954–964.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationMcDowell, J. J. H. (1975). Acta Cryst. B31, 2256–2264.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationMcDowell, J. J. H. (1976). Acta Cryst. B32, 5–10.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationMcDowell, J. J. H. (1978). Acta Cryst. B34, 686–689.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationMcDowell, J. J. H. (1980). Acta Cryst. B36, 2178–2181.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationMiller, M. T., Gantzel, P. K. & Karpishin, T. B. (1999). J. Am. Chem. Soc. 121, 4292–4293.  Web of Science CSD CrossRef CAS Google Scholar
First citationPhelps, D. W. & Cordes, A. W. (1974). Acta Cryst. B30, 2812–2816.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationPhelps, D. W. & Cordes, A. W. (1975). Acta Cryst. B31, 2542–2544.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, J., Dong, M., Liang, J., Chang, Z., Feng, S., Wang, H. & Ding, N. (2008). Chin. J. Lab. Diagn. 12, 381–382.  Google Scholar
First citationWang, Q., Yang, L., Xu, Z. & Sun, Y. (2009). Acta Cryst. E65, o1978.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWermuth, C. G. (2003). The Practice of Medicinal Chemistry, 2nd ed. London: Acdemic Press.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 2| February 2011| Pages o430-o431
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds