metal-organic compounds
(2,2′-Bipyridyl-κ2N,N′)chlorido(DL-threoninato-κ2N,O1)copper(II) monohydrate
aSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my
In the title compound, [Cu(C4H8NO3)Cl(C10H8N2)]·H2O, the CuII atom is in a slightly distorted square-pyramidal coordination geometry with the basal plane defined by the two N atoms of the bipyridine ligand and the N and O atoms from the threoninate ion and the apical site occupied by the Cl atom. In the crystal, intermolecular O—H⋯O, N—H⋯O, O—H⋯Cl, C—H⋯O and C—H⋯Cl interactions link the molecules into a three-dimensional network. A π–π interaction with a centroid–centroid distance of 3.461 (1) Å is also present.
Related literature
For background to superoxide dismutase activity, see: Kumar & Arunachalam (2007); Patel et al. (2006); Rao et al. (2007); Zhang et al. (2004). For a related structure, see: Tan et al. (2010).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2009); cell SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).
Supporting information
10.1107/S1600536811002583/is2663sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811002583/is2663Isup2.hkl
To an ethanolic solution (10 mL) of copper(II) chloride dihydrate (0.1708 g, 1 mmol), an ethanolic solution (10 mL) of DL-threonine (0.1191 g, 1 mmol) as well as an ethanolic solution (10 mL) of 2,2'-bipyridyl (0.1561 g, 1 mmol) were added. The pH of the resulting solution was then adjusted to pH 8 by adding a few drops of NaOH aqueous solution. The blue precipitate formed was filtered and single crystals suitable for X-ray diffraction were obtained by recrystallization of the complex.
The water molecule's hydrogen atoms were located in a difference map and refined using a riding model, with Uiso(H) = 1.5Ueq(O). H atoms attached to N and other O atoms were located in a difference Fourier map and were freely refined. The remaining H atoms were positioned geometrically [C—H = 0.93 to 0.98 Å] and refined using a riding model, with Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating-group model was applied for the methyl group.
Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).Fig. 1. The molecular structure, showing 30% probability displacement ellipsoids and the atom-numbering scheme. Hydrogen atoms are shown as spheres of arbitrary radius. | |
Fig. 2. The crystal packing of (I) viewed along the c axis. Dashed lines indicate hydrogen bonds. H atoms not involved in the hydrogen bond interactions have been omitted for clarity. |
[Cu(C4H8NO3)Cl(C10H8N2)]·H2O | F(000) = 804 |
Mr = 391.30 | Dx = 1.605 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 6390 reflections |
a = 7.4825 (1) Å | θ = 2.3–27.7° |
b = 12.0378 (2) Å | µ = 1.54 mm−1 |
c = 18.2083 (3) Å | T = 297 K |
β = 99.097 (1)° | Block, blue |
V = 1619.44 (4) Å3 | 0.39 × 0.33 × 0.10 mm |
Z = 4 |
Bruker SMART APEXII CCD area-detector diffractometer | 3767 independent reflections |
Radiation source: fine-focus sealed tube | 3262 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.026 |
ϕ and ω scans | θmax = 27.7°, θmin = 2.0° |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | h = −9→9 |
Tmin = 0.585, Tmax = 0.864 | k = −15→15 |
14209 measured reflections | l = −22→23 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.033 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.086 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0357P)2 + 1.3397P] where P = (Fo2 + 2Fc2)/3 |
3767 reflections | (Δ/σ)max = 0.001 |
221 parameters | Δρmax = 0.61 e Å−3 |
0 restraints | Δρmin = −0.33 e Å−3 |
[Cu(C4H8NO3)Cl(C10H8N2)]·H2O | V = 1619.44 (4) Å3 |
Mr = 391.30 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 7.4825 (1) Å | µ = 1.54 mm−1 |
b = 12.0378 (2) Å | T = 297 K |
c = 18.2083 (3) Å | 0.39 × 0.33 × 0.10 mm |
β = 99.097 (1)° |
Bruker SMART APEXII CCD area-detector diffractometer | 3767 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | 3262 reflections with I > 2σ(I) |
Tmin = 0.585, Tmax = 0.864 | Rint = 0.026 |
14209 measured reflections |
R[F2 > 2σ(F2)] = 0.033 | 0 restraints |
wR(F2) = 0.086 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | Δρmax = 0.61 e Å−3 |
3767 reflections | Δρmin = −0.33 e Å−3 |
221 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.21099 (4) | 0.51646 (2) | 0.150342 (15) | 0.03011 (9) | |
Cl1 | 0.50867 (8) | 0.61287 (6) | 0.20278 (4) | 0.04414 (16) | |
O1 | 0.0535 (2) | 0.63696 (14) | 0.17196 (9) | 0.0410 (4) | |
O2 | −0.0305 (3) | 0.72701 (15) | 0.26746 (11) | 0.0485 (5) | |
O3 | −0.1859 (3) | 0.46636 (18) | 0.29026 (12) | 0.0496 (5) | |
N1 | 0.1999 (2) | 0.57032 (16) | 0.04640 (10) | 0.0313 (4) | |
N2 | 0.3031 (2) | 0.37847 (15) | 0.10406 (10) | 0.0311 (4) | |
N3 | 0.1738 (3) | 0.45802 (17) | 0.24897 (11) | 0.0323 (4) | |
C1 | 0.1465 (3) | 0.6719 (2) | 0.02282 (15) | 0.0426 (6) | |
H1A | 0.1111 | 0.7221 | 0.0565 | 0.051* | |
C2 | 0.1426 (4) | 0.7044 (2) | −0.04996 (15) | 0.0489 (7) | |
H2A | 0.1038 | 0.7753 | −0.0652 | 0.059* | |
C3 | 0.1965 (4) | 0.6308 (3) | −0.09978 (14) | 0.0471 (6) | |
H3A | 0.1946 | 0.6513 | −0.1491 | 0.056* | |
C4 | 0.2534 (3) | 0.5266 (2) | −0.07581 (13) | 0.0411 (6) | |
H4A | 0.2920 | 0.4760 | −0.1086 | 0.049* | |
C5 | 0.2525 (3) | 0.49774 (19) | −0.00186 (12) | 0.0301 (5) | |
C6 | 0.3081 (3) | 0.38790 (19) | 0.03022 (12) | 0.0310 (5) | |
C7 | 0.3610 (3) | 0.3007 (2) | −0.01053 (14) | 0.0414 (6) | |
H7A | 0.3630 | 0.3085 | −0.0612 | 0.050* | |
C8 | 0.4109 (4) | 0.2015 (2) | 0.02508 (17) | 0.0484 (6) | |
H8A | 0.4470 | 0.1417 | −0.0014 | 0.058* | |
C9 | 0.4068 (4) | 0.1920 (2) | 0.10013 (16) | 0.0446 (6) | |
H9A | 0.4409 | 0.1261 | 0.1251 | 0.054* | |
C10 | 0.3511 (3) | 0.2820 (2) | 0.13779 (14) | 0.0381 (5) | |
H10A | 0.3469 | 0.2752 | 0.1884 | 0.046* | |
C11 | 0.0373 (3) | 0.64663 (19) | 0.24007 (14) | 0.0351 (5) | |
C12 | 0.1085 (3) | 0.5511 (2) | 0.29117 (13) | 0.0339 (5) | |
H12A | 0.2128 | 0.5791 | 0.3256 | 0.041* | |
C13 | −0.0346 (4) | 0.5158 (2) | 0.33788 (14) | 0.0407 (6) | |
H13A | −0.0767 | 0.5817 | 0.3617 | 0.049* | |
C14 | 0.0338 (5) | 0.4324 (3) | 0.39667 (17) | 0.0614 (8) | |
H14A | −0.0561 | 0.4205 | 0.4281 | 0.092* | |
H14B | 0.1429 | 0.4596 | 0.4260 | 0.092* | |
H14C | 0.0584 | 0.3635 | 0.3736 | 0.092* | |
O1W | 0.5123 (3) | 0.36924 (19) | 0.34690 (13) | 0.0643 (6) | |
H1W1 | 0.6010 | 0.3869 | 0.3342 | 0.096* | |
H2W1 | 0.5185 | 0.3006 | 0.3382 | 0.096* | |
H1N3 | 0.098 (4) | 0.405 (2) | 0.2438 (14) | 0.033 (7)* | |
H2N3 | 0.264 (4) | 0.428 (2) | 0.2692 (16) | 0.042 (8)* | |
H1O3 | −0.246 (5) | 0.523 (3) | 0.268 (2) | 0.064 (11)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.03619 (16) | 0.03037 (15) | 0.02525 (15) | 0.00142 (11) | 0.00949 (11) | −0.00088 (11) |
Cl1 | 0.0391 (3) | 0.0492 (4) | 0.0433 (3) | −0.0077 (3) | 0.0043 (2) | −0.0089 (3) |
O1 | 0.0500 (10) | 0.0394 (9) | 0.0360 (9) | 0.0098 (8) | 0.0146 (8) | 0.0018 (7) |
O2 | 0.0594 (11) | 0.0371 (9) | 0.0529 (11) | 0.0046 (8) | 0.0214 (9) | −0.0086 (8) |
O3 | 0.0383 (10) | 0.0506 (12) | 0.0613 (13) | −0.0045 (9) | 0.0120 (9) | 0.0059 (10) |
N1 | 0.0314 (9) | 0.0358 (10) | 0.0264 (9) | −0.0004 (8) | 0.0038 (7) | 0.0018 (8) |
N2 | 0.0334 (9) | 0.0323 (9) | 0.0284 (9) | −0.0017 (8) | 0.0074 (7) | 0.0000 (8) |
N3 | 0.0340 (10) | 0.0322 (10) | 0.0318 (10) | −0.0010 (9) | 0.0087 (8) | 0.0000 (8) |
C1 | 0.0444 (13) | 0.0397 (13) | 0.0442 (14) | 0.0064 (11) | 0.0084 (11) | 0.0057 (11) |
C2 | 0.0480 (15) | 0.0513 (16) | 0.0450 (15) | 0.0035 (12) | 0.0002 (12) | 0.0189 (13) |
C3 | 0.0434 (14) | 0.0672 (18) | 0.0286 (12) | −0.0052 (13) | 0.0000 (10) | 0.0143 (12) |
C4 | 0.0388 (12) | 0.0556 (16) | 0.0283 (12) | −0.0054 (11) | 0.0037 (10) | −0.0008 (11) |
C5 | 0.0273 (10) | 0.0385 (12) | 0.0239 (10) | −0.0059 (9) | 0.0025 (8) | −0.0022 (9) |
C6 | 0.0273 (10) | 0.0367 (12) | 0.0297 (11) | −0.0046 (9) | 0.0069 (8) | −0.0040 (9) |
C7 | 0.0449 (13) | 0.0467 (14) | 0.0339 (13) | −0.0029 (11) | 0.0105 (10) | −0.0108 (11) |
C8 | 0.0500 (15) | 0.0401 (14) | 0.0576 (17) | 0.0005 (12) | 0.0157 (13) | −0.0156 (13) |
C9 | 0.0458 (14) | 0.0355 (13) | 0.0540 (16) | 0.0019 (11) | 0.0127 (12) | 0.0035 (12) |
C10 | 0.0411 (12) | 0.0370 (12) | 0.0379 (13) | 0.0020 (10) | 0.0117 (10) | 0.0037 (10) |
C11 | 0.0320 (11) | 0.0324 (11) | 0.0426 (13) | −0.0046 (9) | 0.0107 (10) | −0.0066 (10) |
C12 | 0.0337 (11) | 0.0369 (12) | 0.0320 (12) | −0.0043 (9) | 0.0081 (9) | −0.0071 (10) |
C13 | 0.0483 (14) | 0.0429 (13) | 0.0333 (13) | −0.0021 (11) | 0.0144 (11) | −0.0018 (10) |
C14 | 0.077 (2) | 0.0639 (19) | 0.0447 (17) | 0.0044 (17) | 0.0156 (15) | 0.0145 (15) |
O1W | 0.0566 (12) | 0.0612 (13) | 0.0791 (16) | −0.0010 (10) | 0.0234 (11) | 0.0110 (12) |
Cu1—O1 | 1.9477 (17) | C4—C5 | 1.392 (3) |
Cu1—N3 | 1.989 (2) | C4—H4A | 0.9300 |
Cu1—N1 | 1.9898 (18) | C5—C6 | 1.479 (3) |
Cu1—N2 | 2.0317 (19) | C6—C7 | 1.379 (3) |
Cu1—Cl1 | 2.5588 (7) | C7—C8 | 1.382 (4) |
O1—C11 | 1.270 (3) | C7—H7A | 0.9300 |
O2—C11 | 1.234 (3) | C8—C9 | 1.376 (4) |
O3—C13 | 1.441 (3) | C8—H8A | 0.9300 |
O3—H1O3 | 0.88 (4) | C9—C10 | 1.381 (4) |
N1—C1 | 1.336 (3) | C9—H9A | 0.9300 |
N1—C5 | 1.342 (3) | C10—H10A | 0.9300 |
N2—C10 | 1.336 (3) | C11—C12 | 1.522 (3) |
N2—C6 | 1.356 (3) | C12—C13 | 1.529 (3) |
N3—C12 | 1.484 (3) | C12—H12A | 0.9800 |
N3—H1N3 | 0.85 (3) | C13—C14 | 1.498 (4) |
N3—H2N3 | 0.80 (3) | C13—H13A | 0.9800 |
C1—C2 | 1.377 (4) | C14—H14A | 0.9600 |
C1—H1A | 0.9300 | C14—H14B | 0.9600 |
C2—C3 | 1.373 (4) | C14—H14C | 0.9600 |
C2—H2A | 0.9300 | O1W—H1W1 | 0.7668 |
C3—C4 | 1.373 (4) | O1W—H2W1 | 0.8436 |
C3—H3A | 0.9300 | ||
O1—Cu1—N3 | 84.58 (8) | C4—C5—C6 | 124.1 (2) |
O1—Cu1—N1 | 90.79 (7) | N2—C6—C7 | 121.7 (2) |
N3—Cu1—N1 | 169.53 (9) | N2—C6—C5 | 114.61 (19) |
O1—Cu1—N2 | 161.51 (8) | C7—C6—C5 | 123.7 (2) |
N3—Cu1—N2 | 100.98 (8) | C6—C7—C8 | 119.0 (2) |
N1—Cu1—N2 | 80.67 (8) | C6—C7—H7A | 120.5 |
O1—Cu1—Cl1 | 96.05 (6) | C8—C7—H7A | 120.5 |
N3—Cu1—Cl1 | 93.51 (7) | C9—C8—C7 | 119.4 (2) |
N1—Cu1—Cl1 | 96.32 (6) | C9—C8—H8A | 120.3 |
N2—Cu1—Cl1 | 101.14 (5) | C7—C8—H8A | 120.3 |
C11—O1—Cu1 | 114.81 (15) | C8—C9—C10 | 118.9 (2) |
C13—O3—H1O3 | 105 (2) | C8—C9—H9A | 120.5 |
C1—N1—C5 | 119.3 (2) | C10—C9—H9A | 120.5 |
C1—N1—Cu1 | 124.71 (17) | N2—C10—C9 | 122.3 (2) |
C5—N1—Cu1 | 116.00 (15) | N2—C10—H10A | 118.9 |
C10—N2—C6 | 118.8 (2) | C9—C10—H10A | 118.9 |
C10—N2—Cu1 | 127.17 (16) | O2—C11—O1 | 125.1 (2) |
C6—N2—Cu1 | 114.03 (15) | O2—C11—C12 | 118.2 (2) |
C12—N3—Cu1 | 107.76 (15) | O1—C11—C12 | 116.7 (2) |
C12—N3—H1N3 | 110.7 (17) | N3—C12—C11 | 111.47 (19) |
Cu1—N3—H1N3 | 110.6 (17) | N3—C12—C13 | 113.29 (19) |
C12—N3—H2N3 | 115 (2) | C11—C12—C13 | 109.98 (19) |
Cu1—N3—H2N3 | 110 (2) | N3—C12—H12A | 107.3 |
H1N3—N3—H2N3 | 102 (3) | C11—C12—H12A | 107.3 |
N1—C1—C2 | 121.9 (3) | C13—C12—H12A | 107.3 |
N1—C1—H1A | 119.0 | O3—C13—C14 | 107.4 (2) |
C2—C1—H1A | 119.0 | O3—C13—C12 | 109.4 (2) |
C3—C2—C1 | 119.2 (3) | C14—C13—C12 | 113.2 (2) |
C3—C2—H2A | 120.4 | O3—C13—H13A | 108.9 |
C1—C2—H2A | 120.4 | C14—C13—H13A | 108.9 |
C4—C3—C2 | 119.2 (2) | C12—C13—H13A | 108.9 |
C4—C3—H3A | 120.4 | C13—C14—H14A | 109.5 |
C2—C3—H3A | 120.4 | C13—C14—H14B | 109.5 |
C3—C4—C5 | 119.1 (2) | H14A—C14—H14B | 109.5 |
C3—C4—H4A | 120.4 | C13—C14—H14C | 109.5 |
C5—C4—H4A | 120.4 | H14A—C14—H14C | 109.5 |
N1—C5—C4 | 121.2 (2) | H14B—C14—H14C | 109.5 |
N1—C5—C6 | 114.65 (19) | H1W1—O1W—H2W1 | 97.9 |
N3—Cu1—O1—C11 | 18.27 (17) | C1—N1—C5—C6 | −179.8 (2) |
N1—Cu1—O1—C11 | −171.14 (17) | Cu1—N1—C5—C6 | 0.9 (2) |
N2—Cu1—O1—C11 | 126.9 (2) | C3—C4—C5—N1 | −1.0 (4) |
Cl1—Cu1—O1—C11 | −74.70 (16) | C3—C4—C5—C6 | 179.2 (2) |
O1—Cu1—N1—C1 | 17.4 (2) | C10—N2—C6—C7 | 0.1 (3) |
N3—Cu1—N1—C1 | 81.0 (5) | Cu1—N2—C6—C7 | −177.65 (17) |
N2—Cu1—N1—C1 | −179.0 (2) | C10—N2—C6—C5 | 180.0 (2) |
Cl1—Cu1—N1—C1 | −78.73 (19) | Cu1—N2—C6—C5 | 2.2 (2) |
O1—Cu1—N1—C5 | −163.29 (16) | N1—C5—C6—N2 | −2.0 (3) |
N3—Cu1—N1—C5 | −99.7 (5) | C4—C5—C6—N2 | 177.8 (2) |
N2—Cu1—N1—C5 | 0.23 (15) | N1—C5—C6—C7 | 177.8 (2) |
Cl1—Cu1—N1—C5 | 100.54 (15) | C4—C5—C6—C7 | −2.4 (4) |
O1—Cu1—N2—C10 | −115.5 (3) | N2—C6—C7—C8 | −0.3 (4) |
N3—Cu1—N2—C10 | −9.4 (2) | C5—C6—C7—C8 | 179.8 (2) |
N1—Cu1—N2—C10 | −178.9 (2) | C6—C7—C8—C9 | 0.0 (4) |
Cl1—Cu1—N2—C10 | 86.41 (19) | C7—C8—C9—C10 | 0.6 (4) |
O1—Cu1—N2—C6 | 62.1 (3) | C6—N2—C10—C9 | 0.5 (4) |
N3—Cu1—N2—C6 | 168.12 (15) | Cu1—N2—C10—C9 | 177.91 (18) |
N1—Cu1—N2—C6 | −1.37 (15) | C8—C9—C10—N2 | −0.8 (4) |
Cl1—Cu1—N2—C6 | −96.04 (15) | Cu1—O1—C11—O2 | 167.49 (19) |
O1—Cu1—N3—C12 | −18.87 (15) | Cu1—O1—C11—C12 | −12.2 (3) |
N1—Cu1—N3—C12 | −83.0 (5) | Cu1—N3—C12—C11 | 17.4 (2) |
N2—Cu1—N3—C12 | 178.96 (15) | Cu1—N3—C12—C13 | 142.08 (18) |
Cl1—Cu1—N3—C12 | 76.88 (15) | O2—C11—C12—N3 | 176.1 (2) |
C5—N1—C1—C2 | 0.5 (4) | O1—C11—C12—N3 | −4.2 (3) |
Cu1—N1—C1—C2 | 179.73 (19) | O2—C11—C12—C13 | 49.6 (3) |
N1—C1—C2—C3 | −0.6 (4) | O1—C11—C12—C13 | −130.7 (2) |
C1—C2—C3—C4 | −0.1 (4) | N3—C12—C13—O3 | −57.7 (3) |
C2—C3—C4—C5 | 0.9 (4) | C11—C12—C13—O3 | 67.8 (3) |
C1—N1—C5—C4 | 0.4 (3) | N3—C12—C13—C14 | 62.1 (3) |
Cu1—N1—C5—C4 | −178.95 (17) | C11—C12—C13—C14 | −172.4 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1W1···O3i | 0.77 | 2.12 | 2.875 (3) | 168 |
O1W—H2W1···Cl1ii | 0.84 | 2.38 | 3.213 (2) | 170 |
N3—H1N3···O2iii | 0.85 (3) | 2.20 (2) | 2.978 (3) | 152 (3) |
N3—H2N3···O1W | 0.80 (3) | 2.26 (3) | 3.051 (3) | 167 (3) |
O3—H1O3···Cl1iv | 0.88 (4) | 2.29 (4) | 3.118 (2) | 156 (3) |
C3—H3A···O2v | 0.93 | 2.55 | 3.219 (4) | 130 |
C4—H4A···Cl1vi | 0.93 | 2.67 | 3.555 (2) | 160 |
Symmetry codes: (i) x+1, y, z; (ii) −x+1, y−1/2, −z+1/2; (iii) −x, y−1/2, −z+1/2; (iv) x−1, y, z; (v) x, −y+3/2, z−1/2; (vi) −x+1, −y+1, −z. |
Experimental details
Crystal data | |
Chemical formula | [Cu(C4H8NO3)Cl(C10H8N2)]·H2O |
Mr | 391.30 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 297 |
a, b, c (Å) | 7.4825 (1), 12.0378 (2), 18.2083 (3) |
β (°) | 99.097 (1) |
V (Å3) | 1619.44 (4) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.54 |
Crystal size (mm) | 0.39 × 0.33 × 0.10 |
Data collection | |
Diffractometer | Bruker SMART APEXII CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2009) |
Tmin, Tmax | 0.585, 0.864 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 14209, 3767, 3262 |
Rint | 0.026 |
(sin θ/λ)max (Å−1) | 0.653 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.033, 0.086, 1.05 |
No. of reflections | 3767 |
No. of parameters | 221 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.61, −0.33 |
Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1W1···O3i | 0.77 | 2.12 | 2.875 (3) | 168 |
O1W—H2W1···Cl1ii | 0.84 | 2.38 | 3.213 (2) | 170 |
N3—H1N3···O2iii | 0.85 (3) | 2.20 (2) | 2.978 (3) | 152 (3) |
N3—H2N3···O1W | 0.80 (3) | 2.26 (3) | 3.051 (3) | 167 (3) |
O3—H1O3···Cl1iv | 0.88 (4) | 2.29 (4) | 3.118 (2) | 156 (3) |
C3—H3A···O2v | 0.93 | 2.55 | 3.219 (4) | 130 |
C4—H4A···Cl1vi | 0.93 | 2.67 | 3.555 (2) | 160 |
Symmetry codes: (i) x+1, y, z; (ii) −x+1, y−1/2, −z+1/2; (iii) −x, y−1/2, −z+1/2; (iv) x−1, y, z; (v) x, −y+3/2, z−1/2; (vi) −x+1, −y+1, −z. |
Footnotes
‡Thomson Reuters ResearcherID: A-3561-2009.
Acknowledgements
The authors thank Universiti Sains Malaysia (USM) for the RU research grant (No. PKIMIA/815002). YHT thanks USM for the award of a USM Fellowship. HKF and MMR thank USM for the Research University Grant (No. 1001/PFIZIK/811160).
References
Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Kumar, R. S. & Arunachalam, S. (2007). Polyhedron, 26, 3255–3262. CAS Google Scholar
Patel, R. N., Singh, N., Shukla, K. K., Gundla, V. L. N. & Chauhan, U. K. (2006). Spectrochim. Acta Part A, 63, 21–26. CrossRef CAS Google Scholar
Rao, R., Patra, A. K. & Chetana, P. R. (2007). Polyhedron, 26, 5331–5338. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tan, Y.-H., Teoh, S.-G., Sek, K.-L., Loh, W.-S. & Fun, H.-K. (2010). Acta Cryst. E66, m595–m596. Web of Science CSD CrossRef IUCr Journals Google Scholar
Zhang, S. C., Zhu, Y. G., Tu, C., Wei, H. Y., Yang, Z., Lin, L. P., Ding, J., Zhang, J. F. & Guo, Z. J. (2004). J. Inorg. Biochem. 98, 2099–2106. Web of Science CSD CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Some copper complexes with amino acid ligands have been studied for the behavior of copper enzymes. Several reports showed that copper complexes of amino acids exhibit effective antitumor and artificial nuclease activities as they cleave DNA efficiently by oxidative and hydrolytic pathways. Copper(II) complexes play an important role in naturally occurring biological systems and act as pharmaceutical agents. Copper complexes containing polypyridyl ligands have received great attention as they exhibit a variety of biological properties such as antimycobaterial, anticandida, antitumor and antimicrobial activities. Mixed ligands copper complexes were reported to exhibit superoxide dismutase activity (Patel et al., 2006; Zhang et al., 2004; Kumar & Arunachalam, 2007; Rao et al., 2007; Tan et al., 2010). In the title compound, DL-threonine has been selected as it is a bio-essential amino acid.
All parameters in compound, (Fig. 1), are within normal range. The CuII is in a slightly distorted square-pyramidal coordination geometry, with the basal plane being defined by N1 and N2 atoms from the bipyridine group and N3 and O1 atoms from the threoninato group. The apical position is occupied by atom Cl1. The N3—H2N3···O1W interaction linked the water molecule with the main compound.
In the crystal structure (Fig. 2), intermolecular O1W—H1W1···O3i, O1W—H2W1···Cl1ii, N3—H1N3···O2iii, O3—H1O3···Cl1iv, C3—H3A···O2v and C4—H4A···Cl1vi (Table 1) interactions link the molecules into a three-dimensional network. The crystal packing is further stabilized by a π–π stacking interaction with Cg1···Cg2 distance of 3.461 (1) Å (Cg1 = centroid of Cu1/N1/N2/C5/C6 and Cg2 = centroid of N1/C1–C5).