metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2,2′-Bi­pyridyl-κ2N,N′)chlorido(DL-threoninato-κ2N,O1)copper(II) monohydrate

aSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 7 January 2011; accepted 19 January 2011; online 26 January 2011)

In the title compound, [Cu(C4H8NO3)Cl(C10H8N2)]·H2O, the CuII atom is in a slightly distorted square-pyramidal coordination geometry with the basal plane defined by the two N atoms of the bipyridine ligand and the N and O atoms from the threoninate ion and the apical site occupied by the Cl atom. In the crystal, inter­molecular O—H⋯O, N—H⋯O, O—H⋯Cl, C—H⋯O and C—H⋯Cl inter­actions link the mol­ecules into a three-dimensional network. A ππ inter­action with a centroid–centroid distance of 3.461 (1) Å is also present.

Related literature

For background to superoxide dismutase activity, see: Kumar & Arunachalam (2007[Kumar, R. S. & Arunachalam, S. (2007). Polyhedron, 26, 3255-3262.]); Patel et al. (2006[Patel, R. N., Singh, N., Shukla, K. K., Gundla, V. L. N. & Chauhan, U. K. (2006). Spectrochim. Acta Part A, 63, 21-26.]); Rao et al. (2007[Rao, R., Patra, A. K. & Chetana, P. R. (2007). Polyhedron, 26, 5331-5338.]); Zhang et al. (2004[Zhang, S. C., Zhu, Y. G., Tu, C., Wei, H. Y., Yang, Z., Lin, L. P., Ding, J., Zhang, J. F. & Guo, Z. J. (2004). J. Inorg. Biochem. 98, 2099-2106.]). For a related structure, see: Tan et al. (2010[Tan, Y.-H., Teoh, S.-G., Sek, K.-L., Loh, W.-S. & Fun, H.-K. (2010). Acta Cryst. E66, m595-m596.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C4H8NO3)Cl(C10H8N2)]·H2O

  • Mr = 391.30

  • Monoclinic, P 21 /c

  • a = 7.4825 (1) Å

  • b = 12.0378 (2) Å

  • c = 18.2083 (3) Å

  • β = 99.097 (1)°

  • V = 1619.44 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.54 mm−1

  • T = 297 K

  • 0.39 × 0.33 × 0.10 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.585, Tmax = 0.864

  • 14209 measured reflections

  • 3767 independent reflections

  • 3262 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.086

  • S = 1.05

  • 3767 reflections

  • 221 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.61 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W1⋯O3i 0.77 2.12 2.875 (3) 168
O1W—H2W1⋯Cl1ii 0.84 2.38 3.213 (2) 170
N3—H1N3⋯O2iii 0.85 (3) 2.20 (2) 2.978 (3) 152 (3)
N3—H2N3⋯O1W 0.80 (3) 2.26 (3) 3.051 (3) 167 (3)
O3—H1O3⋯Cl1iv 0.88 (4) 2.29 (4) 3.118 (2) 156 (3)
C3—H3A⋯O2v 0.93 2.55 3.219 (4) 130
C4—H4A⋯Cl1vi 0.93 2.67 3.555 (2) 160
Symmetry codes: (i) x+1, y, z; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) x-1, y, z; (v) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (vi) -x+1, -y+1, -z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Some copper complexes with amino acid ligands have been studied for the behavior of copper enzymes. Several reports showed that copper complexes of amino acids exhibit effective antitumor and artificial nuclease activities as they cleave DNA efficiently by oxidative and hydrolytic pathways. Copper(II) complexes play an important role in naturally occurring biological systems and act as pharmaceutical agents. Copper complexes containing polypyridyl ligands have received great attention as they exhibit a variety of biological properties such as antimycobaterial, anticandida, antitumor and antimicrobial activities. Mixed ligands copper complexes were reported to exhibit superoxide dismutase activity (Patel et al., 2006; Zhang et al., 2004; Kumar & Arunachalam, 2007; Rao et al., 2007; Tan et al., 2010). In the title compound, DL-threonine has been selected as it is a bio-essential amino acid.

All parameters in compound, (Fig. 1), are within normal range. The CuII is in a slightly distorted square-pyramidal coordination geometry, with the basal plane being defined by N1 and N2 atoms from the bipyridine group and N3 and O1 atoms from the threoninato group. The apical position is occupied by atom Cl1. The N3—H2N3···O1W interaction linked the water molecule with the main compound.

In the crystal structure (Fig. 2), intermolecular O1W—H1W1···O3i, O1W—H2W1···Cl1ii, N3—H1N3···O2iii, O3—H1O3···Cl1iv, C3—H3A···O2v and C4—H4A···Cl1vi (Table 1) interactions link the molecules into a three-dimensional network. The crystal packing is further stabilized by a ππ stacking interaction with Cg1···Cg2 distance of 3.461 (1) Å (Cg1 = centroid of Cu1/N1/N2/C5/C6 and Cg2 = centroid of N1/C1–C5).

Related literature top

For background to superoxide dismutase activity, see: Kumar & Arunachalam (2007); Patel et al. (2006); Rao et al. (2007); Zhang et al. (2004). For a related structure, see: Tan et al. (2010).

Experimental top

To an ethanolic solution (10 mL) of copper(II) chloride dihydrate (0.1708 g, 1 mmol), an ethanolic solution (10 mL) of DL-threonine (0.1191 g, 1 mmol) as well as an ethanolic solution (10 mL) of 2,2'-bipyridyl (0.1561 g, 1 mmol) were added. The pH of the resulting solution was then adjusted to pH 8 by adding a few drops of NaOH aqueous solution. The blue precipitate formed was filtered and single crystals suitable for X-ray diffraction were obtained by recrystallization of the complex.

Refinement top

The water molecule's hydrogen atoms were located in a difference map and refined using a riding model, with Uiso(H) = 1.5Ueq(O). H atoms attached to N and other O atoms were located in a difference Fourier map and were freely refined. The remaining H atoms were positioned geometrically [C—H = 0.93 to 0.98 Å] and refined using a riding model, with Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating-group model was applied for the methyl group.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure, showing 30% probability displacement ellipsoids and the atom-numbering scheme. Hydrogen atoms are shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. The crystal packing of (I) viewed along the c axis. Dashed lines indicate hydrogen bonds. H atoms not involved in the hydrogen bond interactions have been omitted for clarity.
(2,2'-Bipyridyl-κ2N,N')chlorido(DL-threoninato- κ2N,O1)copper(II) monohydrate top
Crystal data top
[Cu(C4H8NO3)Cl(C10H8N2)]·H2OF(000) = 804
Mr = 391.30Dx = 1.605 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6390 reflections
a = 7.4825 (1) Åθ = 2.3–27.7°
b = 12.0378 (2) ŵ = 1.54 mm1
c = 18.2083 (3) ÅT = 297 K
β = 99.097 (1)°Block, blue
V = 1619.44 (4) Å30.39 × 0.33 × 0.10 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3767 independent reflections
Radiation source: fine-focus sealed tube3262 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ϕ and ω scansθmax = 27.7°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 99
Tmin = 0.585, Tmax = 0.864k = 1515
14209 measured reflectionsl = 2223
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0357P)2 + 1.3397P]
where P = (Fo2 + 2Fc2)/3
3767 reflections(Δ/σ)max = 0.001
221 parametersΔρmax = 0.61 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
[Cu(C4H8NO3)Cl(C10H8N2)]·H2OV = 1619.44 (4) Å3
Mr = 391.30Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.4825 (1) ŵ = 1.54 mm1
b = 12.0378 (2) ÅT = 297 K
c = 18.2083 (3) Å0.39 × 0.33 × 0.10 mm
β = 99.097 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3767 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3262 reflections with I > 2σ(I)
Tmin = 0.585, Tmax = 0.864Rint = 0.026
14209 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.086H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.61 e Å3
3767 reflectionsΔρmin = 0.33 e Å3
221 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.21099 (4)0.51646 (2)0.150342 (15)0.03011 (9)
Cl10.50867 (8)0.61287 (6)0.20278 (4)0.04414 (16)
O10.0535 (2)0.63696 (14)0.17196 (9)0.0410 (4)
O20.0305 (3)0.72701 (15)0.26746 (11)0.0485 (5)
O30.1859 (3)0.46636 (18)0.29026 (12)0.0496 (5)
N10.1999 (2)0.57032 (16)0.04640 (10)0.0313 (4)
N20.3031 (2)0.37847 (15)0.10406 (10)0.0311 (4)
N30.1738 (3)0.45802 (17)0.24897 (11)0.0323 (4)
C10.1465 (3)0.6719 (2)0.02282 (15)0.0426 (6)
H1A0.11110.72210.05650.051*
C20.1426 (4)0.7044 (2)0.04996 (15)0.0489 (7)
H2A0.10380.77530.06520.059*
C30.1965 (4)0.6308 (3)0.09978 (14)0.0471 (6)
H3A0.19460.65130.14910.056*
C40.2534 (3)0.5266 (2)0.07581 (13)0.0411 (6)
H4A0.29200.47600.10860.049*
C50.2525 (3)0.49774 (19)0.00186 (12)0.0301 (5)
C60.3081 (3)0.38790 (19)0.03022 (12)0.0310 (5)
C70.3610 (3)0.3007 (2)0.01053 (14)0.0414 (6)
H7A0.36300.30850.06120.050*
C80.4109 (4)0.2015 (2)0.02508 (17)0.0484 (6)
H8A0.44700.14170.00140.058*
C90.4068 (4)0.1920 (2)0.10013 (16)0.0446 (6)
H9A0.44090.12610.12510.054*
C100.3511 (3)0.2820 (2)0.13779 (14)0.0381 (5)
H10A0.34690.27520.18840.046*
C110.0373 (3)0.64663 (19)0.24007 (14)0.0351 (5)
C120.1085 (3)0.5511 (2)0.29117 (13)0.0339 (5)
H12A0.21280.57910.32560.041*
C130.0346 (4)0.5158 (2)0.33788 (14)0.0407 (6)
H13A0.07670.58170.36170.049*
C140.0338 (5)0.4324 (3)0.39667 (17)0.0614 (8)
H14A0.05610.42050.42810.092*
H14B0.14290.45960.42600.092*
H14C0.05840.36350.37360.092*
O1W0.5123 (3)0.36924 (19)0.34690 (13)0.0643 (6)
H1W10.60100.38690.33420.096*
H2W10.51850.30060.33820.096*
H1N30.098 (4)0.405 (2)0.2438 (14)0.033 (7)*
H2N30.264 (4)0.428 (2)0.2692 (16)0.042 (8)*
H1O30.246 (5)0.523 (3)0.268 (2)0.064 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.03619 (16)0.03037 (15)0.02525 (15)0.00142 (11)0.00949 (11)0.00088 (11)
Cl10.0391 (3)0.0492 (4)0.0433 (3)0.0077 (3)0.0043 (2)0.0089 (3)
O10.0500 (10)0.0394 (9)0.0360 (9)0.0098 (8)0.0146 (8)0.0018 (7)
O20.0594 (11)0.0371 (9)0.0529 (11)0.0046 (8)0.0214 (9)0.0086 (8)
O30.0383 (10)0.0506 (12)0.0613 (13)0.0045 (9)0.0120 (9)0.0059 (10)
N10.0314 (9)0.0358 (10)0.0264 (9)0.0004 (8)0.0038 (7)0.0018 (8)
N20.0334 (9)0.0323 (9)0.0284 (9)0.0017 (8)0.0074 (7)0.0000 (8)
N30.0340 (10)0.0322 (10)0.0318 (10)0.0010 (9)0.0087 (8)0.0000 (8)
C10.0444 (13)0.0397 (13)0.0442 (14)0.0064 (11)0.0084 (11)0.0057 (11)
C20.0480 (15)0.0513 (16)0.0450 (15)0.0035 (12)0.0002 (12)0.0189 (13)
C30.0434 (14)0.0672 (18)0.0286 (12)0.0052 (13)0.0000 (10)0.0143 (12)
C40.0388 (12)0.0556 (16)0.0283 (12)0.0054 (11)0.0037 (10)0.0008 (11)
C50.0273 (10)0.0385 (12)0.0239 (10)0.0059 (9)0.0025 (8)0.0022 (9)
C60.0273 (10)0.0367 (12)0.0297 (11)0.0046 (9)0.0069 (8)0.0040 (9)
C70.0449 (13)0.0467 (14)0.0339 (13)0.0029 (11)0.0105 (10)0.0108 (11)
C80.0500 (15)0.0401 (14)0.0576 (17)0.0005 (12)0.0157 (13)0.0156 (13)
C90.0458 (14)0.0355 (13)0.0540 (16)0.0019 (11)0.0127 (12)0.0035 (12)
C100.0411 (12)0.0370 (12)0.0379 (13)0.0020 (10)0.0117 (10)0.0037 (10)
C110.0320 (11)0.0324 (11)0.0426 (13)0.0046 (9)0.0107 (10)0.0066 (10)
C120.0337 (11)0.0369 (12)0.0320 (12)0.0043 (9)0.0081 (9)0.0071 (10)
C130.0483 (14)0.0429 (13)0.0333 (13)0.0021 (11)0.0144 (11)0.0018 (10)
C140.077 (2)0.0639 (19)0.0447 (17)0.0044 (17)0.0156 (15)0.0145 (15)
O1W0.0566 (12)0.0612 (13)0.0791 (16)0.0010 (10)0.0234 (11)0.0110 (12)
Geometric parameters (Å, º) top
Cu1—O11.9477 (17)C4—C51.392 (3)
Cu1—N31.989 (2)C4—H4A0.9300
Cu1—N11.9898 (18)C5—C61.479 (3)
Cu1—N22.0317 (19)C6—C71.379 (3)
Cu1—Cl12.5588 (7)C7—C81.382 (4)
O1—C111.270 (3)C7—H7A0.9300
O2—C111.234 (3)C8—C91.376 (4)
O3—C131.441 (3)C8—H8A0.9300
O3—H1O30.88 (4)C9—C101.381 (4)
N1—C11.336 (3)C9—H9A0.9300
N1—C51.342 (3)C10—H10A0.9300
N2—C101.336 (3)C11—C121.522 (3)
N2—C61.356 (3)C12—C131.529 (3)
N3—C121.484 (3)C12—H12A0.9800
N3—H1N30.85 (3)C13—C141.498 (4)
N3—H2N30.80 (3)C13—H13A0.9800
C1—C21.377 (4)C14—H14A0.9600
C1—H1A0.9300C14—H14B0.9600
C2—C31.373 (4)C14—H14C0.9600
C2—H2A0.9300O1W—H1W10.7668
C3—C41.373 (4)O1W—H2W10.8436
C3—H3A0.9300
O1—Cu1—N384.58 (8)C4—C5—C6124.1 (2)
O1—Cu1—N190.79 (7)N2—C6—C7121.7 (2)
N3—Cu1—N1169.53 (9)N2—C6—C5114.61 (19)
O1—Cu1—N2161.51 (8)C7—C6—C5123.7 (2)
N3—Cu1—N2100.98 (8)C6—C7—C8119.0 (2)
N1—Cu1—N280.67 (8)C6—C7—H7A120.5
O1—Cu1—Cl196.05 (6)C8—C7—H7A120.5
N3—Cu1—Cl193.51 (7)C9—C8—C7119.4 (2)
N1—Cu1—Cl196.32 (6)C9—C8—H8A120.3
N2—Cu1—Cl1101.14 (5)C7—C8—H8A120.3
C11—O1—Cu1114.81 (15)C8—C9—C10118.9 (2)
C13—O3—H1O3105 (2)C8—C9—H9A120.5
C1—N1—C5119.3 (2)C10—C9—H9A120.5
C1—N1—Cu1124.71 (17)N2—C10—C9122.3 (2)
C5—N1—Cu1116.00 (15)N2—C10—H10A118.9
C10—N2—C6118.8 (2)C9—C10—H10A118.9
C10—N2—Cu1127.17 (16)O2—C11—O1125.1 (2)
C6—N2—Cu1114.03 (15)O2—C11—C12118.2 (2)
C12—N3—Cu1107.76 (15)O1—C11—C12116.7 (2)
C12—N3—H1N3110.7 (17)N3—C12—C11111.47 (19)
Cu1—N3—H1N3110.6 (17)N3—C12—C13113.29 (19)
C12—N3—H2N3115 (2)C11—C12—C13109.98 (19)
Cu1—N3—H2N3110 (2)N3—C12—H12A107.3
H1N3—N3—H2N3102 (3)C11—C12—H12A107.3
N1—C1—C2121.9 (3)C13—C12—H12A107.3
N1—C1—H1A119.0O3—C13—C14107.4 (2)
C2—C1—H1A119.0O3—C13—C12109.4 (2)
C3—C2—C1119.2 (3)C14—C13—C12113.2 (2)
C3—C2—H2A120.4O3—C13—H13A108.9
C1—C2—H2A120.4C14—C13—H13A108.9
C4—C3—C2119.2 (2)C12—C13—H13A108.9
C4—C3—H3A120.4C13—C14—H14A109.5
C2—C3—H3A120.4C13—C14—H14B109.5
C3—C4—C5119.1 (2)H14A—C14—H14B109.5
C3—C4—H4A120.4C13—C14—H14C109.5
C5—C4—H4A120.4H14A—C14—H14C109.5
N1—C5—C4121.2 (2)H14B—C14—H14C109.5
N1—C5—C6114.65 (19)H1W1—O1W—H2W197.9
N3—Cu1—O1—C1118.27 (17)C1—N1—C5—C6179.8 (2)
N1—Cu1—O1—C11171.14 (17)Cu1—N1—C5—C60.9 (2)
N2—Cu1—O1—C11126.9 (2)C3—C4—C5—N11.0 (4)
Cl1—Cu1—O1—C1174.70 (16)C3—C4—C5—C6179.2 (2)
O1—Cu1—N1—C117.4 (2)C10—N2—C6—C70.1 (3)
N3—Cu1—N1—C181.0 (5)Cu1—N2—C6—C7177.65 (17)
N2—Cu1—N1—C1179.0 (2)C10—N2—C6—C5180.0 (2)
Cl1—Cu1—N1—C178.73 (19)Cu1—N2—C6—C52.2 (2)
O1—Cu1—N1—C5163.29 (16)N1—C5—C6—N22.0 (3)
N3—Cu1—N1—C599.7 (5)C4—C5—C6—N2177.8 (2)
N2—Cu1—N1—C50.23 (15)N1—C5—C6—C7177.8 (2)
Cl1—Cu1—N1—C5100.54 (15)C4—C5—C6—C72.4 (4)
O1—Cu1—N2—C10115.5 (3)N2—C6—C7—C80.3 (4)
N3—Cu1—N2—C109.4 (2)C5—C6—C7—C8179.8 (2)
N1—Cu1—N2—C10178.9 (2)C6—C7—C8—C90.0 (4)
Cl1—Cu1—N2—C1086.41 (19)C7—C8—C9—C100.6 (4)
O1—Cu1—N2—C662.1 (3)C6—N2—C10—C90.5 (4)
N3—Cu1—N2—C6168.12 (15)Cu1—N2—C10—C9177.91 (18)
N1—Cu1—N2—C61.37 (15)C8—C9—C10—N20.8 (4)
Cl1—Cu1—N2—C696.04 (15)Cu1—O1—C11—O2167.49 (19)
O1—Cu1—N3—C1218.87 (15)Cu1—O1—C11—C1212.2 (3)
N1—Cu1—N3—C1283.0 (5)Cu1—N3—C12—C1117.4 (2)
N2—Cu1—N3—C12178.96 (15)Cu1—N3—C12—C13142.08 (18)
Cl1—Cu1—N3—C1276.88 (15)O2—C11—C12—N3176.1 (2)
C5—N1—C1—C20.5 (4)O1—C11—C12—N34.2 (3)
Cu1—N1—C1—C2179.73 (19)O2—C11—C12—C1349.6 (3)
N1—C1—C2—C30.6 (4)O1—C11—C12—C13130.7 (2)
C1—C2—C3—C40.1 (4)N3—C12—C13—O357.7 (3)
C2—C3—C4—C50.9 (4)C11—C12—C13—O367.8 (3)
C1—N1—C5—C40.4 (3)N3—C12—C13—C1462.1 (3)
Cu1—N1—C5—C4178.95 (17)C11—C12—C13—C14172.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O3i0.772.122.875 (3)168
O1W—H2W1···Cl1ii0.842.383.213 (2)170
N3—H1N3···O2iii0.85 (3)2.20 (2)2.978 (3)152 (3)
N3—H2N3···O1W0.80 (3)2.26 (3)3.051 (3)167 (3)
O3—H1O3···Cl1iv0.88 (4)2.29 (4)3.118 (2)156 (3)
C3—H3A···O2v0.932.553.219 (4)130
C4—H4A···Cl1vi0.932.673.555 (2)160
Symmetry codes: (i) x+1, y, z; (ii) x+1, y1/2, z+1/2; (iii) x, y1/2, z+1/2; (iv) x1, y, z; (v) x, y+3/2, z1/2; (vi) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula[Cu(C4H8NO3)Cl(C10H8N2)]·H2O
Mr391.30
Crystal system, space groupMonoclinic, P21/c
Temperature (K)297
a, b, c (Å)7.4825 (1), 12.0378 (2), 18.2083 (3)
β (°) 99.097 (1)
V3)1619.44 (4)
Z4
Radiation typeMo Kα
µ (mm1)1.54
Crystal size (mm)0.39 × 0.33 × 0.10
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.585, 0.864
No. of measured, independent and
observed [I > 2σ(I)] reflections
14209, 3767, 3262
Rint0.026
(sin θ/λ)max1)0.653
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.086, 1.05
No. of reflections3767
No. of parameters221
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.61, 0.33

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O3i0.772.122.875 (3)168
O1W—H2W1···Cl1ii0.842.383.213 (2)170
N3—H1N3···O2iii0.85 (3)2.20 (2)2.978 (3)152 (3)
N3—H2N3···O1W0.80 (3)2.26 (3)3.051 (3)167 (3)
O3—H1O3···Cl1iv0.88 (4)2.29 (4)3.118 (2)156 (3)
C3—H3A···O2v0.932.553.219 (4)130
C4—H4A···Cl1vi0.932.673.555 (2)160
Symmetry codes: (i) x+1, y, z; (ii) x+1, y1/2, z+1/2; (iii) x, y1/2, z+1/2; (iv) x1, y, z; (v) x, y+3/2, z1/2; (vi) x+1, y+1, z.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

The authors thank Universiti Sains Malaysia (USM) for the RU research grant (No. PKIMIA/815002). YHT thanks USM for the award of a USM Fellowship. HKF and MMR thank USM for the Research University Grant (No. 1001/PFIZIK/811160).

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKumar, R. S. & Arunachalam, S. (2007). Polyhedron, 26, 3255–3262.  CAS Google Scholar
First citationPatel, R. N., Singh, N., Shukla, K. K., Gundla, V. L. N. & Chauhan, U. K. (2006). Spectrochim. Acta Part A, 63, 21–26.  CrossRef CAS Google Scholar
First citationRao, R., Patra, A. K. & Chetana, P. R. (2007). Polyhedron, 26, 5331–5338.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTan, Y.-H., Teoh, S.-G., Sek, K.-L., Loh, W.-S. & Fun, H.-K. (2010). Acta Cryst. E66, m595–m596.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, S. C., Zhu, Y. G., Tu, C., Wei, H. Y., Yang, Z., Lin, L. P., Ding, J., Zhang, J. F. & Guo, Z. J. (2004). J. Inorg. Biochem. 98, 2099–2106.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds