organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(4-Chloro­phen­yl)-3-{5-[(E)-2-phenyl­ethen­yl]-1,3,4-thia­diazol-2-yl}urea

aDepartment of Chemistry, Zhoukou Normal University, Zhoukou 466000, People's Republic of China
*Correspondence e-mail: zksywzy@163.com

(Received 7 January 2011; accepted 18 January 2011; online 29 January 2011)

In the title compound, C17H13ClN4OS, the 1,3,4-thia­diazole ring makes dihedral angles of 9.70 (15) and 7.22 (10)° with the benzene and phenyl rings, respectively; the dihedral angle between these two rings is 6.37 (19)°. In the crystal, pairs of N—H⋯N and C—H⋯O hydrogen bonds between inversion-related mol­ecules result in supra­molecular ribbons displaying alternate R22(8) and R22(14) graph-set ring motifs.

Related literature

For the biological activity of urea derivatives, see: Abad et al. (2004[Abad, A., Agullo, C., Cunat, A. C., Jimenez, R. & Vilanova, C. (2004). J. Agric. Food Chem. 52, 4675-4683.]); Chen et al. (2005[Chen, L., Wang, Q. M., Huang, R. Q., Mao, C. H., Shang, J. & Bi, F. C. (2005). J. Agric. Food Chem. 53, 38-41.]); Yonova & Stoilkova (2005[Yonova, P. A. & Stoilkova, G. M. (2005). J. Plant Growth Regul. 23, 280-291.]). For the biological activity of 1,3,4-thia­diazole derivatives, see: Guzeldemirci & Kucukbasmaci (2010[Guzeldemirci, N. U. & Kucukbasmaci, O. (2010). Eur. J. Med. Chem. 45, 63-68.]); Song & Tan (2008[Song, X. J. & Tan, X. H. (2008). Phosphorus Sulfur Silicon Relat. Elem. 183, 1955-1965.]); Zou et al. (2002[Zou, X. J., Lai, L. H., Jin, G. Y. & Zhang, Z. X. (2002). J. Agric. Food Chem. 50, 3757-3760.]). For the synthesis, see: Song et al. (2007[Song, X. J., Tan, X. H. & Wang, Y. G. (2007). Phosphorus Sulfur Silicon Relat. Elem. 182, 1907-1913.]).

[Scheme 1]

Experimental

Crystal data
  • C17H13ClN4OS

  • Mr = 356.82

  • Monoclinic, P 21 /c

  • a = 11.2399 (6) Å

  • b = 4.1032 (2) Å

  • c = 35.2497 (16) Å

  • β = 91.525 (4)°

  • V = 1625.12 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.38 mm−1

  • T = 298 K

  • 0.40 × 0.06 × 0.02 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • 10860 measured reflections

  • 3708 independent reflections

  • 2081 reflections with I > 2σ(I)

  • Rint = 0.091

Refinement
  • R[F2 > 2σ(F2)] = 0.068

  • wR(F2) = 0.154

  • S = 1.01

  • 3708 reflections

  • 223 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O1i 0.93 2.55 3.432 (4) 159
N2—H2A⋯N3ii 0.82 (4) 2.03 (4) 2.848 (4) 174 (3)
Symmetry codes: (i) -x+2, -y, -z; (ii) -x+1, -y+2, -z.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Urea derivatives have attracted much attention on the account of their interesting biological effects, such as insecticidal, fungicidal, herbicidal and plant-growth regulating activities (Abad et al., 2004; Chen et al., 2005), especially cytokinin acyivity (Yonova & Stoilkova, 2005). 1,3,4-Thiadiazole derivatives are known to exhibit a wide range of biological activities (Zou et al., 2002; Song & Tan, 2008; Guzeldemirci & Kucukbasmaci, 2010). In view of our extensive interest and as a continuing search for new urea-type cytokinins, we investigate the urea derivatives incorporating a 1,3,4-thiadiazole nucleus, including the title compound.

The crystal structure (Fig.1) revealed that the title molecule which consists of three rings is approximately planar, the dihedral angles formed by the thiadiazole ring with the chlorophenyl and vinylphenyl rings being only 9.70 (15) and 7.22 (10)°, respectively, and the styryl moiety assumes a trans-configuration about C10C11 double bond of the vinyl moiety. All bond lengths and angles are as expected. In the crystal structure, intermolecular N—H···N and C—H···O hydrogen bonds occurring between centrosymmetrically related molecules result in the formation of ribbons displaying alternate rings of graph-set motifs R22(8) and R22(14), as shown in Fig. 2 and Table 1.

Related literature top

For the biological activity of urea derivatives, see: Abad et al. (2004); Chen et al. (2005); Yonova & Stoilkova (2005). For the biological activity of 1,3,4-thiadiazole derivatives, see: Guzeldemirci & Kucukbasmaci (2010); Song & Tan (2008); Zou et al. (2002). For the synthesis, see: Song et al. (2007).

Experimental top

The title compound was prepared according to the procedure of Song et al. (2007). Suitable crystals were obtained by vapor diffusion of methanol in DMF at room temperature (m.p. >573 K). Elemental analysis: analysis calculated for C17H13ClN4OS: C 57.22, H 3.67, N 15.70%; found: C 57.45, H 3.56, N 15.82%.

Refinement top

C-bound H atoms were positioned geometrically and constrained to ride on their parent atoms, with C—H = 0.93 Å, and with Uiso(H) = 1.2Ueq(C). N-bound H atoms were freely refined [refined distances 0.82 (4) and 0.86 (3) Å].

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the title molecule, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented by circles of arbitrary size.
[Figure 2] Fig. 2. A partial packing diagram of the title molecule. Hydrogen bonds are indicated by dashed lines.
1-(4-Chlorophenyl)-3-{5-[(E)-2-phenylethenyl]-1,3,4-thiadiazol-2-yl}urea top
Crystal data top
C17H13ClN4OSF(000) = 736
Mr = 356.82Dx = 1.458 Mg m3
Dm = 1.459 Mg m3
Dm measured by not measured
Monoclinic, P21/cMelting point > 573 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 11.2399 (6) ÅCell parameters from 1521 reflections
b = 4.1032 (2) Åθ = 2.9–23.2°
c = 35.2497 (16) ŵ = 0.38 mm1
β = 91.525 (4)°T = 298 K
V = 1625.12 (14) Å3Block, colorless
Z = 40.40 × 0.06 × 0.02 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2081 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.091
Graphite monochromatorθmax = 27.5°, θmin = 1.8°
ϕ and ω scansh = 1414
10860 measured reflectionsk = 55
3708 independent reflectionsl = 4535
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.068Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.154H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0498P)2]
where P = (Fo2 + 2Fc2)/3
3708 reflections(Δ/σ)max = 0.001
223 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C17H13ClN4OSV = 1625.12 (14) Å3
Mr = 356.82Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.2399 (6) ŵ = 0.38 mm1
b = 4.1032 (2) ÅT = 298 K
c = 35.2497 (16) Å0.40 × 0.06 × 0.02 mm
β = 91.525 (4)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2081 reflections with I > 2σ(I)
10860 measured reflectionsRint = 0.091
3708 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0680 restraints
wR(F2) = 0.154H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.31 e Å3
3708 reflectionsΔρmin = 0.20 e Å3
223 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.9546 (3)0.0487 (8)0.10673 (10)0.0517 (9)
C20.9869 (3)0.0032 (9)0.06905 (10)0.0559 (10)
H21.05850.07800.05920.067*
C30.9118 (3)0.1766 (8)0.04629 (10)0.0519 (9)
H30.93300.21300.02100.062*
C40.8049 (3)0.2972 (8)0.06083 (10)0.0440 (8)
C50.7739 (3)0.2341 (9)0.09865 (10)0.0536 (9)
H50.70120.30780.10850.064*
C60.8486 (3)0.0657 (9)0.12150 (10)0.0565 (10)
H60.82770.02910.14680.068*
C70.7271 (3)0.5485 (8)0.00213 (10)0.0468 (8)
C80.6130 (3)0.8377 (8)0.04418 (10)0.0458 (8)
C90.5972 (3)0.9536 (8)0.10951 (9)0.0470 (8)
C100.6089 (3)0.9901 (8)0.15047 (10)0.0499 (9)
H100.55131.11210.16260.060*
C110.6956 (3)0.8619 (8)0.17178 (10)0.0491 (9)
H110.75010.73420.15910.059*
C120.7170 (3)0.8949 (8)0.21285 (10)0.0505 (9)
C130.6371 (4)1.0434 (9)0.23675 (11)0.0639 (10)
H130.56601.12670.22680.077*
C140.6625 (5)1.0679 (11)0.27489 (12)0.0839 (13)
H140.60791.16540.29070.101*
C150.7677 (5)0.9501 (11)0.28999 (12)0.0881 (15)
H150.78430.96830.31590.106*
C160.8480 (4)0.8058 (11)0.26689 (13)0.0810 (13)
H160.91970.72730.27700.097*
C170.8222 (4)0.7772 (9)0.22848 (11)0.0656 (11)
H170.87680.67670.21290.079*
Cl11.05145 (9)0.2566 (3)0.13606 (3)0.0742 (4)
N10.7246 (2)0.4851 (7)0.04021 (8)0.0500 (8)
H1A0.670 (3)0.583 (8)0.0530 (9)0.060*
N20.6343 (3)0.7450 (8)0.00788 (9)0.0540 (8)
H2A0.588 (3)0.822 (8)0.0081 (10)0.065*
N30.5194 (2)1.0175 (7)0.05141 (8)0.0548 (8)
N40.5103 (2)1.0847 (7)0.08984 (8)0.0539 (8)
O10.7993 (2)0.4425 (6)0.02092 (6)0.0620 (7)
S10.69949 (7)0.7370 (2)0.08328 (2)0.0497 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.045 (2)0.051 (2)0.060 (2)0.0060 (17)0.0008 (18)0.0119 (18)
C20.0382 (19)0.064 (2)0.065 (3)0.0002 (18)0.0084 (18)0.019 (2)
C30.042 (2)0.065 (2)0.047 (2)0.0022 (17)0.0103 (16)0.0139 (18)
C40.0360 (17)0.046 (2)0.050 (2)0.0055 (15)0.0075 (15)0.0151 (17)
C50.043 (2)0.064 (2)0.052 (2)0.0041 (18)0.0138 (17)0.012 (2)
C60.057 (2)0.065 (2)0.047 (2)0.0064 (19)0.0108 (19)0.0081 (19)
C70.0388 (19)0.051 (2)0.050 (2)0.0031 (16)0.0126 (16)0.0128 (18)
C80.0393 (19)0.050 (2)0.048 (2)0.0026 (15)0.0126 (15)0.0128 (17)
C90.0367 (18)0.052 (2)0.052 (2)0.0047 (15)0.0042 (16)0.0126 (17)
C100.0432 (19)0.054 (2)0.053 (2)0.0010 (17)0.0034 (17)0.0024 (18)
C110.048 (2)0.049 (2)0.051 (2)0.0004 (16)0.0034 (17)0.0044 (17)
C120.057 (2)0.050 (2)0.044 (2)0.0060 (17)0.0064 (18)0.0063 (17)
C130.071 (3)0.068 (3)0.053 (3)0.007 (2)0.001 (2)0.001 (2)
C140.120 (4)0.074 (3)0.059 (3)0.007 (3)0.012 (3)0.009 (2)
C150.142 (5)0.071 (3)0.051 (3)0.006 (3)0.023 (3)0.001 (2)
C160.099 (4)0.076 (3)0.066 (3)0.003 (3)0.025 (3)0.003 (3)
C170.070 (3)0.072 (3)0.054 (2)0.007 (2)0.011 (2)0.004 (2)
Cl10.0655 (7)0.0789 (7)0.0785 (8)0.0047 (5)0.0083 (5)0.0018 (6)
N10.0393 (16)0.060 (2)0.0493 (19)0.0041 (14)0.0180 (14)0.0090 (15)
N20.0420 (17)0.070 (2)0.049 (2)0.0067 (15)0.0162 (13)0.0101 (17)
N30.0385 (16)0.071 (2)0.0543 (19)0.0026 (15)0.0145 (14)0.0089 (16)
N40.0385 (16)0.066 (2)0.057 (2)0.0004 (14)0.0077 (14)0.0098 (16)
O10.0511 (15)0.0825 (18)0.0513 (15)0.0170 (13)0.0186 (12)0.0107 (14)
S10.0397 (5)0.0609 (6)0.0479 (5)0.0024 (4)0.0117 (4)0.0111 (5)
Geometric parameters (Å, º) top
C1—C61.370 (4)C9—S11.739 (3)
C1—C21.384 (5)C10—C111.324 (4)
C1—Cl11.744 (4)C10—H100.9300
C2—C31.378 (5)C11—C121.468 (4)
C2—H20.9300C11—H110.9300
C3—C41.385 (4)C12—C171.379 (5)
C3—H30.9300C12—C131.388 (5)
C4—C51.393 (5)C13—C141.370 (5)
C4—N11.404 (4)C13—H130.9300
C5—C61.366 (5)C14—C151.372 (6)
C5—H50.9300C14—H140.9300
C6—H60.9300C15—C161.366 (6)
C7—O11.214 (4)C15—H150.9300
C7—N11.367 (4)C16—C171.382 (5)
C7—N21.372 (4)C16—H160.9300
C8—N31.316 (4)C17—H170.9300
C8—N21.362 (4)N1—H1A0.86 (3)
C8—S11.716 (3)N2—H2A0.82 (4)
C9—N41.299 (4)N3—N41.389 (4)
C9—C101.454 (4)
C6—C1—C2121.0 (3)C10—C11—C12128.5 (3)
C6—C1—Cl1119.5 (3)C10—C11—H11115.8
C2—C1—Cl1119.5 (3)C12—C11—H11115.8
C3—C2—C1119.3 (3)C17—C12—C13118.2 (3)
C3—C2—H2120.4C17—C12—C11118.6 (3)
C1—C2—H2120.4C13—C12—C11123.2 (3)
C2—C3—C4120.5 (3)C14—C13—C12120.4 (4)
C2—C3—H3119.7C14—C13—H13119.8
C4—C3—H3119.7C12—C13—H13119.8
C3—C4—C5118.7 (3)C13—C14—C15120.6 (4)
C3—C4—N1124.6 (3)C13—C14—H14119.7
C5—C4—N1116.8 (3)C15—C14—H14119.7
C6—C5—C4121.1 (3)C16—C15—C14119.8 (4)
C6—C5—H5119.4C16—C15—H15120.1
C4—C5—H5119.4C14—C15—H15120.1
C5—C6—C1119.4 (3)C15—C16—C17119.7 (4)
C5—C6—H6120.3C15—C16—H16120.1
C1—C6—H6120.3C17—C16—H16120.1
O1—C7—N1125.8 (3)C12—C17—C16121.1 (4)
O1—C7—N2122.6 (3)C12—C17—H17119.4
N1—C7—N2111.6 (3)C16—C17—H17119.4
N3—C8—N2120.0 (3)C7—N1—C4128.1 (3)
N3—C8—S1114.7 (3)C7—N1—H1A115 (2)
N2—C8—S1125.3 (3)C4—N1—H1A117 (2)
N4—C9—C10122.3 (3)C8—N2—C7124.0 (3)
N4—C9—S1115.2 (3)C8—N2—H2A114 (2)
C10—C9—S1122.5 (2)C7—N2—H2A122 (2)
C11—C10—C9124.6 (3)C8—N3—N4112.3 (3)
C11—C10—H10117.7C9—N4—N3111.4 (3)
C9—C10—H10117.7C8—S1—C986.31 (17)
C6—C1—C2—C30.9 (5)C13—C12—C17—C160.1 (6)
Cl1—C1—C2—C3177.9 (2)C11—C12—C17—C16179.0 (3)
C1—C2—C3—C40.2 (5)C15—C16—C17—C120.7 (6)
C2—C3—C4—C51.2 (5)O1—C7—N1—C42.2 (6)
C2—C3—C4—N1177.8 (3)N2—C7—N1—C4179.4 (3)
C3—C4—C5—C62.0 (5)C3—C4—N1—C79.2 (5)
N1—C4—C5—C6177.1 (3)C5—C4—N1—C7171.7 (3)
C4—C5—C6—C11.4 (5)N3—C8—N2—C7177.6 (3)
C2—C1—C6—C50.1 (5)S1—C8—N2—C72.0 (5)
Cl1—C1—C6—C5178.7 (3)O1—C7—N2—C80.7 (5)
N4—C9—C10—C11179.9 (3)N1—C7—N2—C8177.8 (3)
S1—C9—C10—C110.9 (5)N2—C8—N3—N4179.0 (3)
C9—C10—C11—C12177.6 (3)S1—C8—N3—N40.6 (4)
C10—C11—C12—C17171.1 (3)C10—C9—N4—N3179.5 (3)
C10—C11—C12—C137.9 (6)S1—C9—N4—N30.4 (4)
C17—C12—C13—C140.7 (6)C8—N3—N4—C90.1 (4)
C11—C12—C13—C14179.7 (4)N3—C8—S1—C90.7 (3)
C12—C13—C14—C150.8 (7)N2—C8—S1—C9178.9 (3)
C13—C14—C15—C160.2 (7)N4—C9—S1—C80.6 (3)
C14—C15—C16—C170.5 (7)C10—C9—S1—C8179.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O1i0.932.553.432 (4)159
N2—H2A···N3ii0.82 (4)2.03 (4)2.848 (4)174 (3)
Symmetry codes: (i) x+2, y, z; (ii) x+1, y+2, z.

Experimental details

Crystal data
Chemical formulaC17H13ClN4OS
Mr356.82
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)11.2399 (6), 4.1032 (2), 35.2497 (16)
β (°) 91.525 (4)
V3)1625.12 (14)
Z4
Radiation typeMo Kα
µ (mm1)0.38
Crystal size (mm)0.40 × 0.06 × 0.02
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
10860, 3708, 2081
Rint0.091
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.068, 0.154, 1.01
No. of reflections3708
No. of parameters223
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.31, 0.20

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O1i0.932.553.432 (4)159
N2—H2A···N3ii0.82 (4)2.03 (4)2.848 (4)174 (3)
Symmetry codes: (i) x+2, y, z; (ii) x+1, y+2, z.
 

Acknowledgements

The authors acknowledge financial support from the Scientific Research Fund of Henan Provincial Education Department, China (grant Nos. 2007150050 and 2009B150030).

References

First citationAbad, A., Agullo, C., Cunat, A. C., Jimenez, R. & Vilanova, C. (2004). J. Agric. Food Chem. 52, 4675–4683.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, L., Wang, Q. M., Huang, R. Q., Mao, C. H., Shang, J. & Bi, F. C. (2005). J. Agric. Food Chem. 53, 38–41.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGuzeldemirci, N. U. & Kucukbasmaci, O. (2010). Eur. J. Med. Chem. 45, 63–68.  Web of Science PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSong, X. J. & Tan, X. H. (2008). Phosphorus Sulfur Silicon Relat. Elem. 183, 1955–1965.  Web of Science CSD CrossRef Google Scholar
First citationSong, X. J., Tan, X. H. & Wang, Y. G. (2007). Phosphorus Sulfur Silicon Relat. Elem. 182, 1907–1913.  Web of Science CSD CrossRef CAS Google Scholar
First citationYonova, P. A. & Stoilkova, G. M. (2005). J. Plant Growth Regul. 23, 280–291.  CrossRef Google Scholar
First citationZou, X. J., Lai, L. H., Jin, G. Y. & Zhang, Z. X. (2002). J. Agric. Food Chem. 50, 3757–3760.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds