organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-N′-(2,4-Dihy­dr­oxy­benzyl­­idene)-4-nitro­benzohydrazide

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: khaledi@siswa.um.edu.my

(Received 10 January 2011; accepted 14 January 2011; online 22 January 2011)

The title compound, C14H11N3O5, is essentially planar, with an r.m.s. deviation for the non-H atoms of 0.0832 (3) Å. In the crystal, O—H⋯O and N—H⋯O hydrogen bonds link adjacent mol­ecules into layers parallel to (101). These layers are further connected into a three-dimensional network via C—H⋯O inter­actions. In addition, a ππ inter­action occurs between the aromatic rings [centroid–centroid distance = 3.5425 (8) Å]. An intra­molecular O—H⋯N hydrogen bond is also observed.

Related literature

For related structures, see: Han & Zhao (2010[Han, Y.-Y. & Zhao, Q.-R. (2010). Acta Cryst. E66, o1041.]); Mohd Lair et al. (2009[Mohd Lair, N., Mohd Ali, H. & Ng, S. W. (2009). Acta Cryst. E65, o189.]); Raj et al. (2008[Raj, B. N. B., Kurup, M. R. P. & Suresh, E. (2008). Spectrochim. Acta Part A, 71, 1253-1260.]).

[Scheme 1]

Experimental

Crystal data
  • C14H11N3O5

  • Mr = 301.26

  • Monoclinic, P 21 /c

  • a = 8.0248 (1) Å

  • b = 12.5674 (2) Å

  • c = 12.8770 (2) Å

  • β = 96.732 (1)°

  • V = 1289.70 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 100 K

  • 0.21 × 0.15 × 0.08 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.975, Tmax = 0.990

  • 10373 measured reflections

  • 2398 independent reflections

  • 2004 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.099

  • S = 1.05

  • 2398 reflections

  • 208 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.86 (2) 1.93 (2) 2.6818 (15) 146 (2)
O2—H2A⋯O3i 0.84 (1) 1.84 (2) 2.6759 (14) 173 (2)
N2—H2B⋯O5ii 0.87 (1) 2.28 (1) 3.0606 (16) 150 (1)
C2—H2⋯O3i 0.95 2.47 3.1730 (17) 131
C4—H4⋯O4iii 0.95 2.54 3.3428 (17) 143
C7—H7⋯O5ii 0.95 2.40 3.2082 (17) 143
C10—H10⋯O4ii 0.95 2.52 3.3627 (18) 147
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{5\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) x-1, y+1, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem, 1, 189-191.]); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title compound is the product of the condensation reaction of 4-nitrobenzohydrazide and 4-hydroxysalicylaldehyde. In agreement with the structures of similar benzoylhydrazones (Han & Zhao, 2010; Mohd Lair et al., 2009; Raj et al., 2008), the molecular structure of the present molecule is almost planar, the r.m.s. deviation for the non-H atoms being 0.0832 Å. The crystal structure is stabilized by O—H···O, N—H···O and C—H···O intermolecular and also O—H···N intramolecular hydrogen bonding. Moreover, a ππ interaction occurs between the aromatic rings of pairs of molecules related by symmetry -x, -y + 1, -z + 2 with centroid-centroid separation of 3.5425 (8) Å.

Related literature top

For related structures, see: Han & Zhao (2010); Mohd Lair et al. (2009); Raj et al. (2008).

Experimental top

A mixture of 4-nitrobenzohydrazide (0.54 g, 3 mmol) and 4-hydroxysalicylaldehyde (0.39 g, 3 mmol) in ethanol (50 ml) and in the presence of a few drops of acetic acid was refluxed for 5 hr. The solution was then left at room temperature. The crystals of the title compound were obtained in a few days.

Refinement top

The carbon-bound H atoms were placed at calculated positions (C—H = 0.95 Å) and treated as riding on their parent carbon atoms. The nitrogen- and oxygen-bound H atoms were located in a difference map and refined as free atoms, with N—H and O—H distances restrained to 0.88 (2) and 0.84 (2) Å, respectively. Uiso(H) values were set to 1.2–1.5 Ueq(carrier atom).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Displacement ellipsoid plot of the title compound at the 50% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius
(E)-N'-(2,4-Dihydroxybenzylidene)-4-nitrobenzohydrazide top
Crystal data top
C14H11N3O5F(000) = 624
Mr = 301.26Dx = 1.552 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3471 reflections
a = 8.0248 (1) Åθ = 3.2–30.4°
b = 12.5674 (2) ŵ = 0.12 mm1
c = 12.8770 (2) ÅT = 100 K
β = 96.732 (1)°Block, orange
V = 1289.70 (3) Å30.21 × 0.15 × 0.08 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
2398 independent reflections
Radiation source: fine-focus sealed tube2004 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ϕ and ω scansθmax = 25.5°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.975, Tmax = 0.990k = 1512
10373 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0584P)2 + 0.2741P]
where P = (Fo2 + 2Fc2)/3
2398 reflections(Δ/σ)max = 0.001
208 parametersΔρmax = 0.22 e Å3
3 restraintsΔρmin = 0.27 e Å3
Crystal data top
C14H11N3O5V = 1289.70 (3) Å3
Mr = 301.26Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.0248 (1) ŵ = 0.12 mm1
b = 12.5674 (2) ÅT = 100 K
c = 12.8770 (2) Å0.21 × 0.15 × 0.08 mm
β = 96.732 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
2398 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2004 reflections with I > 2σ(I)
Tmin = 0.975, Tmax = 0.990Rint = 0.027
10373 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0343 restraints
wR(F2) = 0.099H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.22 e Å3
2398 reflectionsΔρmin = 0.27 e Å3
208 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.01817 (13)0.64009 (9)1.21087 (8)0.0250 (3)
H10.073 (2)0.5985 (14)1.1740 (14)0.038*
O20.25926 (12)0.97321 (8)1.19160 (8)0.0200 (2)
H2A0.271 (2)0.9547 (14)1.2529 (12)0.030*
O30.31162 (13)0.40161 (8)1.11922 (8)0.0232 (3)
O40.70514 (13)0.04460 (8)0.83143 (8)0.0287 (3)
O50.69197 (12)0.15345 (9)0.70111 (8)0.0248 (3)
N10.15626 (13)0.57805 (9)1.04095 (9)0.0180 (3)
N20.23932 (14)0.50897 (9)0.98041 (9)0.0173 (3)
H2B0.2412 (19)0.5289 (12)0.9163 (11)0.021*
N30.66607 (14)0.13011 (10)0.79089 (9)0.0193 (3)
C10.02829 (16)0.72791 (11)1.15383 (11)0.0170 (3)
C20.11597 (16)0.80504 (11)1.20227 (11)0.0171 (3)
H20.13930.79501.27220.021*
C30.16953 (16)0.89687 (11)1.14835 (11)0.0168 (3)
C40.13465 (16)0.91253 (11)1.04548 (11)0.0182 (3)
H40.17080.97561.00880.022*
C50.04773 (16)0.83605 (11)0.99795 (11)0.0178 (3)
H50.02430.84720.92820.021*
C60.00759 (16)0.74153 (11)1.04988 (11)0.0165 (3)
C70.09681 (16)0.66335 (11)0.99533 (11)0.0178 (3)
H70.11190.67520.92420.021*
C80.31525 (16)0.42271 (11)1.02595 (11)0.0162 (3)
C90.40734 (15)0.35067 (11)0.95936 (10)0.0156 (3)
C100.44714 (16)0.37683 (11)0.85999 (11)0.0171 (3)
H100.41340.44360.82990.020*
C110.53565 (16)0.30596 (11)0.80500 (11)0.0178 (3)
H110.56510.32370.73780.021*
C120.58004 (16)0.20868 (11)0.85038 (11)0.0171 (3)
C130.54399 (16)0.18076 (11)0.94917 (11)0.0183 (3)
H130.57760.11380.97880.022*
C140.45772 (16)0.25303 (11)1.00359 (11)0.0174 (3)
H140.43250.23591.07190.021*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0306 (6)0.0227 (6)0.0229 (6)0.0100 (5)0.0082 (4)0.0054 (4)
O20.0261 (5)0.0173 (5)0.0178 (5)0.0037 (4)0.0071 (4)0.0005 (4)
O30.0320 (6)0.0225 (6)0.0170 (5)0.0004 (4)0.0110 (4)0.0007 (4)
O40.0369 (6)0.0231 (6)0.0256 (6)0.0117 (5)0.0013 (5)0.0019 (5)
O50.0252 (5)0.0326 (6)0.0179 (5)0.0014 (5)0.0076 (4)0.0044 (4)
N10.0152 (5)0.0186 (6)0.0209 (6)0.0013 (5)0.0057 (5)0.0055 (5)
N20.0182 (6)0.0190 (6)0.0156 (6)0.0005 (5)0.0063 (5)0.0032 (5)
N30.0165 (6)0.0231 (7)0.0180 (6)0.0001 (5)0.0003 (5)0.0053 (5)
C10.0145 (6)0.0173 (7)0.0190 (7)0.0017 (5)0.0007 (5)0.0010 (6)
C20.0169 (6)0.0207 (7)0.0142 (7)0.0020 (5)0.0033 (5)0.0001 (6)
C30.0147 (6)0.0165 (7)0.0194 (7)0.0025 (5)0.0027 (5)0.0030 (6)
C40.0184 (6)0.0165 (7)0.0196 (7)0.0003 (5)0.0021 (5)0.0027 (6)
C50.0179 (7)0.0221 (8)0.0139 (7)0.0035 (6)0.0039 (5)0.0001 (5)
C60.0135 (6)0.0182 (7)0.0182 (7)0.0028 (5)0.0036 (5)0.0020 (6)
C70.0141 (6)0.0212 (7)0.0183 (7)0.0040 (5)0.0029 (5)0.0021 (6)
C80.0158 (6)0.0166 (7)0.0167 (7)0.0056 (5)0.0039 (5)0.0020 (6)
C90.0135 (6)0.0163 (7)0.0169 (7)0.0038 (5)0.0016 (5)0.0029 (5)
C100.0178 (6)0.0162 (7)0.0172 (7)0.0016 (5)0.0023 (5)0.0004 (5)
C110.0171 (6)0.0220 (7)0.0147 (7)0.0029 (6)0.0033 (5)0.0014 (6)
C120.0134 (6)0.0193 (7)0.0185 (7)0.0008 (5)0.0023 (5)0.0062 (6)
C130.0180 (7)0.0180 (7)0.0183 (7)0.0006 (6)0.0005 (5)0.0009 (6)
C140.0171 (7)0.0208 (7)0.0146 (7)0.0030 (5)0.0025 (5)0.0008 (6)
Geometric parameters (Å, º) top
O1—C11.3537 (17)C4—C51.3729 (19)
O1—H10.860 (15)C4—H40.9500
O2—C31.3576 (16)C5—C61.409 (2)
O2—H2A0.839 (14)C5—H50.9500
O3—C81.2336 (16)C6—C71.4454 (19)
O4—N31.2196 (16)C7—H70.9500
O5—N31.2337 (15)C8—C91.4999 (18)
N1—C71.2868 (19)C9—C141.3927 (19)
N1—N21.3884 (16)C9—C101.3939 (19)
N2—C81.3441 (19)C10—C111.3847 (19)
N2—H2B0.865 (13)C10—H100.9500
N3—C121.4705 (17)C11—C121.384 (2)
C1—C21.3880 (19)C11—H110.9500
C1—C61.4121 (19)C12—C131.3825 (19)
C2—C31.389 (2)C13—C141.3817 (19)
C2—H20.9500C13—H130.9500
C3—C41.3996 (19)C14—H140.9500
C1—O1—H1108.8 (13)C1—C6—C7123.09 (13)
C3—O2—H2A108.2 (12)N1—C7—C6121.51 (13)
C7—N1—N2116.19 (12)N1—C7—H7119.2
C8—N2—N1118.83 (12)C6—C7—H7119.2
C8—N2—H2B126.4 (11)O3—C8—N2122.48 (12)
N1—N2—H2B114.7 (11)O3—C8—C9119.76 (13)
O4—N3—O5123.19 (12)N2—C8—C9117.77 (12)
O4—N3—C12118.79 (12)C14—C9—C10119.77 (12)
O5—N3—C12118.00 (12)C14—C9—C8115.90 (12)
O1—C1—C2116.57 (12)C10—C9—C8124.31 (13)
O1—C1—C6122.64 (12)C11—C10—C9120.27 (13)
C2—C1—C6120.78 (13)C11—C10—H10119.9
C1—C2—C3119.94 (13)C9—C10—H10119.9
C1—C2—H2120.0C12—C11—C10118.33 (13)
C3—C2—H2120.0C12—C11—H11120.8
O2—C3—C2122.02 (12)C10—C11—H11120.8
O2—C3—C4117.61 (12)C13—C12—C11122.80 (13)
C2—C3—C4120.36 (12)C13—C12—N3118.07 (13)
C5—C4—C3119.47 (13)C11—C12—N3119.12 (12)
C5—C4—H4120.3C14—C13—C12118.11 (13)
C3—C4—H4120.3C14—C13—H13120.9
C4—C5—C6121.79 (13)C12—C13—H13120.9
C4—C5—H5119.1C13—C14—C9120.69 (13)
C6—C5—H5119.1C13—C14—H14119.7
C5—C6—C1117.65 (12)C9—C14—H14119.7
C5—C6—C7119.27 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.86 (2)1.93 (2)2.6818 (15)146 (2)
O2—H2A···O3i0.84 (1)1.84 (2)2.6759 (14)173 (2)
N2—H2B···O5ii0.87 (1)2.28 (1)3.0606 (16)150 (1)
C2—H2···O3i0.952.473.1730 (17)131
C4—H4···O4iii0.952.543.3428 (17)143
C7—H7···O5ii0.952.403.2082 (17)143
C10—H10···O4ii0.952.523.3627 (18)147
Symmetry codes: (i) x, y+1/2, z+5/2; (ii) x+1, y+1/2, z+3/2; (iii) x1, y+1, z.

Experimental details

Crystal data
Chemical formulaC14H11N3O5
Mr301.26
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)8.0248 (1), 12.5674 (2), 12.8770 (2)
β (°) 96.732 (1)
V3)1289.70 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.21 × 0.15 × 0.08
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.975, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
10373, 2398, 2004
Rint0.027
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.099, 1.05
No. of reflections2398
No. of parameters208
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.22, 0.27

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), X-SEED (Barbour, 2001), SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.860 (15)1.929 (16)2.6818 (15)145.5 (17)
O2—H2A···O3i0.839 (14)1.841 (15)2.6759 (14)173.3 (18)
N2—H2B···O5ii0.865 (13)2.283 (14)3.0606 (16)149.6 (14)
C2—H2···O3i0.952.473.1730 (17)131
C4—H4···O4iii0.952.543.3428 (17)143
C7—H7···O5ii0.952.403.2082 (17)143
C10—H10···O4ii0.952.523.3627 (18)147
Symmetry codes: (i) x, y+1/2, z+5/2; (ii) x+1, y+1/2, z+3/2; (iii) x1, y+1, z.
 

Acknowledgements

The authors thank the University of Malaya for funding this study (FRGS grant No. FP004/2010B)

References

First citationBarbour, L. J. (2001). J. Supramol. Chem, 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHan, Y.-Y. & Zhao, Q.-R. (2010). Acta Cryst. E66, o1041.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMohd Lair, N., Mohd Ali, H. & Ng, S. W. (2009). Acta Cryst. E65, o189.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRaj, B. N. B., Kurup, M. R. P. & Suresh, E. (2008). Spectrochim. Acta Part A, 71, 1253–1260.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds