organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-[5-(Pyridin-4-yl)-1,3,4-oxa­diazol-2-yl]pyridinium benzoate

aOrdered Matter Science Research Center, College of Chemistry and Chemical, Engineering, Southeast UniVersity, Nanjing 211189, People's Republic of China
*Correspondence e-mail: zhangshelley86@hotmail.com

(Received 11 December 2010; accepted 10 January 2011; online 22 January 2011)

In the title compound, C12H9N4O+·C7H5O2, ππ stacking inter­actions [centroid–centroid distance = 3.6275 (14)  Å] stabilize the crystal structure. The dihedral angles between the central ring and the terminal rings are 3.27 (12) and 10.30 (13)°.

Related literature

For background to the development of ferroelectric compounds, see: Haertling et al. (1999[Haertling, G. H. (1999). J. Am. Ceram. Soc. 82, 797-810.]); Homes et al. (2001[Homes, C. C., Vogt, T., Shapiro, S. M., Wakimoto, S. & Ramirez, A. P. (2001). Science, 293, 673-676.]). For the synthesis of a variety of compounds with potential piezoelectric and ferroelectric properties, see: Ye et al. (2006[Ye, Q., Song, Y. M., Wang, G. X., Chen, K., Fu, D. W., Chan, P. W. H., Zhu, J. S., Huang, S. D. & Xiong, R. G. (2006). J. Am. Chem. Soc. 20, 6554-6555.]); Zhang et al. (2008[Zhang, W., Xiong, R. G. & Huang, S. P. (2008). J. Am. Chem. Soc. 32, 10468-10469.]).

[Scheme 1]

Experimental

Crystal data
  • C12H9N4O+·C7H5O2

  • Mr = 346.34

  • Monoclinic, P 21 /c

  • a = 20.459 (4) Å

  • b = 7.1958 (14) Å

  • c = 11.249 (2) Å

  • β = 90.53 (3)°

  • V = 1656.0 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.854, Tmax = 1.000

  • 16725 measured reflections

  • 3808 independent reflections

  • 2248 reflections with I > 2σ(I)

  • Rint = 0.064

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.171

  • S = 1.02

  • 3808 reflections

  • 236 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2i 0.86 1.79 2.648 (2) 174
C8—H8⋯O1ii 0.93 2.48 3.371 (3) 161
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x, -y+1, -z.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

At present, much attention in ferroelectric material field is focused on developing ferroelectric pure organic or inorganic compounds (Haertling et al. 1999; Homes et al. 2001). Recently we have reported the synthesis of a variety of compounds (Ye et al., 2006; Zhang et al., 2008), which have potential piezoelectric and ferroelectric properties. In order to find more dielectric ferroelectric materials, we investigate the physical properties of the title compound(Fig. 1). The dielectric constant of the title compound as a function of temperature indicates that the permittivity is basically temperature-independent (dielectric constant equaling to 3.6 to 4.7), suggesting that this compound should be not a real ferroelectrics or there may be no distinct phase transition occurred within the measured temperature range. Similarly, below the melting point (374 K) of the compound, the dielectric constant as a function of temperature also goes smoothly, and there is no dielectric anomaly observed (dielectric constant equaling to 3.0 to 4.2).Herein, we report the synthesis and crystal structure of the title compound.

The asymmetric unit of (I) consists of one bpo cation and one benzoate anions. The ππ packing interaction of adjacent rings with Cg(1)—Cg(4), 3.6275 (14) A °; Cg(3)—Cg(3), 4.1148 (16) A °; [Cg(1), Cg(3) and Cg(4) are the centroids of rings, where Cg(1): O3/C13/N2/N3/C14; Cg(3): N4/C15–C19; Cg(4): C2–C7;],make great contribution to the stability of the crystal structure.

Related literature top

For background to the development of ferroelectric pure organic or inorganic compounds , see: Haertling et al. (1999); Homes et al. (2001). For the synthesis of a variety of compounds with potential piezoelectric and ferroelectric properties, see: Ye et al. (2006); Zhang et al. (2008).

Experimental top

A mix of 2,5-bis(4-pyridyl)-1,3,4-oxadiazole (2.24 g, 0.01 mol) and benzoate acid (2.44 g,0.02 mol) in methanol (20 ml) was stirred until clear. After several days, the title compound was formed and recrystallized from solution to afford colourlesss prismatic crystals suitable for X-ray analysis.

Refinement top

H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 Å and Uiso(H) = 1.2eq(C).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Perspective structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
4-[5-(Pyridin-4-yl)-1,3,4-oxadiazol-2-yl]pyridinium benzoate top
Crystal data top
C12H9N4O+·C7H5O2F(000) = 720
Mr = 346.34Dx = 1.389 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3808 reflections
a = 20.459 (4) Åθ = 2.6–27.5°
b = 7.1958 (14) ŵ = 0.10 mm1
c = 11.249 (2) ÅT = 293 K
β = 90.53 (3)°Prism, colourless
V = 1656.0 (5) Å30.20 × 0.20 × 0.20 mm
Z = 4
Data collection top
Rigaku Mercury2
diffractometer
3808 independent reflections
Radiation source: fine-focus sealed tube2248 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.064
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.0°
CCD_Profile_fitting scansh = 2626
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 99
Tmin = 0.854, Tmax = 1.000l = 1414
16725 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.059H-atom parameters constrained
wR(F2) = 0.171 w = 1/[σ2(Fo2) + (0.079P)2 + 0.2253P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
3808 reflectionsΔρmax = 0.27 e Å3
236 parametersΔρmin = 0.28 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0130 (18)
Crystal data top
C12H9N4O+·C7H5O2V = 1656.0 (5) Å3
Mr = 346.34Z = 4
Monoclinic, P21/cMo Kα radiation
a = 20.459 (4) ŵ = 0.10 mm1
b = 7.1958 (14) ÅT = 293 K
c = 11.249 (2) Å0.20 × 0.20 × 0.20 mm
β = 90.53 (3)°
Data collection top
Rigaku Mercury2
diffractometer
3808 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
2248 reflections with I > 2σ(I)
Tmin = 0.854, Tmax = 1.000Rint = 0.064
16725 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.171H-atom parameters constrained
S = 1.02Δρmax = 0.27 e Å3
3808 reflectionsΔρmin = 0.28 e Å3
236 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.11341 (11)0.8827 (3)0.1577 (2)0.0468 (5)
C20.18546 (10)0.8838 (3)0.13768 (18)0.0406 (5)
C30.22890 (10)0.9438 (3)0.22500 (19)0.0453 (5)
H30.21330.98530.29770.054*
C40.29500 (11)0.9420 (3)0.2041 (2)0.0529 (6)
H40.32400.98310.26260.064*
C50.31834 (12)0.8796 (3)0.0974 (2)0.0602 (7)
H50.36310.87800.08390.072*
C60.27599 (13)0.8197 (3)0.0105 (2)0.0625 (7)
H60.29210.77710.06150.075*
C70.20926 (12)0.8224 (3)0.02954 (19)0.0510 (6)
H70.18050.78310.02990.061*
C80.04872 (11)0.3443 (3)0.0797 (2)0.0566 (6)
H80.01710.31370.02310.068*
C90.11320 (10)0.3396 (3)0.0482 (2)0.0494 (6)
H90.12510.30920.02900.059*
C100.16028 (10)0.3805 (3)0.13262 (18)0.0398 (5)
C110.14062 (10)0.4269 (3)0.2463 (2)0.0471 (6)
H110.17120.45380.30540.057*
C120.07469 (11)0.4324 (3)0.2698 (2)0.0545 (6)
H120.06120.46620.34550.065*
C130.22928 (10)0.3753 (3)0.10114 (18)0.0391 (5)
C140.33195 (10)0.3951 (3)0.12671 (18)0.0401 (5)
C150.50844 (12)0.4366 (4)0.2044 (3)0.0739 (8)
H150.54810.44100.16490.089*
C160.45215 (11)0.4228 (4)0.1364 (2)0.0634 (7)
H160.45410.41840.05390.076*
C170.39284 (10)0.4158 (3)0.19378 (19)0.0430 (5)
C180.39322 (11)0.4232 (3)0.3154 (2)0.0572 (7)
H180.35420.41950.35720.069*
C190.45201 (13)0.4362 (4)0.3748 (2)0.0721 (8)
H190.45130.44000.45750.086*
N10.02979 (9)0.3912 (3)0.1885 (2)0.0577 (6)
H1A0.01110.39470.20580.069*
N20.25515 (9)0.3426 (3)0.00105 (16)0.0489 (5)
N30.32318 (9)0.3568 (3)0.01599 (16)0.0493 (5)
N40.50991 (10)0.4439 (3)0.3221 (2)0.0726 (7)
O10.07395 (8)0.8483 (3)0.08005 (16)0.0711 (5)
O20.09672 (7)0.9211 (2)0.26772 (15)0.0629 (5)
O30.27482 (6)0.40949 (19)0.18688 (12)0.0406 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0439 (13)0.0411 (12)0.0553 (15)0.0043 (10)0.0113 (11)0.0002 (10)
C20.0444 (12)0.0344 (11)0.0429 (12)0.0029 (9)0.0044 (9)0.0034 (9)
C30.0413 (12)0.0522 (13)0.0422 (12)0.0002 (10)0.0042 (9)0.0024 (10)
C40.0401 (13)0.0595 (15)0.0591 (15)0.0068 (11)0.0098 (11)0.0076 (11)
C50.0448 (14)0.0601 (16)0.0758 (18)0.0034 (12)0.0100 (13)0.0098 (13)
C60.0682 (18)0.0578 (16)0.0618 (16)0.0058 (13)0.0178 (13)0.0026 (12)
C70.0615 (15)0.0460 (13)0.0456 (13)0.0091 (11)0.0039 (11)0.0015 (10)
C80.0395 (13)0.0617 (15)0.0682 (17)0.0021 (11)0.0132 (12)0.0008 (12)
C90.0428 (13)0.0561 (14)0.0492 (13)0.0003 (10)0.0092 (10)0.0042 (11)
C100.0370 (11)0.0373 (11)0.0451 (12)0.0022 (9)0.0050 (9)0.0046 (9)
C110.0388 (12)0.0560 (14)0.0464 (13)0.0034 (10)0.0063 (10)0.0027 (10)
C120.0451 (13)0.0617 (16)0.0569 (15)0.0032 (11)0.0027 (11)0.0064 (11)
C130.0407 (11)0.0394 (12)0.0372 (11)0.0030 (9)0.0074 (9)0.0002 (9)
C140.0353 (11)0.0432 (12)0.0419 (12)0.0020 (9)0.0049 (9)0.0026 (9)
C150.0372 (14)0.103 (2)0.081 (2)0.0078 (14)0.0073 (13)0.0025 (16)
C160.0410 (13)0.092 (2)0.0574 (15)0.0070 (13)0.0037 (11)0.0018 (13)
C170.0362 (11)0.0467 (13)0.0460 (13)0.0023 (9)0.0008 (9)0.0057 (9)
C180.0394 (13)0.0816 (18)0.0506 (14)0.0053 (12)0.0014 (11)0.0011 (12)
C190.0539 (16)0.104 (2)0.0579 (16)0.0041 (15)0.0127 (13)0.0004 (15)
N10.0328 (10)0.0649 (13)0.0754 (15)0.0006 (9)0.0003 (10)0.0121 (11)
N20.0457 (11)0.0590 (12)0.0419 (11)0.0019 (9)0.0016 (8)0.0020 (8)
N30.0417 (11)0.0635 (12)0.0427 (11)0.0022 (9)0.0006 (8)0.0010 (9)
N40.0459 (13)0.0927 (17)0.0788 (17)0.0042 (11)0.0120 (11)0.0011 (13)
O10.0483 (10)0.0923 (14)0.0722 (12)0.0078 (9)0.0216 (9)0.0066 (10)
O20.0431 (9)0.0843 (13)0.0613 (11)0.0048 (8)0.0007 (8)0.0140 (9)
O30.0325 (8)0.0515 (9)0.0379 (8)0.0036 (6)0.0017 (6)0.0002 (6)
Geometric parameters (Å, º) top
C1—O11.210 (2)C11—C121.377 (3)
C1—O21.316 (3)C11—H110.9300
C1—C21.493 (3)C12—N11.323 (3)
C2—C71.387 (3)C12—H120.9300
C2—C31.387 (3)C13—N21.292 (3)
C3—C41.375 (3)C13—O31.357 (2)
C3—H30.9300C14—N31.287 (3)
C4—C51.372 (3)C14—O31.360 (2)
C4—H40.9300C14—C171.458 (3)
C5—C61.370 (3)C15—N41.324 (3)
C5—H50.9300C15—C161.380 (3)
C6—C71.384 (3)C15—H150.9300
C6—H60.9300C16—C171.381 (3)
C7—H70.9300C16—H160.9300
C8—N11.332 (3)C17—C181.369 (3)
C8—C91.369 (3)C18—C191.374 (3)
C8—H80.9300C18—H180.9300
C9—C101.378 (3)C19—N41.331 (3)
C9—H90.9300C19—H190.9300
C10—C111.385 (3)N1—H1A0.8600
C10—C131.459 (3)N2—N31.407 (2)
O1—C1—O2123.0 (2)C10—C11—H11120.7
O1—C1—C2123.0 (2)N1—C12—C11122.4 (2)
O2—C1—C2113.95 (18)N1—C12—H12118.8
C7—C2—C3119.5 (2)C11—C12—H12118.8
C7—C2—C1119.06 (19)N2—C13—O3112.41 (18)
C3—C2—C1121.43 (19)N2—C13—C10128.76 (19)
C4—C3—C2120.0 (2)O3—C13—C10118.84 (17)
C4—C3—H3120.0N3—C14—O3112.67 (18)
C2—C3—H3120.0N3—C14—C17129.31 (19)
C5—C4—C3120.2 (2)O3—C14—C17117.96 (18)
C5—C4—H4119.9N4—C15—C16124.6 (2)
C3—C4—H4119.9N4—C15—H15117.7
C6—C5—C4120.3 (2)C16—C15—H15117.7
C6—C5—H5119.9C15—C16—C17118.4 (2)
C4—C5—H5119.9C15—C16—H16120.8
C5—C6—C7120.2 (2)C17—C16—H16120.8
C5—C6—H6119.9C18—C17—C16118.0 (2)
C7—C6—H6119.9C18—C17—C14121.20 (19)
C6—C7—C2119.7 (2)C16—C17—C14120.8 (2)
C6—C7—H7120.2C17—C18—C19119.1 (2)
C2—C7—H7120.2C17—C18—H18120.5
N1—C8—C9122.2 (2)C19—C18—H18120.5
N1—C8—H8118.9N4—C19—C18124.4 (3)
C9—C8—H8118.9N4—C19—H19117.8
C8—C9—C10119.1 (2)C18—C19—H19117.8
C8—C9—H9120.5C12—N1—C8119.1 (2)
C10—C9—H9120.5C12—N1—H1A120.5
C9—C10—C11118.7 (2)C8—N1—H1A120.5
C9—C10—C13119.94 (19)C13—N2—N3106.18 (17)
C11—C10—C13121.35 (18)C14—N3—N2106.04 (17)
C12—C11—C10118.5 (2)C15—N4—C19115.6 (2)
C12—C11—H11120.7C13—O3—C14102.71 (15)
O1—C1—C2—C77.7 (3)C15—C16—C17—C180.1 (4)
O2—C1—C2—C7171.85 (19)C15—C16—C17—C14178.0 (2)
O1—C1—C2—C3172.7 (2)N3—C14—C17—C18167.8 (2)
O2—C1—C2—C37.7 (3)O3—C14—C17—C189.0 (3)
C7—C2—C3—C40.0 (3)N3—C14—C17—C1610.2 (4)
C1—C2—C3—C4179.54 (19)O3—C14—C17—C16172.9 (2)
C2—C3—C4—C50.5 (3)C16—C17—C18—C190.3 (4)
C3—C4—C5—C60.4 (4)C14—C17—C18—C19177.8 (2)
C4—C5—C6—C70.3 (4)C17—C18—C19—N40.6 (4)
C5—C6—C7—C20.8 (4)C11—C12—N1—C80.6 (3)
C3—C2—C7—C60.7 (3)C9—C8—N1—C120.9 (4)
C1—C2—C7—C6178.9 (2)O3—C13—N2—N30.5 (2)
N1—C8—C9—C101.5 (4)C10—C13—N2—N3179.14 (19)
C8—C9—C10—C110.6 (3)O3—C14—N3—N20.4 (2)
C8—C9—C10—C13179.7 (2)C17—C14—N3—N2176.6 (2)
C9—C10—C11—C120.8 (3)C13—N2—N3—C140.5 (2)
C13—C10—C11—C12178.89 (19)C16—C15—N4—C190.3 (4)
C10—C11—C12—N11.4 (3)C18—C19—N4—C150.5 (4)
C9—C10—C13—N22.8 (3)N2—C13—O3—C140.2 (2)
C11—C10—C13—N2176.8 (2)C10—C13—O3—C14179.42 (17)
C9—C10—C13—O3177.63 (18)N3—C14—O3—C130.1 (2)
C11—C10—C13—O32.7 (3)C17—C14—O3—C13177.24 (18)
N4—C15—C16—C170.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.861.792.648 (2)174
C8—H8···O1ii0.932.483.371 (3)161
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC12H9N4O+·C7H5O2
Mr346.34
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)20.459 (4), 7.1958 (14), 11.249 (2)
β (°) 90.53 (3)
V3)1656.0 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerRigaku Mercury2
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.854, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
16725, 3808, 2248
Rint0.064
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.171, 1.02
No. of reflections3808
No. of parameters236
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.28

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.861.792.648 (2)174
C8—H8···O1ii0.932.483.371 (3)161
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y+1, z.
 

Acknowledgements

The authors are grateful to the starter fund of Southeast University for financial support to buy the X-ray diffractometer.

References

First citationHaertling, G. H. (1999). J. Am. Ceram. Soc. 82, 797–810.  CrossRef CAS Google Scholar
First citationHomes, C. C., Vogt, T., Shapiro, S. M., Wakimoto, S. & Ramirez, A. P. (2001). Science, 293, 673–676.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYe, Q., Song, Y. M., Wang, G. X., Chen, K., Fu, D. W., Chan, P. W. H., Zhu, J. S., Huang, S. D. & Xiong, R. G. (2006). J. Am. Chem. Soc. 20, 6554–6555.  Web of Science CSD CrossRef Google Scholar
First citationZhang, W., Xiong, R. G. & Huang, S. P. (2008). J. Am. Chem. Soc. 32, 10468–10469.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds