metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Chloridobis(1,10-phenanthroline-κ2N,N′)copper(I) di­chloridocopper(II)

aDepartment of Chemistry, Northwest University, Xi'an 710069, People's Republic of China, and bQinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, People's Republic of China
*Correspondence e-mail: qqm23@sohu.com

(Received 22 December 2010; accepted 24 December 2010; online 22 January 2011)

The asymmetric unit of the title compound, [CuCl(C12H8N2)2]·[CuCl2], contains two complex Cu(II) cations and two cuprate(I) anions. The Cu(II) atom is coordinated by two phenanthroline (phen) mol­ecules and one chloride anion in a distorted trigonal–bipyramidal geometry. The Cu(II) complex cations form layers through ππ stacking [interplanar distance = 3.481 (2) Å]. The dichloridocuprate(I) anions are located between the layers, forming a sandwich-like structure.

Related literature

For the use of 1,10-phenanthroline (phen) in copper complexes, see: Wang et al. (2002[Wang, S., Li, Y., Wang, E., Luan, G., Hu, C., Hu, N. & Jia, H. (2002). J. Solid State Chem, 167, 402-406.], 2003[Wang, S., Wang, E., Hou, Y., Li, Y., Yuan, M. & Hu, N. (2003). Inorg. Chim. Acta, 349, 123-127.]); Lan et al. (2007[Lan, C., Long, J. & Shen, W. (2007). Chin. J. Synth. Chem. 15, 188-191.]). For complexes involving five-coordinated copper atoms with 1,10-phen ligands, see: Gkioni et al. (2008[Gkioni, C., Boudalis, A. K., Sanakis, Y., Leondiadis, L., Psycharis, V. & Raptopoulou, C. P. (2008). Polyhedron, 27, 2315-2326.]); Mao et al. (2004[Mao, H.-Y., Shen, X.-Q., Li, G., Zhang, H.-Y., Xu, C., Liu, H.-L., Wang, E.-B., Wu, Q.-A., Hou, H.-W. & Zhu, Y. (2004). Polyhedron, 23, 1961-1967.]); Ma et al. (2000[Ma, B.-Q., Gao, S., Yi, T., Yan, C.-H. & Xu, G.-X. (2000). Inorg. Chem. Commun. 3, 93-95.]); Hu et al. (2006[Hu, Z.-Q., Lai, G.-Q., Jiang, J.-X., Ma, F.-M. & Li, Y.-Z. (2006). Chin. J. Struct. Chem. 25, 41-44.]). For mixed-valence copper complexes with 1,10-phen, see: Xu et al. (2007[Xu, X., Ma, M. & Wang, E. (2007). Inorg. Chem. Commun. 10, 1113-1116.]).

[Scheme 1]

Experimental

Crystal data
  • [CuCl(C12H8N2)2]·[CuCl2]

  • Mr = 593.84

  • Monoclinic, P 21 /c

  • a = 9.8137 (3) Å

  • b = 17.8813 (6) Å

  • c = 26.2679 (7) Å

  • β = 90.535 (1)°

  • V = 4609.3 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 2.21 mm−1

  • T = 296 K

  • 0.18 × 0.15 × 0.02 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.691, Tmax = 0.957

  • 35792 measured reflections

  • 9043 independent reflections

  • 6276 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.090

  • S = 1.01

  • 9043 reflections

  • 595 parameters

  • 16 restraints

  • H-atom parameters constrained

  • Δρmax = 0.65 e Å−3

  • Δρmin = −0.55 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—N3 1.992 (3)
Cu1—N2 1.999 (3)
Cu1—N4 2.104 (3)
Cu1—N1 2.115 (3)
Cu1—Cl1 2.2721 (9)
Cu2—N5 1.983 (3)
Cu2—N8 1.992 (3)
Cu2—N7 2.125 (2)
Cu2—N6 2.162 (3)
Cu2—Cl2 2.2306 (10)
Cu3—Cl3 2.0813 (12)
Cu3—Cl4 2.0936 (11)
Cu4—Cl6 2.0669 (13)
Cu4—Cl5 2.0706 (11)

Data collection: APEX2 (Bruker, 2001[Bruker (2001). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

As bidentate diimine ligand, 1,10-phenanthroline (phen), has been widely used as the second ligand in prepare many kinds of metal-coordination complexes, especially in copper(II) complexes (Wang et al. 2003, Wang et al. 2002, Lan et al. 2007). Although many five-coordinated copper(II) complexes are well documented (Gkioni et al. 2008, Mao et al. 2004, Ma et al. 2000, Hu et al. 2006), the presence mixed-charge complexes have been rarely observed (Xu et al. 2007). Here we report a mixed-charge copper complex with 1,10-phenanthroline as coordinate ligand, this complex was constituted through π-π interactions. The Molecular structure of 1 showing 50% probability displacement ellipsoids was shown in Fig. 1. The coordinate environment of complex 1 shown in figure 2. The Packing diagram of 1 viewed down the a-axis was presented in Fig. 3. Selected band length and angle see table 1.

Related literature top

For the use of 1,10-phenanthroline (phen) in copper complexes, see: Wang et al. (2002, 2003); Lan et al. (2007). For complexes involving five-coordinated copper atoms with 1,10-phen ligands, see: Gkioni et al. (2008); Mao et al. (2004); Ma et al. (2000); Hu et al. (2006). For mixed-valance copper complexes with 1,10-phen, see: Xu et al. (2007).

Experimental top

The complex 1 was synthesized by solvothermal reaction. A mixture of 1,10-Phenanthroline monohydrate(0.0198 g, 0.1 mmol), CuCl2.2H2O (0.0170 g, 0.1 mmol), L1 (L1 = HO-(Ph)—CH=N—Ph—O—Ph—N=CH-(Ph)—OH (0.0204 g, 0.05 mmol) and CH3CH2OH (3 ml) was sealed in a 6 ml glass tube and heated to 393 K for 72 h. After cooling to room temperature, green crystals were obtained concomitanted with a lot of brown precipitation. The color of solution is light-brown. The ligand of L1 could't coordinate with Cu.

Refinement top

H atoms were placed in calculated positions with C—H = 0.93 (aromatic) refined in riding mode, with Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The Molecular structure of 1 showing 50% probability displacement ellipsoids
[Figure 2] Fig. 2. The coordinate environment of complex 1.
[Figure 3] Fig. 3. The Packing diagram of 1 viewed down the a-axis.
Chloridobis(1,10-phenanthroline-κ2N,N')copper(I) dichloridocopper(II) top
Crystal data top
[CuCl(C12H8N2)2]·[CuCl2]F(000) = 2376
Mr = 593.84char
Monoclinic, P21/cDx = 1.711 Mg m3
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 9.8137 (3) ÅCell parameters from 8168 reflections
b = 17.8813 (6) Åθ = 2.2–24.2°
c = 26.2679 (7) ŵ = 2.21 mm1
β = 90.535 (1)°T = 296 K
V = 4609.3 (2) Å3Rod, green
Z = 80.18 × 0.15 × 0.02 mm
Data collection top
Bruker APEXII CCD
diffractometer
9043 independent reflections
Radiation source: fine-focus sealed tube6276 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ϕ and ω scansθmax = 26.0°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1112
Tmin = 0.691, Tmax = 0.957k = 1722
35792 measured reflectionsl = 2532
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.033P)2 + 3.6932P]
where P = (Fo2 + 2Fc2)/3
9043 reflections(Δ/σ)max = 0.001
595 parametersΔρmax = 0.65 e Å3
16 restraintsΔρmin = 0.55 e Å3
Crystal data top
[CuCl(C12H8N2)2]·[CuCl2]V = 4609.3 (2) Å3
Mr = 593.84Z = 8
Monoclinic, P21/cMo Kα radiation
a = 9.8137 (3) ŵ = 2.21 mm1
b = 17.8813 (6) ÅT = 296 K
c = 26.2679 (7) Å0.18 × 0.15 × 0.02 mm
β = 90.535 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
9043 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
6276 reflections with I > 2σ(I)
Tmin = 0.691, Tmax = 0.957Rint = 0.032
35792 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03816 restraints
wR(F2) = 0.090H-atom parameters constrained
S = 1.01Δρmax = 0.65 e Å3
9043 reflectionsΔρmin = 0.55 e Å3
595 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.45874 (4)0.22779 (2)0.434313 (15)0.04415 (11)
Cl10.30626 (8)0.14861 (5)0.47027 (3)0.0552 (2)
N10.6034 (3)0.28987 (15)0.47699 (10)0.0445 (6)
C10.5990 (4)0.3590 (2)0.49512 (13)0.0584 (9)
H10.52110.38750.48950.070*
Cu21.00137 (4)0.30937 (2)0.179368 (14)0.04466 (11)
Cl21.19064 (10)0.33783 (7)0.13718 (4)0.0810 (3)
N20.6088 (3)0.15237 (15)0.43836 (10)0.0462 (7)
C20.7070 (5)0.3903 (3)0.52226 (15)0.0756 (12)
H20.70110.43920.53400.091*
N30.3228 (3)0.30996 (14)0.42697 (10)0.0446 (6)
C30.8191 (5)0.3503 (3)0.53145 (14)0.0751 (13)
H30.89080.37140.54980.090*
Cu30.66098 (5)0.03206 (3)0.295513 (19)0.06514 (14)
Cl30.86153 (12)0.06908 (8)0.29074 (5)0.0969 (4)
N40.4840 (3)0.25237 (14)0.35664 (10)0.0442 (6)
C40.8298 (4)0.2764 (3)0.51359 (13)0.0603 (10)
Cu40.29958 (5)0.03693 (3)0.094280 (18)0.06336 (14)
Cl40.45844 (10)0.00298 (6)0.30242 (4)0.0770 (3)
N50.8859 (3)0.37651 (15)0.13714 (9)0.0435 (6)
C50.9433 (4)0.2279 (3)0.52143 (16)0.0818 (15)
H51.01790.24510.54020.098*
Cl50.48555 (11)0.01769 (6)0.09709 (5)0.0866 (3)
N60.8359 (3)0.23407 (15)0.16073 (9)0.0437 (6)
C60.9458 (4)0.1586 (3)0.50272 (16)0.0775 (14)
H61.02190.12870.50860.093*
Cl60.11371 (13)0.09104 (9)0.09723 (6)0.1124 (5)
N70.9086 (2)0.34430 (14)0.24817 (9)0.0421 (6)
C70.8333 (4)0.1291 (2)0.47356 (14)0.0617 (10)
N81.0928 (3)0.23944 (15)0.22782 (10)0.0446 (6)
C80.8270 (4)0.0571 (3)0.45286 (16)0.0758 (13)
H80.89970.02450.45770.091*
C90.7159 (5)0.0342 (2)0.42570 (17)0.0742 (12)
H90.71220.01360.41180.089*
C100.6071 (4)0.0841 (2)0.41908 (14)0.0600 (10)
H100.53100.06870.40050.072*
C110.7192 (3)0.1750 (2)0.46529 (12)0.0463 (8)
C120.7172 (3)0.2488 (2)0.48574 (12)0.0461 (8)
C130.2456 (3)0.3388 (2)0.46311 (14)0.0572 (9)
H130.25350.31990.49600.069*
C140.1532 (4)0.3962 (2)0.45373 (17)0.0640 (10)
H140.10140.41570.48010.077*
C150.1390 (4)0.4239 (2)0.40545 (17)0.0621 (10)
H150.07740.46230.39880.074*
C160.2169 (3)0.39434 (18)0.36624 (14)0.0492 (8)
C170.2079 (4)0.4176 (2)0.31404 (16)0.0607 (10)
H170.14560.45450.30480.073*
C180.2868 (4)0.3875 (2)0.27856 (15)0.0608 (10)
H180.27700.40330.24500.073*
C190.3862 (3)0.33160 (19)0.29055 (13)0.0507 (9)
C200.4736 (4)0.2995 (2)0.25542 (14)0.0652 (11)
H200.47050.31410.22150.078*
C210.5636 (4)0.2464 (2)0.27123 (15)0.0666 (11)
H210.62310.22500.24810.080*
C220.5671 (3)0.2238 (2)0.32202 (13)0.0542 (9)
H220.62970.18750.33200.065*
C230.3104 (3)0.33762 (17)0.37899 (12)0.0431 (8)
C240.3956 (3)0.30633 (18)0.34118 (12)0.0420 (8)
C250.9155 (4)0.4463 (2)0.12439 (13)0.0544 (9)
H250.99750.46690.13560.065*
C260.8283 (4)0.4896 (2)0.09489 (13)0.0597 (10)
H260.85300.53800.08580.072*
C270.7073 (4)0.4613 (2)0.07935 (13)0.0607 (10)
H270.64840.49020.05970.073*
C280.6706 (3)0.3883 (2)0.09285 (12)0.0497 (8)
C290.5441 (4)0.3539 (3)0.07990 (14)0.0646 (11)
H290.48050.38060.06070.078*
C300.5142 (4)0.2844 (3)0.09460 (15)0.0669 (12)
H300.42950.26430.08630.080*
C310.6104 (3)0.2402 (2)0.12295 (13)0.0522 (9)
C320.5884 (4)0.1665 (2)0.13784 (15)0.0667 (11)
H320.50520.14360.13090.080*
C330.6896 (5)0.1279 (2)0.16269 (16)0.0702 (11)
H330.67620.07840.17240.084*
C340.8129 (4)0.1636 (2)0.17332 (13)0.0567 (9)
H340.88150.13680.18990.068*
C350.7650 (3)0.34751 (18)0.12166 (11)0.0402 (7)
C360.7365 (3)0.27213 (19)0.13576 (11)0.0423 (8)
C370.8161 (3)0.3964 (2)0.25723 (13)0.0541 (9)
H370.78640.42670.23060.065*
C380.7616 (4)0.4072 (2)0.30566 (15)0.0624 (10)
H380.69640.44420.31080.075*
C390.8038 (4)0.3640 (2)0.34499 (14)0.0583 (10)
H390.76750.37120.37720.070*
C400.9017 (3)0.30851 (19)0.33726 (12)0.0459 (8)
C410.9578 (4)0.2616 (2)0.37633 (13)0.0537 (9)
H410.92670.26650.40950.064*
C421.0537 (4)0.2111 (2)0.36625 (13)0.0558 (10)
H421.08860.18200.39270.067*
C431.1044 (3)0.20054 (18)0.31602 (13)0.0459 (8)
C441.2035 (3)0.1481 (2)0.30253 (15)0.0575 (9)
H441.24140.11700.32720.069*
C451.2443 (4)0.1426 (2)0.25349 (16)0.0625 (10)
H451.31010.10780.24450.075*
C461.1868 (3)0.1895 (2)0.21661 (14)0.0564 (9)
H461.21570.18540.18310.068*
C470.9501 (3)0.30043 (17)0.28771 (11)0.0387 (7)
C481.0511 (3)0.24541 (17)0.27680 (12)0.0398 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0394 (2)0.0440 (2)0.0491 (2)0.00196 (17)0.00003 (17)0.00137 (19)
Cl10.0434 (5)0.0554 (5)0.0668 (6)0.0075 (4)0.0009 (4)0.0041 (4)
N10.0449 (16)0.0486 (18)0.0398 (15)0.0049 (13)0.0012 (12)0.0034 (13)
C10.067 (2)0.057 (2)0.051 (2)0.0112 (19)0.0017 (18)0.0041 (18)
Cu20.0390 (2)0.0559 (3)0.0391 (2)0.00291 (18)0.00186 (16)0.00489 (19)
Cl20.0524 (6)0.1023 (8)0.0888 (8)0.0072 (5)0.0248 (5)0.0270 (6)
N20.0428 (16)0.0421 (17)0.0539 (17)0.0044 (13)0.0052 (13)0.0034 (14)
C20.084 (3)0.080 (3)0.063 (3)0.029 (3)0.004 (2)0.017 (2)
N30.0410 (15)0.0433 (16)0.0496 (17)0.0006 (12)0.0025 (13)0.0045 (13)
C30.067 (3)0.113 (4)0.045 (2)0.044 (3)0.004 (2)0.011 (2)
Cu30.0680 (3)0.0568 (3)0.0706 (3)0.0075 (2)0.0015 (2)0.0070 (2)
Cl30.0883 (8)0.1114 (10)0.0908 (8)0.0490 (7)0.0154 (6)0.0199 (7)
N40.0433 (15)0.0428 (16)0.0464 (16)0.0045 (13)0.0022 (13)0.0046 (13)
C40.044 (2)0.102 (3)0.0350 (19)0.013 (2)0.0008 (15)0.014 (2)
Cu40.0595 (3)0.0590 (3)0.0713 (3)0.0020 (2)0.0088 (2)0.0022 (2)
Cl40.0569 (6)0.0804 (7)0.0936 (8)0.0065 (5)0.0016 (5)0.0047 (6)
N50.0455 (16)0.0484 (17)0.0364 (15)0.0012 (13)0.0014 (12)0.0034 (12)
C50.040 (2)0.151 (5)0.054 (3)0.011 (3)0.0011 (18)0.025 (3)
Cl50.0622 (6)0.0699 (7)0.1278 (10)0.0079 (5)0.0014 (6)0.0166 (7)
N60.0498 (16)0.0421 (17)0.0391 (15)0.0003 (13)0.0017 (12)0.0002 (13)
C60.040 (2)0.133 (4)0.059 (3)0.020 (3)0.0087 (19)0.039 (3)
Cl60.0822 (8)0.1347 (12)0.1196 (11)0.0435 (8)0.0332 (7)0.0131 (9)
N70.0390 (14)0.0478 (16)0.0395 (15)0.0042 (13)0.0061 (11)0.0019 (13)
C70.049 (2)0.086 (3)0.051 (2)0.016 (2)0.0162 (18)0.025 (2)
N80.0398 (15)0.0505 (17)0.0434 (16)0.0046 (13)0.0029 (12)0.0003 (13)
C80.065 (3)0.092 (3)0.072 (3)0.036 (2)0.024 (2)0.029 (2)
C90.093 (3)0.051 (2)0.079 (3)0.020 (2)0.034 (3)0.007 (2)
C100.065 (2)0.052 (2)0.064 (2)0.0036 (19)0.0131 (19)0.0041 (19)
C110.0366 (18)0.062 (2)0.0403 (18)0.0050 (16)0.0079 (15)0.0170 (17)
C120.0387 (18)0.064 (2)0.0356 (18)0.0078 (16)0.0024 (14)0.0086 (16)
C130.054 (2)0.061 (2)0.056 (2)0.0003 (19)0.0058 (18)0.0081 (19)
C140.049 (2)0.059 (3)0.084 (3)0.0069 (19)0.011 (2)0.016 (2)
C150.046 (2)0.044 (2)0.096 (3)0.0027 (17)0.006 (2)0.000 (2)
C160.0405 (19)0.0372 (19)0.070 (2)0.0045 (15)0.0055 (17)0.0009 (17)
C170.052 (2)0.045 (2)0.084 (3)0.0096 (17)0.021 (2)0.016 (2)
C180.067 (3)0.056 (2)0.059 (2)0.019 (2)0.014 (2)0.018 (2)
C190.055 (2)0.048 (2)0.049 (2)0.0159 (17)0.0045 (17)0.0062 (17)
C200.080 (3)0.071 (3)0.045 (2)0.021 (2)0.006 (2)0.001 (2)
C210.075 (3)0.070 (3)0.055 (2)0.009 (2)0.020 (2)0.010 (2)
C220.054 (2)0.053 (2)0.056 (2)0.0024 (17)0.0065 (18)0.0055 (18)
C230.0390 (17)0.0384 (19)0.052 (2)0.0093 (14)0.0038 (15)0.0011 (16)
C240.0387 (17)0.0399 (19)0.047 (2)0.0099 (15)0.0012 (15)0.0028 (15)
C250.060 (2)0.055 (2)0.048 (2)0.0041 (18)0.0032 (17)0.0029 (18)
C260.082 (3)0.047 (2)0.050 (2)0.009 (2)0.011 (2)0.0078 (18)
C270.072 (3)0.067 (3)0.043 (2)0.030 (2)0.0002 (18)0.0003 (18)
C280.051 (2)0.060 (2)0.0385 (18)0.0173 (18)0.0006 (15)0.0075 (17)
C290.053 (2)0.086 (3)0.055 (2)0.030 (2)0.0111 (18)0.019 (2)
C300.038 (2)0.099 (4)0.065 (3)0.003 (2)0.0046 (18)0.034 (2)
C310.043 (2)0.065 (3)0.048 (2)0.0019 (18)0.0044 (16)0.0218 (18)
C320.057 (2)0.075 (3)0.068 (3)0.019 (2)0.011 (2)0.028 (2)
C330.085 (3)0.053 (2)0.073 (3)0.019 (2)0.015 (2)0.010 (2)
C340.067 (2)0.055 (2)0.048 (2)0.0010 (19)0.0045 (18)0.0016 (18)
C350.0394 (18)0.051 (2)0.0298 (16)0.0074 (15)0.0006 (13)0.0039 (15)
C360.0414 (18)0.053 (2)0.0322 (17)0.0035 (16)0.0033 (14)0.0090 (15)
C370.055 (2)0.056 (2)0.051 (2)0.0104 (18)0.0039 (17)0.0012 (17)
C380.059 (2)0.068 (3)0.060 (2)0.014 (2)0.0077 (19)0.013 (2)
C390.058 (2)0.071 (3)0.045 (2)0.008 (2)0.0093 (17)0.010 (2)
C400.0448 (18)0.054 (2)0.0386 (18)0.0122 (16)0.0005 (15)0.0025 (16)
C410.062 (2)0.062 (2)0.0377 (19)0.016 (2)0.0015 (17)0.0062 (17)
C420.061 (2)0.061 (2)0.046 (2)0.0189 (19)0.0127 (18)0.0187 (18)
C430.0428 (18)0.044 (2)0.051 (2)0.0096 (15)0.0097 (15)0.0075 (16)
C440.049 (2)0.052 (2)0.070 (3)0.0036 (17)0.0151 (19)0.014 (2)
C450.050 (2)0.051 (2)0.087 (3)0.0133 (18)0.007 (2)0.001 (2)
C460.049 (2)0.062 (2)0.058 (2)0.0097 (18)0.0015 (17)0.0059 (19)
C470.0348 (16)0.0449 (19)0.0361 (17)0.0075 (14)0.0035 (13)0.0019 (14)
C480.0353 (16)0.0412 (19)0.0428 (19)0.0090 (14)0.0060 (14)0.0026 (15)
Geometric parameters (Å, º) top
Cu1—N31.992 (3)C15—H150.9300
Cu1—N21.999 (3)C16—C231.406 (4)
Cu1—N42.104 (3)C16—C171.435 (5)
Cu1—N12.115 (3)C17—C181.331 (5)
Cu1—Cl12.2721 (9)C17—H170.9300
N1—C11.325 (4)C18—C191.430 (5)
N1—C121.354 (4)C18—H180.9300
C1—C21.390 (5)C19—C201.390 (5)
C1—H10.9300C19—C241.407 (4)
Cu2—N51.983 (3)C20—C211.358 (5)
Cu2—N81.992 (3)C20—H200.9300
Cu2—N72.125 (2)C21—C221.394 (5)
Cu2—N62.162 (3)C21—H210.9300
Cu2—Cl22.2306 (10)C22—H220.9300
N2—C101.321 (4)C23—C241.420 (4)
N2—C111.350 (4)C25—C261.386 (5)
C2—C31.332 (6)C25—H250.9300
C2—H20.9300C26—C271.351 (5)
N3—C131.325 (4)C26—H260.9300
N3—C231.358 (4)C27—C281.399 (5)
C3—C41.406 (6)C27—H270.9300
C3—H30.9300C28—C351.396 (4)
Cu3—Cl32.0813 (12)C28—C291.424 (5)
Cu3—Cl42.0936 (11)C29—C301.335 (6)
N4—C221.329 (4)C29—H290.9300
N4—C241.357 (4)C30—C311.435 (5)
C4—C121.409 (5)C30—H300.9300
C4—C51.426 (6)C31—C321.392 (5)
Cu4—Cl62.0669 (13)C31—C361.401 (4)
Cu4—Cl52.0706 (11)C32—C331.370 (6)
N5—C251.326 (4)C32—H320.9300
N5—C351.354 (4)C33—C341.393 (5)
C5—C61.334 (6)C33—H330.9300
C5—H50.9300C34—H340.9300
N6—C341.323 (4)C35—C361.426 (4)
N6—C361.354 (4)C37—C381.398 (5)
C6—C71.438 (6)C37—H370.9300
C6—H60.9300C38—C391.352 (5)
N7—C371.324 (4)C38—H380.9300
N7—C471.361 (4)C39—C401.397 (5)
C7—C81.397 (6)C39—H390.9300
C7—C111.404 (5)C40—C471.397 (4)
N8—C461.319 (4)C40—C411.431 (5)
N8—C481.358 (4)C41—C421.333 (5)
C8—C91.361 (6)C41—H410.9300
C8—H80.9300C42—C431.427 (5)
C9—C101.401 (5)C42—H420.9300
C9—H90.9300C43—C441.399 (5)
C10—H100.9300C43—C481.403 (4)
C11—C121.424 (5)C44—C451.356 (5)
C13—C141.391 (5)C44—H440.9300
C13—H130.9300C45—C461.396 (5)
C14—C151.367 (5)C45—H450.9300
C14—H140.9300C46—H460.9300
C15—C161.393 (5)C47—C481.427 (4)
N3—Cu1—N2174.14 (11)C18—C17—H17119.3
N3—Cu1—N480.62 (11)C16—C17—H17119.3
N2—Cu1—N495.68 (11)C17—C18—C19121.9 (4)
N3—Cu1—N196.30 (11)C17—C18—H18119.0
N2—Cu1—N180.52 (11)C19—C18—H18119.0
N4—Cu1—N1108.64 (10)C20—C19—C24117.3 (3)
N3—Cu1—Cl193.26 (8)C20—C19—C18124.5 (4)
N2—Cu1—Cl192.59 (8)C24—C19—C18118.1 (3)
N4—Cu1—Cl1128.13 (7)C21—C20—C19119.3 (4)
N1—Cu1—Cl1123.23 (7)C21—C20—H20120.4
C1—N1—C12118.3 (3)C19—C20—H20120.4
C1—N1—Cu1131.0 (2)C20—C21—C22120.3 (4)
C12—N1—Cu1110.7 (2)C20—C21—H21119.8
N1—C1—C2122.2 (4)C22—C21—H21119.8
N1—C1—H1118.9N4—C22—C21122.2 (4)
C2—C1—H1118.9N4—C22—H22118.9
N5—Cu2—N8171.56 (10)C21—C22—H22118.9
N5—Cu2—N792.89 (10)N3—C23—C16122.5 (3)
N8—Cu2—N780.52 (10)N3—C23—C24117.2 (3)
N5—Cu2—N679.99 (10)C16—C23—C24120.4 (3)
N8—Cu2—N694.98 (10)N4—C24—C19123.2 (3)
N7—Cu2—N692.79 (9)N4—C24—C23116.8 (3)
N5—Cu2—Cl293.34 (8)C19—C24—C23120.1 (3)
N8—Cu2—Cl295.07 (8)N5—C25—C26122.1 (3)
N7—Cu2—Cl2136.12 (8)N5—C25—H25118.9
N6—Cu2—Cl2131.05 (7)C26—C25—H25118.9
C10—N2—C11119.0 (3)C27—C26—C25119.7 (4)
C10—N2—Cu1126.6 (3)C27—C26—H26120.1
C11—N2—Cu1114.4 (2)C25—C26—H26120.1
C3—C2—C1120.0 (4)C26—C27—C28120.1 (3)
C3—C2—H2120.0C26—C27—H27120.0
C1—C2—H2120.0C28—C27—H27120.0
C13—N3—C23118.4 (3)C35—C28—C27117.0 (3)
C13—N3—Cu1127.2 (2)C35—C28—C29118.4 (3)
C23—N3—Cu1114.4 (2)C27—C28—C29124.6 (3)
C2—C3—C4120.6 (4)C30—C29—C28121.8 (4)
C2—C3—H3119.7C30—C29—H29119.1
C4—C3—H3119.7C28—C29—H29119.1
Cl3—Cu3—Cl4178.13 (6)C29—C30—C31121.2 (3)
C22—N4—C24117.6 (3)C29—C30—H30119.4
C22—N4—Cu1131.4 (2)C31—C30—H30119.4
C24—N4—Cu1111.0 (2)C32—C31—C36117.2 (3)
C3—C4—C12116.2 (4)C32—C31—C30124.3 (4)
C3—C4—C5125.7 (4)C36—C31—C30118.4 (4)
C12—C4—C5118.0 (4)C33—C32—C31119.8 (4)
Cl6—Cu4—Cl5175.80 (6)C33—C32—H32120.1
C25—N5—C35118.6 (3)C31—C32—H32120.1
C25—N5—Cu2125.9 (2)C32—C33—C34119.3 (4)
C35—N5—Cu2115.5 (2)C32—C33—H33120.4
C6—C5—C4121.9 (4)C34—C33—H33120.4
C6—C5—H5119.0N6—C34—C33122.4 (4)
C4—C5—H5119.0N6—C34—H34118.8
C34—N6—C36118.4 (3)C33—C34—H34118.8
C34—N6—Cu2131.8 (2)N5—C35—C28122.5 (3)
C36—N6—Cu2109.4 (2)N5—C35—C36117.2 (3)
C5—C6—C7121.4 (4)C28—C35—C36120.3 (3)
C5—C6—H6119.3N6—C36—C31122.9 (3)
C7—C6—H6119.3N6—C36—C35117.3 (3)
C37—N7—C47118.0 (3)C31—C36—C35119.8 (3)
C37—N7—Cu2131.3 (2)N7—C37—C38122.0 (3)
C47—N7—Cu2110.62 (19)N7—C37—H37119.0
C8—C7—C11116.5 (4)C38—C37—H37119.0
C8—C7—C6125.2 (4)C39—C38—C37119.9 (3)
C11—C7—C6118.3 (4)C39—C38—H38120.0
C46—N8—C48118.8 (3)C37—C38—H38120.0
C46—N8—Cu2126.5 (2)C38—C39—C40120.1 (3)
C48—N8—Cu2114.7 (2)C38—C39—H39120.0
C9—C8—C7120.9 (4)C40—C39—H39120.0
C9—C8—H8119.5C47—C40—C39116.7 (3)
C7—C8—H8119.5C47—C40—C41118.4 (3)
C8—C9—C10118.6 (4)C39—C40—C41124.9 (3)
C8—C9—H9120.7C42—C41—C40121.5 (3)
C10—C9—H9120.7C42—C41—H41119.3
N2—C10—C9122.2 (4)C40—C41—H41119.3
N2—C10—H10118.9C41—C42—C43121.8 (3)
C9—C10—H10118.9C41—C42—H42119.1
N2—C11—C7122.7 (4)C43—C42—H42119.1
N2—C11—C12117.4 (3)C44—C43—C48116.9 (3)
C7—C11—C12119.8 (3)C44—C43—C42124.9 (3)
N1—C12—C4122.6 (3)C48—C43—C42118.2 (3)
N1—C12—C11116.9 (3)C45—C44—C43120.1 (3)
C4—C12—C11120.4 (3)C45—C44—H44119.9
N3—C13—C14122.5 (4)C43—C44—H44119.9
N3—C13—H13118.8C44—C45—C46119.6 (3)
C14—C13—H13118.8C44—C45—H45120.2
C15—C14—C13119.5 (4)C46—C45—H45120.2
C15—C14—H14120.3N8—C46—C45122.0 (3)
C13—C14—H14120.3N8—C46—H46119.0
C14—C15—C16119.8 (3)C45—C46—H46119.0
C14—C15—H15120.1N7—C47—C40123.3 (3)
C16—C15—H15120.1N7—C47—C48116.6 (3)
C15—C16—C23117.3 (3)C40—C47—C48120.1 (3)
C15—C16—C17124.6 (3)N8—C48—C43122.5 (3)
C23—C16—C17118.1 (3)N8—C48—C47117.4 (3)
C18—C17—C16121.4 (4)C43—C48—C47120.1 (3)

Experimental details

Crystal data
Chemical formula[CuCl(C12H8N2)2]·[CuCl2]
Mr593.84
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)9.8137 (3), 17.8813 (6), 26.2679 (7)
β (°) 90.535 (1)
V3)4609.3 (2)
Z8
Radiation typeMo Kα
µ (mm1)2.21
Crystal size (mm)0.18 × 0.15 × 0.02
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.691, 0.957
No. of measured, independent and
observed [I > 2σ(I)] reflections
35792, 9043, 6276
Rint0.032
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.090, 1.01
No. of reflections9043
No. of parameters595
No. of restraints16
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.65, 0.55

Computer programs: APEX2 (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cu1—N31.992 (3)Cu2—N72.125 (2)
Cu1—N21.999 (3)Cu2—N62.162 (3)
Cu1—N42.104 (3)Cu2—Cl22.2306 (10)
Cu1—N12.115 (3)Cu3—Cl32.0813 (12)
Cu1—Cl12.2721 (9)Cu3—Cl42.0936 (11)
Cu2—N51.983 (3)Cu4—Cl62.0669 (13)
Cu2—N81.992 (3)Cu4—Cl52.0706 (11)
 

Acknowledgements

We are grateful for financial support from the National Science Foundation of China (Nos. 20771089, 20873100).

References

First citationBruker (2001). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGkioni, C., Boudalis, A. K., Sanakis, Y., Leondiadis, L., Psycharis, V. & Raptopoulou, C. P. (2008). Polyhedron, 27, 2315–2326.  Web of Science CSD CrossRef CAS Google Scholar
First citationHu, Z.-Q., Lai, G.-Q., Jiang, J.-X., Ma, F.-M. & Li, Y.-Z. (2006). Chin. J. Struct. Chem. 25, 41–44.  CAS Google Scholar
First citationLan, C., Long, J. & Shen, W. (2007). Chin. J. Synth. Chem. 15, 188–191.  CAS Google Scholar
First citationMa, B.-Q., Gao, S., Yi, T., Yan, C.-H. & Xu, G.-X. (2000). Inorg. Chem. Commun. 3, 93–95.  CSD CrossRef CAS Google Scholar
First citationMao, H.-Y., Shen, X.-Q., Li, G., Zhang, H.-Y., Xu, C., Liu, H.-L., Wang, E.-B., Wu, Q.-A., Hou, H.-W. & Zhu, Y. (2004). Polyhedron, 23, 1961–1967.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, S., Li, Y., Wang, E., Luan, G., Hu, C., Hu, N. & Jia, H. (2002). J. Solid State Chem, 167, 402–406.  Web of Science CrossRef CAS Google Scholar
First citationWang, S., Wang, E., Hou, Y., Li, Y., Yuan, M. & Hu, N. (2003). Inorg. Chim. Acta, 349, 123–127.  Web of Science CSD CrossRef CAS Google Scholar
First citationXu, X., Ma, M. & Wang, E. (2007). Inorg. Chem. Commun. 10, 1113–1116.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds