organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-[4-(2-Chloro­eth­­oxy)-2-hy­dr­oxy­phen­yl]ethanone

aCollege of Life Sciences, Northwest A&F University, Yangling Shaanxi 712100, People's Republic of China
*Correspondence e-mail: weigehong@yahoo.com.cn

(Received 25 December 2010; accepted 29 December 2010; online 22 January 2011)

In the title compound, C10H11ClO3, obtained by the reaction of 2,4-dihy­droxy­acetophenone, potassium carbonate and 1-bromo-2-chloro­ethane, an intra­molecular O—H⋯O hydrogen bond occurs.

Related literature

The title compound was synthesized by the Williamson reaction (Dermer, 1934[Dermer, O. C. (1934). Chem. Rev. 14, 385-430.]). For a related structure, see: Schlemper (1986[Schlemper, E. O. (1986). Acta Cryst. C42, 755-757.]).

[Scheme 1]

Experimental

Crystal data
  • C10H11ClO3

  • Mr = 214.64

  • Orthorhombic, P c a 21

  • a = 8.9970 (7) Å

  • b = 5.3258 (4) Å

  • c = 20.6307 (17) Å

  • V = 988.55 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.36 mm−1

  • T = 298 K

  • 0.40 × 0.39 × 0.20 mm

Data collection
  • Siemens SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.868, Tmax = 0.931

  • 4434 measured reflections

  • 1664 independent reflections

  • 1121 reflections with I > 2σ(I)

  • Rint = 0.063

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.141

  • S = 1.07

  • 1664 reflections

  • 127 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.21 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 758 Friedel pairs

  • Flack parameter: 0.10 (14)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1 0.82 1.81 2.533 (5) 145

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Systems Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Systems Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In this paper, we used the Williamson reaction (Dermer, 1934) to form the title compound, (I), which was synthesized by the reaction of 2,4-dihydroxyacetophenone, potassium carbonate and 1-bromo-2-chloroethane at 329 K. In (I)(Fig.1), the bond lengths and angles are normal and comparable to those observed in the related structure (Schlemper, 1986). The dihedral angle between the benzene ring C3—C8 and the plane O3C9C10 is 5.83 (4)°. There are no significantly short intermolecular contacts in the crystal lattice.

Related literature top

The title compound was synthesized by the Williamson reaction (Dermer, 1934). For a related structure, see: Schlemper (1986).

Experimental top

2, 4-Dihydroxylacetonephenone (5 mmol), potassium carbonate (6 mmol), 1-bromo-2-chloroethane (5 mmol), and 50 ml acetone were mixed in 100 ml flask. After 2.5 h stirring at 329 K, the crude product was obtained. The crystals suitable for X-ray analysis were obtained by slow evaporation of a solution of the title compound in n-hexane/ethyl acetate/methanol (3:3:1, V/V) at 283 K.

Refinement top

The positions of all H atoms were fixed geometrically and distance to H atoms were set by the program, with C—H distance in the range 0.93–0.97 Å and O—H distance of 0.82 Å, and refined as riding, with Uiso(H)= 1.2–1.5Ueq(C,O).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and displacement ellipsoids drawn at the 30% probability level.
1-[4-(2-Chloroethoxy)-2-hydroxyphenyl]ethanone top
Crystal data top
C10H11ClO3Dx = 1.442 Mg m3
Mr = 214.64Melting point = 375–376 K
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
a = 8.9970 (7) ÅCell parameters from 1122 reflections
b = 5.3258 (4) Åθ = 3.8–21.7°
c = 20.6307 (17) ŵ = 0.36 mm1
V = 988.55 (13) Å3T = 298 K
Z = 4Orthorhombic, colourless
F(000) = 4480.40 × 0.39 × 0.20 mm
Data collection top
Siemens SMART CCD area-detector
diffractometer
1664 independent reflections
Radiation source: fine-focus sealed tube1121 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.063
phi and ω scansθmax = 25.0°, θmin = 3.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 108
Tmin = 0.868, Tmax = 0.931k = 66
4434 measured reflectionsl = 2420
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.052H-atom parameters constrained
wR(F2) = 0.141 w = 1/[σ2(Fo2) + (0.0604P)2 + 0.0181P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
1664 reflectionsΔρmax = 0.24 e Å3
127 parametersΔρmin = 0.21 e Å3
1 restraintAbsolute structure: Flack (1983), 758 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.10 (14)
Crystal data top
C10H11ClO3V = 988.55 (13) Å3
Mr = 214.64Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 8.9970 (7) ŵ = 0.36 mm1
b = 5.3258 (4) ÅT = 298 K
c = 20.6307 (17) Å0.40 × 0.39 × 0.20 mm
Data collection top
Siemens SMART CCD area-detector
diffractometer
1664 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1121 reflections with I > 2σ(I)
Tmin = 0.868, Tmax = 0.931Rint = 0.063
4434 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.052H-atom parameters constrained
wR(F2) = 0.141Δρmax = 0.24 e Å3
S = 1.07Δρmin = 0.21 e Å3
1664 reflectionsAbsolute structure: Flack (1983), 758 Friedel pairs
127 parametersAbsolute structure parameter: 0.10 (14)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.15098 (17)0.8043 (3)0.62958 (8)0.0704 (5)
O10.2660 (4)0.6840 (7)1.02143 (16)0.0554 (10)
O20.1105 (4)0.4294 (7)0.94300 (15)0.0518 (9)
H20.13900.47780.97860.078*
O30.1071 (4)0.6890 (7)0.72354 (16)0.0560 (10)
C10.4075 (6)1.0330 (9)0.9931 (3)0.0535 (14)
H1A0.42531.03461.03900.080*
H1B0.36281.18900.98030.080*
H1C0.50001.01160.97060.080*
C20.3071 (5)0.8247 (9)0.9769 (2)0.0399 (11)
C30.2555 (5)0.7861 (9)0.9118 (2)0.0387 (11)
C40.1582 (5)0.5869 (9)0.8976 (2)0.0384 (11)
C50.1058 (5)0.5501 (9)0.8351 (2)0.0414 (12)
H50.04050.41900.82650.050*
C60.1495 (5)0.7049 (9)0.7863 (2)0.0401 (12)
C70.2485 (6)0.9076 (9)0.7991 (3)0.0480 (13)
H70.27941.01430.76600.058*
C80.2962 (5)0.9404 (9)0.8603 (2)0.0451 (13)
H80.35991.07390.86870.054*
C90.0041 (6)0.4949 (9)0.7074 (2)0.0518 (13)
H9A0.08260.50500.73520.062*
H9B0.04990.33160.71330.062*
C100.0399 (6)0.5287 (9)0.6389 (3)0.0571 (14)
H10A0.09570.38310.62450.068*
H10B0.04840.54250.61220.068*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0739 (9)0.0668 (9)0.0706 (9)0.0068 (7)0.0081 (8)0.0050 (10)
O10.065 (2)0.055 (2)0.046 (2)0.009 (2)0.0029 (19)0.0086 (19)
O20.062 (2)0.046 (2)0.0474 (19)0.0151 (18)0.0008 (16)0.0123 (17)
O30.061 (2)0.063 (2)0.044 (2)0.0216 (19)0.0055 (16)0.0038 (19)
C10.049 (3)0.051 (3)0.061 (3)0.002 (3)0.008 (3)0.007 (3)
C20.032 (2)0.044 (3)0.044 (3)0.010 (2)0.003 (2)0.004 (3)
C30.033 (2)0.039 (3)0.044 (3)0.001 (2)0.007 (2)0.003 (2)
C40.039 (3)0.038 (3)0.039 (3)0.009 (2)0.003 (2)0.006 (2)
C50.046 (3)0.032 (3)0.046 (3)0.003 (2)0.001 (2)0.003 (2)
C60.045 (3)0.039 (3)0.036 (3)0.001 (2)0.002 (2)0.005 (2)
C70.050 (3)0.038 (3)0.056 (3)0.011 (2)0.007 (3)0.011 (3)
C80.043 (3)0.040 (3)0.052 (3)0.008 (2)0.000 (2)0.002 (2)
C90.053 (3)0.048 (3)0.055 (3)0.003 (3)0.005 (3)0.001 (2)
C100.062 (3)0.055 (3)0.055 (3)0.002 (3)0.001 (3)0.014 (3)
Geometric parameters (Å, º) top
Cl1—C101.787 (5)C4—C51.387 (7)
O1—C21.242 (6)C5—C61.359 (6)
O2—C41.329 (5)C5—H50.9300
O2—H20.8200C6—C71.425 (6)
O3—C61.352 (6)C7—C81.344 (7)
O3—C91.428 (6)C7—H70.9300
C1—C21.469 (7)C8—H80.9300
C1—H1A0.9600C9—C101.477 (8)
C1—H1B0.9600C9—H9A0.9700
C1—H1C0.9600C9—H9B0.9700
C2—C31.436 (7)C10—H10A0.9700
C3—C81.392 (7)C10—H10B0.9700
C3—C41.407 (7)
C4—O2—H2109.5O3—C6—C7113.7 (4)
C6—O3—C9116.9 (4)C5—C6—C7120.2 (4)
C2—C1—H1A109.5C8—C7—C6118.2 (5)
C2—C1—H1B109.5C8—C7—H7120.9
H1A—C1—H1B109.5C6—C7—H7120.9
C2—C1—H1C109.5C7—C8—C3123.8 (5)
H1A—C1—H1C109.5C7—C8—H8118.1
H1B—C1—H1C109.5C3—C8—H8118.1
O1—C2—C3120.6 (4)O3—C9—C10108.0 (4)
O1—C2—C1118.1 (4)O3—C9—H9A110.1
C3—C2—C1121.3 (5)C10—C9—H9A110.1
C8—C3—C4116.7 (4)O3—C9—H9B110.1
C8—C3—C2123.0 (5)C10—C9—H9B110.1
C4—C3—C2120.3 (4)H9A—C9—H9B108.4
O2—C4—C5117.2 (4)C9—C10—Cl1110.7 (4)
O2—C4—C3122.0 (4)C9—C10—H10A109.5
C5—C4—C3120.8 (4)Cl1—C10—H10A109.5
C6—C5—C4120.3 (4)C9—C10—H10B109.5
C6—C5—H5119.8Cl1—C10—H10B109.5
C4—C5—H5119.8H10A—C10—H10B108.1
O3—C6—C5126.1 (4)
O1—C2—C3—C8179.0 (4)C9—O3—C6—C7178.1 (4)
C1—C2—C3—C80.0 (7)C4—C5—C6—O3179.8 (4)
O1—C2—C3—C40.4 (7)C4—C5—C6—C70.5 (7)
C1—C2—C3—C4179.3 (4)O3—C6—C7—C8179.5 (4)
C8—C3—C4—O2179.2 (4)C5—C6—C7—C80.2 (7)
C2—C3—C4—O20.2 (6)C6—C7—C8—C30.7 (7)
C8—C3—C4—C50.4 (6)C4—C3—C8—C70.4 (7)
C2—C3—C4—C5179.0 (4)C2—C3—C8—C7179.7 (4)
O2—C4—C5—C6179.7 (4)C6—O3—C9—C10173.7 (4)
C3—C4—C5—C60.8 (7)O3—C9—C10—Cl169.2 (5)
C9—O3—C6—C51.6 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O10.821.812.533 (5)145

Experimental details

Crystal data
Chemical formulaC10H11ClO3
Mr214.64
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)298
a, b, c (Å)8.9970 (7), 5.3258 (4), 20.6307 (17)
V3)988.55 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.36
Crystal size (mm)0.40 × 0.39 × 0.20
Data collection
DiffractometerSiemens SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.868, 0.931
No. of measured, independent and
observed [I > 2σ(I)] reflections
4434, 1664, 1121
Rint0.063
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.141, 1.07
No. of reflections1664
No. of parameters127
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.21
Absolute structureFlack (1983), 758 Friedel pairs
Absolute structure parameter0.10 (14)

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O10.821.812.533 (5)145
 

Acknowledgements

We would like to acknowledge funding support from the National Natural Science Foundation of China (grant No. 31070444).

References

First citationDermer, O. C. (1934). Chem. Rev. 14, 385–430.  CrossRef CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSchlemper, E. O. (1986). Acta Cryst. C42, 755–757.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Systems Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds