organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Furan-2-yl)(5-hy­dr­oxy-3-methyl-5-phenyl-4,5-di­hydro-1H-pyrazol-1-yl)methanone

aDepartment of Chemistry, School of Science, Payame Noor University (PNU), Ardakan, Yazd, Iran, bX-ray Crystallography Lab., Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran, cDepartment of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran, dDepartment of Chemistry, Catalysis Division, University of Isfahan, Isfahan 81746-73441, Iran, and eDepartment of Physics, University of Sargodha, Punjab, Pakistan
*Correspondence e-mail: rkia@srbiau.ac.ir, zsrkk@yahoo.com, dmntahir_uos@yahoo.com

(Received 2 January 2011; accepted 7 January 2011; online 12 January 2011)

In the title compound, C15H14N2O3, the furan ring is disordered over two positions with a refined site-occupancy ratio of 0.587 (11):0.413 (11). The mean plane of the approximately planar pyrazole ring [maximum deviation = 0.0469 (11) Å] makes dihedral angles of 86.13 (11) and 4.5 (5)° with the phenyl and furan rings, respectively. The dihedral angle between the phenyl ring and the major component of the disordered furan ring is 81.8 (5)°. The mol­ecule shows chirality in one of the carbon atoms but the centrosymmetric space group means the compound is a racemic mixture. In the crystal, inter­molecular O—H⋯O and C—H⋯O hydrogen bonds connect the mol­ecules. The crystal structure is further stabilized by ππ stacking inter­actions with a centroid–centroid distance of 3.8646 (12) Å.

Related literature

For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C15H14N2O3

  • Mr = 270.28

  • Monoclinic, P 21 /n

  • a = 10.6844 (10) Å

  • b = 8.4700 (7) Å

  • c = 15.3022 (16) Å

  • β = 95.266 (3)°

  • V = 1379.0 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.28 × 0.22 × 0.16 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.975, Tmax = 0.985

  • 10534 measured reflections

  • 2495 independent reflections

  • 1615 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.106

  • S = 1.03

  • 2495 reflections

  • 221 parameters

  • 10 restraints

  • H-atom parameters constrained

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.82 2.02 2.7786 (18) 153
C14—H14A⋯O1ii 0.93 2.36 3.271 (9) 168
Symmetry codes: (i) -x+1, -y+2, -z; (ii) [x-{\script{1\over 2}}, -y+{\script{5\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The asymmetric unit of the title compound, Fig. 1, comprises a substituted pyrazole. The furane ring shows flip-flop rotational disorder in two positions with refined site occupancy ratio of 0.587 (11)/0.413 (11). The mean plane of the approximately planar pyrazole ring [maximum deviation = 0.0469 (11)Å] makes dihedral angles of 86.13 (11) and 4.5 (5)° with phenyl and the major component of the furane rings, respectively. The dihedral angle between the phenyl ring and the major component of the disordered furane ring is 81.8 (5)°.

In the crystal structure, intermolecular O—H···O and C—H···O hydrogen bonds connect the components of the structure. The crystal structure is further stabilized by ππ stacking interactions [Cg1···Cg2iii = 3.8646 (12)Å, (iii) x, y, z; Cg1 and Cg2 are the centroid of pyrazole and phenyl rings, respectively].

Related literature top

For standard bond lengths, see: Allen et al. (1987).

Experimental top

The title compound was synthesized by adding furan-2-carbohydrazide (2 mmol) to a solution of benzoylacetone (2 mmol) in ethanol (20 ml). The mixture was refluxed with stirring for half an hour. The resultant solution was filtered and the white single crystals suitable for X-ray structure determination were recrystallized from ethanol by slow evaporation of the solvents at room temperature over several days.

Refinement top

The H atoms of hydroxy group was located in a difference Fourier map and constraied to refine on the parent atom with Uiso(H) = 1.5 Ueq(O), see Table 1. The remaining H atoms were positioned geometrically with C—H = 0.93-0.97 Å and included in a riding-model approximation with Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating group model was used for the methyl group. At first similarity and a series of distant restraints were applied to the furane rings but after refinement convereged, only the similarity restraints were removed.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular of the title compound, showing 40% probability displacement ellipsoids and the atomic numbering. The open bonds show the minor component of disordered furane ring.
[Figure 2] Fig. 2. The packing of the compound viewed along the b-axis showing connecting of molecules through hydrogen bonds. All H atoms removed except those involved in the hydrogen bonds. Hydrogen bonds are shown as dashed lines.
(Furan-2-yl)(5-hydroxy-3-methyl-5-phenyl-4,5-dihydro-1H- pyrazol-1-yl)methanone top
Crystal data top
C15H14N2O3F(000) = 568
Mr = 270.28Dx = 1.302 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2245 reflections
a = 10.6844 (10) Åθ = 2.5–29.5°
b = 8.4700 (7) ŵ = 0.09 mm1
c = 15.3022 (16) ÅT = 296 K
β = 95.266 (3)°Block, white
V = 1379.0 (2) Å30.28 × 0.22 × 0.16 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2495 independent reflections
Radiation source: fine-focus sealed tube1615 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
ϕ and ω scansθmax = 25.2°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1212
Tmin = 0.975, Tmax = 0.985k = 1010
10534 measured reflectionsl = 1818
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.106 w = 1/[σ2(Fo2) + (0.037P)2 + 0.1913P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
2495 reflectionsΔρmax = 0.12 e Å3
221 parametersΔρmin = 0.13 e Å3
10 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0132 (14)
Crystal data top
C15H14N2O3V = 1379.0 (2) Å3
Mr = 270.28Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.6844 (10) ŵ = 0.09 mm1
b = 8.4700 (7) ÅT = 296 K
c = 15.3022 (16) Å0.28 × 0.22 × 0.16 mm
β = 95.266 (3)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2495 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1615 reflections with I > 2σ(I)
Tmin = 0.975, Tmax = 0.985Rint = 0.044
10534 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04210 restraints
wR(F2) = 0.106H-atom parameters constrained
S = 1.03Δρmax = 0.12 e Å3
2495 reflectionsΔρmin = 0.13 e Å3
221 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.39871 (12)1.05521 (16)0.13086 (9)0.0564 (4)
H10.45011.03730.09540.085*
O20.37249 (12)0.97468 (15)0.05954 (9)0.0540 (4)
N10.11933 (14)1.14352 (17)0.03952 (12)0.0530 (5)
N20.22305 (14)1.04995 (17)0.02389 (10)0.0463 (4)
C10.30125 (18)0.8002 (2)0.09202 (12)0.0467 (5)
C20.4147 (2)0.7260 (2)0.10936 (14)0.0605 (6)
H20.48560.78420.12890.073*
C30.4242 (3)0.5637 (3)0.09779 (18)0.0803 (8)
H30.50160.51420.10910.096*
C40.3208 (3)0.4768 (3)0.0700 (2)0.0916 (9)
H40.32720.36820.06300.110*
C50.2085 (3)0.5500 (3)0.0528 (2)0.0909 (9)
H50.13780.49100.03370.109*
C60.1979 (2)0.7105 (2)0.06307 (16)0.0704 (7)
H60.12030.75910.05040.085*
C70.28639 (17)0.9765 (2)0.10487 (13)0.0455 (5)
C80.19276 (18)1.0218 (2)0.17109 (14)0.0569 (6)
H8A0.15000.92920.19090.068*
H8B0.23501.07510.22160.068*
C90.10301 (18)1.1294 (2)0.12079 (15)0.0545 (5)
C100.0004 (2)1.2167 (3)0.15998 (16)0.0818 (8)
H10A0.04831.14410.19120.123*
H10B0.05301.26670.11420.123*
H10C0.03631.29550.19980.123*
C110.27454 (17)1.0491 (2)0.05355 (13)0.0436 (5)
C120.21378 (16)1.1311 (2)0.12971 (12)0.0497 (5)
C130.1182 (12)1.2333 (18)0.1440 (6)0.071 (3)0.587 (11)
H13A0.07241.28110.10240.085*0.587 (11)
C140.1026 (12)1.2525 (13)0.2367 (6)0.071 (3)0.587 (11)
H14A0.03601.30420.26800.086*0.587 (11)
C150.1996 (12)1.1838 (19)0.2715 (7)0.076 (3)0.587 (11)
H15A0.21911.19260.32930.092*0.587 (11)
O30.2646 (7)1.0983 (13)0.2065 (3)0.072 (2)0.587 (11)
C13X0.2557 (15)1.136 (2)0.2096 (5)0.060 (4)0.413 (11)
H13B0.33051.09550.22670.072*0.413 (11)
C14X0.1599 (14)1.2180 (19)0.2623 (9)0.058 (3)0.413 (11)
H14B0.15331.22200.32330.070*0.413 (11)
C15X0.0807 (19)1.2883 (19)0.2115 (8)0.079 (4)0.413 (11)
H15B0.02411.36950.22630.095*0.413 (11)
O3X0.1028 (10)1.212 (2)0.1327 (7)0.078 (4)0.413 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0494 (8)0.0629 (8)0.0569 (10)0.0070 (7)0.0048 (7)0.0151 (7)
O20.0469 (8)0.0640 (9)0.0518 (9)0.0075 (7)0.0087 (7)0.0015 (7)
N10.0495 (10)0.0503 (9)0.0598 (12)0.0080 (8)0.0091 (9)0.0036 (8)
N20.0456 (9)0.0460 (9)0.0478 (10)0.0066 (7)0.0073 (8)0.0019 (7)
C10.0492 (12)0.0482 (11)0.0430 (12)0.0013 (9)0.0049 (9)0.0042 (9)
C20.0586 (14)0.0577 (13)0.0655 (15)0.0065 (11)0.0072 (11)0.0096 (11)
C30.0848 (18)0.0643 (15)0.094 (2)0.0285 (14)0.0197 (15)0.0189 (14)
C40.117 (2)0.0473 (14)0.112 (2)0.0000 (16)0.020 (2)0.0009 (14)
C50.095 (2)0.0573 (15)0.118 (3)0.0145 (14)0.0025 (18)0.0073 (15)
C60.0640 (15)0.0533 (13)0.0916 (19)0.0053 (11)0.0059 (13)0.0008 (12)
C70.0431 (11)0.0502 (11)0.0433 (12)0.0004 (9)0.0034 (9)0.0034 (9)
C80.0566 (13)0.0637 (13)0.0514 (13)0.0015 (10)0.0109 (10)0.0045 (10)
C90.0485 (12)0.0564 (12)0.0592 (15)0.0021 (10)0.0083 (11)0.0080 (11)
C100.0691 (16)0.1043 (19)0.0746 (18)0.0238 (14)0.0214 (13)0.0108 (14)
C110.0408 (11)0.0404 (10)0.0495 (13)0.0054 (9)0.0034 (9)0.0008 (9)
C120.0458 (12)0.0492 (12)0.0540 (14)0.0057 (10)0.0041 (10)0.0066 (10)
C130.063 (5)0.076 (5)0.075 (7)0.026 (4)0.016 (4)0.030 (5)
C140.070 (7)0.082 (6)0.060 (6)0.034 (5)0.006 (5)0.013 (6)
C150.062 (7)0.118 (10)0.050 (4)0.013 (4)0.009 (4)0.022 (5)
O30.075 (3)0.082 (6)0.057 (3)0.007 (2)0.001 (2)0.0081 (18)
C13X0.075 (7)0.050 (6)0.061 (8)0.000 (4)0.032 (7)0.006 (4)
C14X0.062 (12)0.065 (8)0.051 (6)0.005 (7)0.016 (5)0.011 (5)
C15X0.106 (9)0.073 (7)0.059 (7)0.033 (5)0.009 (6)0.010 (6)
O3X0.066 (5)0.100 (7)0.067 (5)0.015 (4)0.003 (4)0.038 (4)
Geometric parameters (Å, º) top
O1—C71.398 (2)C8—H8B0.9700
O1—H10.8200C9—C101.493 (3)
O2—C111.232 (2)C10—H10A0.9600
N1—C91.277 (2)C10—H10B0.9600
N1—N21.401 (2)C10—H10C0.9600
N2—C111.352 (2)C11—C121.457 (2)
N2—C71.492 (2)C12—C13X1.3407 (11)
C1—C21.370 (3)C12—C131.3407 (10)
C1—C61.380 (3)C12—O31.3670 (10)
C1—C71.516 (3)C12—O3X1.3677 (10)
C2—C31.390 (3)C13—C141.4230 (11)
C2—H20.9300C13—H13A0.9300
C3—C41.363 (3)C14—C151.3407 (10)
C3—H30.9300C14—H14A0.9300
C4—C51.355 (4)C15—O31.3679 (10)
C4—H40.9300C15—H15A0.9300
C5—C61.374 (3)C13X—C14X1.4230 (10)
C5—H50.9300C13X—H13B0.9300
C6—H60.9300C14X—C15X1.3406 (10)
C7—C81.536 (3)C14X—H14B0.9300
C8—C91.486 (3)C15X—O3X1.3679 (10)
C8—H8A0.9700C15X—H15B0.9300
C7—O1—H1109.5C9—C10—H10A109.5
C9—N1—N2107.11 (16)C9—C10—H10B109.5
C11—N2—N1123.00 (16)H10A—C10—H10B109.5
C11—N2—C7122.41 (15)C9—C10—H10C109.5
N1—N2—C7113.55 (15)H10A—C10—H10C109.5
C2—C1—C6118.50 (19)H10B—C10—H10C109.5
C2—C1—C7121.90 (18)O2—C11—N2118.98 (17)
C6—C1—C7119.60 (17)O2—C11—C12120.23 (17)
C1—C2—C3120.2 (2)N2—C11—C12120.77 (16)
C1—C2—H2119.9C13X—C12—C1398.3 (7)
C3—C2—H2119.9C13—C12—O3110.4 (5)
C4—C3—C2120.5 (2)C13X—C12—O3X108.3 (7)
C4—C3—H3119.8O3—C12—O3X119.0 (6)
C2—C3—H3119.8C13X—C12—C11125.7 (6)
C5—C4—C3119.5 (2)C13—C12—C11135.6 (4)
C5—C4—H4120.3O3—C12—C11114.0 (4)
C3—C4—H4120.3O3X—C12—C11126.0 (5)
C4—C5—C6120.7 (2)C12—C13—C14104.7 (6)
C4—C5—H5119.6C12—C13—H13A127.7
C6—C5—H5119.6C14—C13—H13A127.7
C5—C6—C1120.7 (2)C15—C14—C13108.8 (9)
C5—C6—H6119.7C15—C14—H14A125.6
C1—C6—H6119.7C13—C14—H14A125.6
O1—C7—N2110.47 (15)C14—C15—O3107.5 (8)
O1—C7—C1114.13 (15)C14—C15—H15A126.3
N2—C7—C1110.34 (15)O3—C15—H15A126.3
O1—C7—C8106.70 (15)C12—O3—C15107.6 (7)
N2—C7—C899.82 (14)C12—C13X—C14X104.4 (8)
C1—C7—C8114.43 (16)C12—C13X—H13B127.8
C9—C8—C7103.87 (17)C14X—C13X—H13B127.8
C9—C8—H8A111.0C15X—C14X—C13X110.3 (13)
C7—C8—H8A111.0C15X—C14X—H14B124.8
C9—C8—H8B111.0C13X—C14X—H14B124.8
C7—C8—H8B111.0C14X—C15X—O3X103.6 (11)
H8A—C8—H8B109.0C14X—C15X—H15B128.2
N1—C9—C8114.99 (17)O3X—C15X—H15B128.2
N1—C9—C10121.0 (2)C12—O3X—C15X110.2 (10)
C8—C9—C10124.0 (2)
C9—N1—N2—C11173.27 (17)C7—N2—C11—C12175.89 (16)
C9—N1—N2—C74.7 (2)O2—C11—C12—C13X0.8 (13)
C6—C1—C2—C30.0 (3)N2—C11—C12—C13X179.1 (12)
C7—C1—C2—C3179.19 (19)O2—C11—C12—C13171.2 (12)
C1—C2—C3—C40.7 (4)N2—C11—C12—C1310.5 (13)
C2—C3—C4—C50.7 (4)O2—C11—C12—O38.7 (6)
C3—C4—C5—C60.1 (4)N2—C11—C12—O3169.6 (5)
C4—C5—C6—C10.6 (4)O2—C11—C12—O3X177.3 (10)
C2—C1—C6—C50.6 (3)N2—C11—C12—O3X1.0 (11)
C7—C1—C6—C5178.6 (2)C13X—C12—C13—C1413.4 (15)
C11—N2—C7—O164.3 (2)O3—C12—C13—C145.6 (16)
N1—N2—C7—O1104.43 (16)O3X—C12—C13—C14128 (6)
C11—N2—C7—C162.9 (2)C11—C12—C13—C14174.5 (6)
N1—N2—C7—C1128.44 (15)C12—C13—C14—C159.9 (18)
C11—N2—C7—C8176.34 (16)C13—C14—C15—O310.3 (19)
N1—N2—C7—C87.66 (18)C13X—C12—O3—C1533 (5)
C2—C1—C7—O13.3 (3)C13—C12—O3—C150.5 (15)
C6—C1—C7—O1177.48 (18)O3X—C12—O3—C1511.1 (13)
C2—C1—C7—N2128.39 (19)C11—C12—O3—C15179.5 (9)
C6—C1—C7—N252.4 (2)C14—C15—O3—C126.8 (17)
C2—C1—C7—C8120.0 (2)C13—C12—C13X—C14X11.5 (17)
C6—C1—C7—C859.2 (2)O3—C12—C13X—C14X137 (6)
O1—C7—C8—C9107.68 (17)O3X—C12—C13X—C14X3 (2)
N2—C7—C8—C97.31 (18)C11—C12—C13X—C14X175.3 (9)
C1—C7—C8—C9125.09 (17)C12—C13X—C14X—C15X14 (2)
N2—N1—C9—C80.9 (2)C13X—C14X—C15X—O3X18 (2)
N2—N1—C9—C10179.00 (18)C13X—C12—O3X—C15X8 (2)
C7—C8—C9—N15.7 (2)C13—C12—O3X—C15X32 (5)
C7—C8—C9—C10174.22 (19)O3—C12—O3X—C15X18.4 (19)
N1—N2—C11—O2173.43 (16)C11—C12—O3X—C15X173.5 (11)
C7—N2—C11—O25.8 (2)C14X—C15X—O3X—C1216 (2)
N1—N2—C11—C128.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.822.022.7786 (18)153
C14—H14A···O1ii0.932.363.271 (9)168
Symmetry codes: (i) x+1, y+2, z; (ii) x1/2, y+5/2, z1/2.

Experimental details

Crystal data
Chemical formulaC15H14N2O3
Mr270.28
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)10.6844 (10), 8.4700 (7), 15.3022 (16)
β (°) 95.266 (3)
V3)1379.0 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.28 × 0.22 × 0.16
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.975, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
10534, 2495, 1615
Rint0.044
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.106, 1.03
No. of reflections2495
No. of parameters221
No. of restraints10
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.12, 0.13

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.822.022.7786 (18)153
C14—H14A···O1ii0.932.363.271 (9)168
Symmetry codes: (i) x+1, y+2, z; (ii) x1/2, y+5/2, z1/2.
 

Acknowledgements

HK thanks PNU for financial support. RK thanks the Science and Branch, Islamic Azad University. MM thanks the University of Isfahan for the facilities and MNT thanks the University of Sargodha for the research facilities.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds