organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,5-Di­chloro-N-(4-meth­­oxy­phen­yl)benzensulfonamide

aMaterials Chemistry Laboratory, Department of Chemistry, Government College University, Lahore 54000, Pakistan, and bDepartment of Chemistry, Chungnam National University, Daejeon 305-764, Republic of Korea
*Correspondence e-mail: skkang@cnu.ac.kr

(Received 3 January 2011; accepted 7 January 2011; online 12 January 2011)

In the title compound, C13H11Cl2NO3S, the dihedral angle between the benzene rings is 74.37 (3)°. In the crystal, inter­molecular N—H⋯O hydrogen bonds link the mol­ecules into chains along the b axis.

Related literature

For our previous studies on sulfonamide derivatives, see: Khan et al. (2010[Khan, I. U., Akkurt, M., Sharif, S. & Ahmad, W. (2010). Acta Cryst. E66, o3053.]); Sharif et al. (2010[Sharif, S., Iqbal, H., Khan, I. U., John, P. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o1288.]). For background to the pharmacological uses of sulfonamides, see: Korolkovas (1988[Korolkovas, A. (1988). Essentials of Medicinal Chemistry, 2nd ed., pp. 699-716. New York: Wiley.]); Mandell & Sande (1992[Mandell, G. L. & Sande, M. A. (1992). Goodman and Gilman, The Pharmacological Basis of Therapeutics 2, edited by A. Gilman, T. W. Rall, A. S. Nies & P. Taylor, 8th ed., pp. 1047-1057. Singapore: McGraw-Hill.]).

[Scheme 1]

Experimental

Crystal data
  • C13H11Cl2NO3S

  • Mr = 332.19

  • Monoclinic, P 21 /c

  • a = 13.1599 (4) Å

  • b = 7.8179 (2) Å

  • c = 14.4830 (5) Å

  • β = 110.566 (1)°

  • V = 1395.09 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.62 mm−1

  • T = 296 K

  • 0.25 × 0.17 × 0.12 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • 13132 measured reflections

  • 3456 independent reflections

  • 2690 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.108

  • S = 1.06

  • 3456 reflections

  • 186 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N12—H12⋯O19i 0.78 (2) 2.50 (3) 3.267 (2) 168 (2)
Symmetry code: (i) x, y+1, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

In continuation of our studies of sulfonamides synthesis (Khan et al., 2010; Sharif et al., 2010), of interest owing to their biological properties (Korolkovas, 1988; Mandell & Sande, 1992). Herein, the crystal structure of (I) is described

In the title compound (I), (Fig. 1), the 4-methoxyphenyl moiety is almost planar with r.m.s. deviation of 0.018 Å from the corresponding least-squares plane defined by the nine constituent atoms. The dihedral angle between the benzene rings is 74.37 (3) °. In the crystal, intermolecular N—H···O hydrogen bonds link the molecules into chains along the b axis (Table 1, Fig. 2).

Related literature top

For our previous studies on sulfonamide derivatives, see: Khan et al. (2010); Sharif et al. (2010). For background to the pharmacological uses of sulfonamides, see: Korolkovas (1988); Mandell & Sande (1992).

Experimental top

To para-anisidine (123 mg, 1 mmol) in distilled water (10 ml) was added 2,5-dichloro benzene sulfonyl chloride (0.245 mg, 1 mmol) with stirring at room temperature while maintaining the pH = 8 using 3% sodium carbonate. The progress of the reaction was monitored by TLC. The precipitate formed in this way was washed with water, dried and crystallized from methanol.

Refinement top

The H atom of the NH group was located in a difference Fourier map and refined freely. The remaining H atoms were positioned geometrically and refined using a riding model with C—H = 0.93–0.96 Å, and with Uiso(H) = 1.2Ueq (C) for aromatic and 1.5Ueq(C) for methyl H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-numbering scheme and 30% probability ellipsoids.
[Figure 2] Fig. 2. Part of the crystal structure of (I), showing chain of molecules linked by intermolecular N—H···O hydrogen bonds (dashed lines) along the b axis.
2,5-Dichloro-N-(4-methoxyphenyl)benzensulfonamide top
Crystal data top
C13H11Cl2NO3SF(000) = 680
Mr = 332.19Dx = 1.582 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4792 reflections
a = 13.1599 (4) Åθ = 2.9–28.0°
b = 7.8179 (2) ŵ = 0.62 mm1
c = 14.4830 (5) ÅT = 296 K
β = 110.566 (1)°Block, colourless
V = 1395.09 (7) Å30.25 × 0.17 × 0.12 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
Rint = 0.030
ϕ and ω scansθmax = 28.3°, θmin = 3.0°
13132 measured reflectionsh = 1717
3456 independent reflectionsk = 1010
2690 reflections with I > 2σ(I)l = 1819
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.039 w = 1/[σ2(Fo2) + (0.045P)2 + 0.6614P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.108(Δ/σ)max = 0.001
S = 1.06Δρmax = 0.46 e Å3
3456 reflectionsΔρmin = 0.31 e Å3
186 parameters
Crystal data top
C13H11Cl2NO3SV = 1395.09 (7) Å3
Mr = 332.19Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.1599 (4) ŵ = 0.62 mm1
b = 7.8179 (2) ÅT = 296 K
c = 14.4830 (5) Å0.25 × 0.17 × 0.12 mm
β = 110.566 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
2690 reflections with I > 2σ(I)
13132 measured reflectionsRint = 0.030
3456 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.46 e Å3
3456 reflectionsΔρmin = 0.31 e Å3
186 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.72780 (4)0.85926 (6)0.82650 (3)0.03916 (14)
O20.73299 (14)1.04147 (19)0.82443 (12)0.0552 (4)
O30.69500 (12)0.7655 (2)0.73648 (10)0.0493 (4)
C40.85981 (16)0.7804 (2)0.89567 (14)0.0369 (4)
C50.91579 (17)0.8160 (3)0.99528 (15)0.0419 (4)
C61.02137 (18)0.7615 (3)1.03996 (17)0.0509 (5)
H61.05760.78431.10650.061*
C71.07387 (19)0.6737 (3)0.98749 (18)0.0539 (6)
H71.14550.63851.01760.065*
C81.01785 (18)0.6389 (3)0.88887 (17)0.0485 (5)
C90.91210 (17)0.6898 (3)0.84328 (15)0.0427 (4)
H90.87560.66350.77720.051*
Cl100.85599 (5)0.93075 (8)1.06480 (4)0.05536 (17)
Cl111.08144 (6)0.53037 (11)0.82003 (6)0.0786 (2)
N120.64500 (14)0.8123 (2)0.88365 (13)0.0398 (4)
H120.6441 (19)0.888 (3)0.9181 (17)0.046 (7)*
C130.63424 (15)0.6413 (2)0.91467 (13)0.0350 (4)
C140.65129 (17)0.6093 (3)1.01225 (14)0.0412 (4)
H140.67060.69861.05750.049*
C150.64003 (17)0.4456 (3)1.04402 (15)0.0423 (5)
H150.65040.42571.110.051*
C160.61338 (16)0.3123 (3)0.97760 (15)0.0405 (4)
C170.59349 (19)0.3448 (3)0.87865 (15)0.0476 (5)
H170.57370.25570.83330.057*
C180.60287 (18)0.5083 (3)0.84720 (15)0.0448 (5)
H180.58810.52950.78060.054*
O190.60296 (14)0.1448 (2)1.00210 (12)0.0560 (4)
C200.6237 (2)0.1095 (3)1.10353 (19)0.0610 (6)
H20A0.69770.1381.14140.091*
H20B0.61170.00981.11160.091*
H20C0.57590.17651.1260.091*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0448 (3)0.0397 (3)0.0347 (2)0.0049 (2)0.0162 (2)0.00713 (19)
O20.0669 (10)0.0399 (8)0.0638 (10)0.0066 (7)0.0292 (9)0.0140 (7)
O30.0502 (8)0.0672 (10)0.0303 (7)0.0043 (7)0.0137 (6)0.0024 (7)
C40.0414 (10)0.0341 (9)0.0361 (9)0.0023 (8)0.0147 (8)0.0044 (7)
C50.0504 (11)0.0387 (10)0.0371 (10)0.0093 (9)0.0158 (9)0.0011 (8)
C60.0489 (12)0.0532 (13)0.0423 (11)0.0122 (10)0.0056 (10)0.0042 (10)
C70.0414 (11)0.0580 (14)0.0583 (14)0.0021 (10)0.0128 (10)0.0121 (11)
C80.0474 (12)0.0490 (12)0.0533 (12)0.0055 (9)0.0231 (10)0.0097 (10)
C90.0471 (11)0.0426 (11)0.0404 (10)0.0018 (9)0.0178 (9)0.0049 (8)
Cl100.0707 (4)0.0531 (3)0.0446 (3)0.0098 (3)0.0231 (3)0.0122 (2)
Cl110.0661 (4)0.1040 (6)0.0740 (5)0.0343 (4)0.0349 (4)0.0095 (4)
N120.0480 (10)0.0371 (9)0.0386 (9)0.0037 (7)0.0205 (8)0.0011 (7)
C130.0340 (9)0.0368 (10)0.0363 (9)0.0017 (7)0.0151 (8)0.0002 (8)
C140.0475 (11)0.0427 (11)0.0356 (10)0.0059 (8)0.0175 (9)0.0070 (8)
C150.0475 (11)0.0487 (12)0.0332 (10)0.0065 (9)0.0172 (9)0.0002 (8)
C160.0415 (10)0.0391 (10)0.0427 (11)0.0018 (8)0.0171 (9)0.0011 (8)
C170.0629 (13)0.0414 (11)0.0390 (11)0.0044 (9)0.0185 (10)0.0090 (9)
C180.0574 (13)0.0449 (11)0.0312 (9)0.0003 (9)0.0146 (9)0.0023 (8)
O190.0776 (11)0.0403 (8)0.0550 (9)0.0060 (7)0.0290 (8)0.0021 (7)
C200.0800 (17)0.0519 (14)0.0613 (15)0.0073 (12)0.0377 (13)0.0149 (12)
Geometric parameters (Å, º) top
S1—O31.4243 (15)N12—H120.78 (2)
S1—O21.4269 (16)C13—C141.374 (3)
S1—N121.6250 (17)C13—C181.387 (3)
S1—C41.783 (2)C14—C151.386 (3)
C4—C91.385 (3)C14—H140.93
C4—C51.398 (3)C15—C161.377 (3)
C5—C61.378 (3)C15—H150.93
C5—Cl101.731 (2)C16—O191.376 (2)
C6—C71.377 (3)C16—C171.387 (3)
C6—H60.93C17—C181.377 (3)
C7—C81.385 (3)C17—H170.93
C7—H70.93C18—H180.93
C8—C91.373 (3)O19—C201.424 (3)
C8—Cl111.732 (2)C20—H20A0.96
C9—H90.93C20—H20B0.96
N12—C131.433 (3)C20—H20C0.96
O3—S1—O2119.74 (10)S1—N12—H12108.5 (18)
O3—S1—N12107.95 (10)C14—C13—C18119.27 (18)
O2—S1—N12106.36 (10)C14—C13—N12119.59 (17)
O3—S1—C4104.98 (9)C18—C13—N12121.09 (17)
O2—S1—C4108.22 (10)C13—C14—C15120.78 (18)
N12—S1—C4109.34 (9)C13—C14—H14119.6
C9—C4—C5118.95 (19)C15—C14—H14119.6
C9—C4—S1116.27 (15)C16—C15—C14119.84 (18)
C5—C4—S1124.56 (16)C16—C15—H15120.1
C6—C5—C4120.1 (2)C14—C15—H15120.1
C6—C5—Cl10118.46 (17)O19—C16—C15124.31 (18)
C4—C5—Cl10121.40 (16)O19—C16—C17116.17 (18)
C7—C6—C5120.9 (2)C15—C16—C17119.51 (19)
C7—C6—H6119.5C18—C17—C16120.37 (19)
C5—C6—H6119.5C18—C17—H17119.8
C6—C7—C8118.6 (2)C16—C17—H17119.8
C6—C7—H7120.7C17—C18—C13120.14 (18)
C8—C7—H7120.7C17—C18—H18119.9
C9—C8—C7121.4 (2)C13—C18—H18119.9
C9—C8—Cl11118.56 (18)C16—O19—C20116.76 (18)
C7—C8—Cl11120.00 (18)O19—C20—H20A109.5
C8—C9—C4120.0 (2)O19—C20—H20B109.5
C8—C9—H9120H20A—C20—H20B109.5
C4—C9—H9120O19—C20—H20C109.5
C13—N12—S1121.87 (14)H20A—C20—H20C109.5
C13—N12—H12119.1 (18)H20B—C20—H20C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N12—H12···O19i0.78 (2)2.50 (3)3.267 (2)168 (2)
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC13H11Cl2NO3S
Mr332.19
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)13.1599 (4), 7.8179 (2), 14.4830 (5)
β (°) 110.566 (1)
V3)1395.09 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.62
Crystal size (mm)0.25 × 0.17 × 0.12
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
13132, 3456, 2690
Rint0.030
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.108, 1.06
No. of reflections3456
No. of parameters186
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.46, 0.31

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N12—H12···O19i0.78 (2)2.50 (3)3.267 (2)168 (2)
Symmetry code: (i) x, y+1, z.
 

References

First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKhan, I. U., Akkurt, M., Sharif, S. & Ahmad, W. (2010). Acta Cryst. E66, o3053.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKorolkovas, A. (1988). Essentials of Medicinal Chemistry, 2nd ed., pp. 699–716. New York: Wiley.  Google Scholar
First citationMandell, G. L. & Sande, M. A. (1992). Goodman and Gilman, The Pharmacological Basis of Therapeutics 2, edited by A. Gilman, T. W. Rall, A. S. Nies & P. Taylor, 8th ed., pp. 1047–1057. Singapore: McGraw-Hill.  Google Scholar
First citationSharif, S., Iqbal, H., Khan, I. U., John, P. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o1288.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds