organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 1-benzyl-3-(4-methyl­phen­yl)-1H-pyrazole-5-carboxyl­ate

aTaishan Medical College, Tai an 271016, People's Republic of China
*Correspondence e-mail: yqge@yahoo.cn

(Received 10 January 2011; accepted 16 January 2011; online 22 January 2011)

In the title compound, C20H20N2O2, the pyrazole ring makes dihedral angles of 15.68 (4) and 83.40 (4)°, respectively, with the tolyl and benzyl rings, respectively.

Related literature

For arelated structure, see: Ge et al. (2007[Ge, Y.-Q., Dong, W.-L., Xia, Y., Wei, F. & Zhao, B.-X. (2007). Acta Cryst. E63, o1313-o1314.]). For applications of nitro­gen-containing heterocyclic compounds in agrochemicals and pharmaceuticals, see: Ge et al. (2009a[Ge, Y. Q., Jia, J., Li, Y., Yin, L. & Wang, J. W. (2009a). Heterocycles, 42, 197-206.],b[Ge, Y. Q., Jia, J., Yang, H., Zhao, G. L., Zhan, F. X. & Wang, J. W. (2009b). Heterocycles, 72, 725-736.], 2011[Ge, Y. Q., Jia, J., Yang, H., Tao, X. T. & Wang, J. W. (2011). Dyes Pigm. 88, 344-349.]).

[Scheme 1]

Experimental

Crystal data
  • C20H20N2O2

  • Mr = 320.38

  • Triclinic, [P \overline 1]

  • a = 7.666 (4) Å

  • b = 10.160 (6) Å

  • c = 11.381 (7) Å

  • α = 83.991 (9)°

  • β = 87.466 (9)°

  • γ = 85.47 (1)°

  • V = 878.2 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 298 K

  • 0.21 × 0.16 × 0.12 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.984, Tmax = 0.991

  • 4489 measured reflections

  • 3045 independent reflections

  • 2182 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.066

  • wR(F2) = 0.220

  • S = 1.06

  • 3045 reflections

  • 217 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Synthesis of nitrogen-containing heterocyclic compounds has been a subject of great interest due to the wide application in agrochemical and pharmaceutical fields (Ge et al.; 2011, 2009a, 2009b). Some pyrazole derivatives which belong to this category have been of interest for their biological activities. Considerable efforts have been devoted to the development of novel pyrazole compounds. We report here the crystal structure of the title compound, (I) (Fig. 1)

Related literature top

For arelated structure, see: Ge et al. (2007). For applications of nitrogen-containing heterocyclic compounds in agrochemicals and pharmaceuticals, see: Ge et al. (2009a,b, 2011). AUTHOR: remember to subdivide this section and to include all references

Experimental top

A mixture of ethyl 3-p-tolyl-1H-pyrazole-5-carboxylate (0.02 mol), benzyl chloride (0.0024 mol) and potassium carbonate (0.02 mol) in acetonitrile (100 ml) was heated to reflux for 10 h. The solvent was removed under reduced pressure and an product was isolated by column chromatography on silica gel (yield 82%). Crystals of (I) suitable for X-ray diffraction were obtained by slow cooling of the refluxed solution of the product in ethyl acetate at room temperature for 2 d.

Refinement top

All H atoms were placed in geometrically calculated positions and refined using a riding model with C—H = 0.97 Å (for CH2 groups) and 0.96 Å (for CH3 groups), their isotropic displacement parameters were set to 1.2 times (1.5 times for CH3 groups) the equivalent displacement parameter of their parent atoms.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing displacement ellipsoids drawn at the 50% probability level.
Ethyl 1-benzyl-3-(4-methylphenyl)-1H-pyrazole-5-carboxylate top
Crystal data top
C20H20N2O2Z = 2
Mr = 320.38F(000) = 340
Triclinic, P1Dx = 1.212 Mg m3
a = 7.666 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.160 (6) ÅCell parameters from 1778 reflections
c = 11.381 (7) Åθ = 2.6–24.2°
α = 83.991 (9)°µ = 0.08 mm1
β = 87.466 (9)°T = 298 K
γ = 85.47 (1)°BLOCK, white
V = 878.2 (9) Å30.21 × 0.16 × 0.12 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3045 independent reflections
Radiation source: fine-focus sealed tube2182 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
phi and ω scansθmax = 25.1°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
h = 98
Tmin = 0.984, Tmax = 0.991k = 129
4489 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.220H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.1348P)2 + 0.1525P]
where P = (Fo2 + 2Fc2)/3
3045 reflections(Δ/σ)max < 0.001
217 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C20H20N2O2γ = 85.47 (1)°
Mr = 320.38V = 878.2 (9) Å3
Triclinic, P1Z = 2
a = 7.666 (4) ÅMo Kα radiation
b = 10.160 (6) ŵ = 0.08 mm1
c = 11.381 (7) ÅT = 298 K
α = 83.991 (9)°0.21 × 0.16 × 0.12 mm
β = 87.466 (9)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3045 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
2182 reflections with I > 2σ(I)
Tmin = 0.984, Tmax = 0.991Rint = 0.032
4489 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0660 restraints
wR(F2) = 0.220H-atom parameters constrained
S = 1.06Δρmax = 0.34 e Å3
3045 reflectionsΔρmin = 0.21 e Å3
217 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.3059 (3)0.5585 (2)0.70282 (17)0.0826 (7)
O20.2483 (3)0.6693 (2)0.86211 (17)0.0703 (6)
N10.3539 (3)0.3185 (2)0.86746 (18)0.0548 (6)
N20.3537 (3)0.2290 (2)0.96361 (19)0.0569 (6)
C10.1960 (6)0.9004 (4)0.8654 (3)0.0955 (11)
H1A0.10040.88240.92060.143*
H1B0.16980.98360.81910.143*
H1C0.30060.90490.90770.143*
C20.2227 (5)0.7932 (3)0.7865 (3)0.0764 (9)
H2A0.12130.79190.73870.092*
H2B0.32460.80650.73420.092*
C30.2870 (3)0.5601 (3)0.8081 (2)0.0597 (7)
C40.3021 (3)0.4439 (3)0.8954 (2)0.0528 (6)
C50.2658 (3)0.4323 (3)1.0152 (2)0.0551 (7)
H50.22680.50021.06090.066*
C60.2990 (3)0.2986 (3)1.0543 (2)0.0517 (6)
C70.2828 (3)0.2321 (3)1.1751 (2)0.0523 (6)
C80.2692 (4)0.3059 (3)1.2712 (2)0.0625 (7)
H80.27070.39781.25860.075*
C90.2535 (4)0.2459 (3)1.3851 (2)0.0669 (8)
H90.24420.29821.44780.080*
C100.2512 (4)0.1096 (3)1.4083 (2)0.0616 (7)
C110.2643 (4)0.0367 (3)1.3121 (3)0.0717 (8)
H110.26200.05511.32470.086*
C120.2806 (4)0.0958 (3)1.1980 (2)0.0648 (8)
H120.29030.04331.13550.078*
C130.2361 (5)0.0423 (4)1.5327 (3)0.0880 (10)
H13A0.21400.04901.53010.132*
H13B0.14140.08611.57520.132*
H13C0.34340.04711.57190.132*
C140.4189 (3)0.2742 (3)0.7545 (2)0.0608 (7)
H14A0.34430.31630.69250.073*
H14B0.41100.17910.75740.073*
C150.6048 (3)0.3050 (2)0.7234 (2)0.0485 (6)
C160.6535 (4)0.3469 (3)0.6073 (2)0.0596 (7)
H160.56920.36060.55010.071*
C170.8246 (4)0.3682 (3)0.5762 (3)0.0730 (9)
H170.85630.39450.49790.088*
C180.9483 (4)0.3509 (4)0.6601 (3)0.0766 (9)
H181.06370.36750.63900.092*
C190.9039 (4)0.3090 (3)0.7758 (3)0.0692 (8)
H190.98920.29660.83240.083*
C200.7326 (3)0.2855 (3)0.8074 (2)0.0555 (7)
H200.70250.25660.88530.067*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.1089 (17)0.0879 (17)0.0500 (12)0.0083 (13)0.0052 (10)0.0005 (11)
O20.0972 (15)0.0575 (12)0.0542 (11)0.0067 (10)0.0058 (9)0.0058 (9)
N10.0577 (12)0.0589 (14)0.0494 (12)0.0112 (10)0.0018 (9)0.0093 (10)
N20.0608 (13)0.0548 (13)0.0561 (13)0.0100 (10)0.0022 (10)0.0083 (10)
C10.131 (3)0.061 (2)0.091 (2)0.0049 (19)0.015 (2)0.0112 (18)
C20.091 (2)0.065 (2)0.0695 (19)0.0083 (16)0.0136 (16)0.0169 (16)
C30.0604 (16)0.0674 (18)0.0520 (16)0.0112 (13)0.0059 (11)0.0031 (13)
C40.0542 (14)0.0551 (16)0.0501 (14)0.0110 (11)0.0027 (11)0.0037 (12)
C50.0643 (16)0.0517 (15)0.0500 (14)0.0065 (12)0.0008 (11)0.0082 (11)
C60.0545 (14)0.0512 (15)0.0509 (14)0.0089 (11)0.0025 (11)0.0098 (11)
C70.0545 (14)0.0491 (15)0.0531 (14)0.0051 (11)0.0026 (11)0.0056 (11)
C80.0851 (19)0.0470 (15)0.0561 (16)0.0106 (13)0.0011 (13)0.0061 (12)
C90.089 (2)0.0595 (18)0.0530 (16)0.0082 (15)0.0023 (14)0.0104 (13)
C100.0716 (17)0.0582 (17)0.0534 (15)0.0028 (13)0.0007 (12)0.0007 (12)
C110.103 (2)0.0443 (16)0.0660 (18)0.0029 (14)0.0045 (16)0.0023 (13)
C120.091 (2)0.0462 (15)0.0567 (16)0.0007 (13)0.0029 (14)0.0081 (12)
C130.123 (3)0.079 (2)0.0594 (19)0.008 (2)0.0044 (18)0.0073 (16)
C140.0632 (16)0.0726 (19)0.0512 (14)0.0156 (13)0.0016 (12)0.0198 (13)
C150.0543 (14)0.0459 (14)0.0472 (13)0.0054 (10)0.0033 (10)0.0120 (10)
C160.0669 (17)0.0637 (17)0.0481 (14)0.0030 (13)0.0076 (12)0.0048 (12)
C170.0712 (19)0.087 (2)0.0594 (17)0.0095 (16)0.0107 (14)0.0026 (15)
C180.0563 (17)0.092 (2)0.081 (2)0.0046 (15)0.0081 (15)0.0122 (18)
C190.0549 (16)0.084 (2)0.0699 (18)0.0027 (14)0.0142 (13)0.0154 (16)
C200.0669 (16)0.0551 (15)0.0456 (13)0.0038 (12)0.0063 (11)0.0096 (11)
Geometric parameters (Å, º) top
O1—C31.202 (3)C9—H90.9300
O2—C31.332 (3)C10—C111.381 (4)
O2—C21.453 (3)C10—C131.510 (4)
N1—N21.348 (3)C11—C121.376 (4)
N1—C41.369 (3)C11—H110.9300
N1—C141.461 (3)C12—H120.9300
N2—C61.345 (3)C13—H13A0.9600
C1—C21.480 (5)C13—H13B0.9600
C1—H1A0.9600C13—H13C0.9600
C1—H1B0.9600C14—C151.502 (3)
C1—H1C0.9600C14—H14A0.9700
C2—H2A0.9700C14—H14B0.9700
C2—H2B0.9700C15—C201.388 (4)
C3—C41.463 (4)C15—C161.389 (4)
C4—C51.374 (3)C16—C171.372 (4)
C5—C61.392 (4)C16—H160.9300
C5—H50.9300C17—C181.364 (4)
C6—C71.471 (4)C17—H170.9300
C7—C121.384 (4)C18—C191.377 (4)
C7—C81.386 (4)C18—H180.9300
C8—C91.378 (4)C19—C201.379 (4)
C8—H80.9300C19—H190.9300
C9—C101.384 (4)C20—H200.9300
C3—O2—C2116.6 (2)C11—C10—C13121.0 (3)
N2—N1—C4111.8 (2)C9—C10—C13122.1 (3)
N2—N1—C14118.5 (2)C12—C11—C10122.0 (3)
C4—N1—C14129.5 (2)C12—C11—H11119.0
C6—N2—N1105.3 (2)C10—C11—H11119.0
C2—C1—H1A109.5C11—C12—C7121.0 (3)
C2—C1—H1B109.5C11—C12—H12119.5
H1A—C1—H1B109.5C7—C12—H12119.5
C2—C1—H1C109.5C10—C13—H13A109.5
H1A—C1—H1C109.5C10—C13—H13B109.5
H1B—C1—H1C109.5H13A—C13—H13B109.5
O2—C2—C1106.8 (3)C10—C13—H13C109.5
O2—C2—H2A110.4H13A—C13—H13C109.5
C1—C2—H2A110.4H13B—C13—H13C109.5
O2—C2—H2B110.4N1—C14—C15113.41 (19)
C1—C2—H2B110.4N1—C14—H14A108.9
H2A—C2—H2B108.6C15—C14—H14A108.9
O1—C3—O2124.5 (3)N1—C14—H14B108.9
O1—C3—C4125.5 (3)C15—C14—H14B108.9
O2—C3—C4110.0 (2)H14A—C14—H14B107.7
N1—C4—C5106.1 (2)C20—C15—C16118.7 (2)
N1—C4—C3123.6 (2)C20—C15—C14121.2 (2)
C5—C4—C3130.3 (3)C16—C15—C14119.9 (2)
C4—C5—C6106.2 (2)C17—C16—C15120.7 (2)
C4—C5—H5126.9C17—C16—H16119.7
C6—C5—H5126.9C15—C16—H16119.7
N2—C6—C5110.6 (2)C18—C17—C16119.9 (3)
N2—C6—C7120.6 (2)C18—C17—H17120.0
C5—C6—C7128.8 (2)C16—C17—H17120.0
C12—C7—C8117.3 (2)C17—C18—C19120.6 (3)
C12—C7—C6122.4 (2)C17—C18—H18119.7
C8—C7—C6120.2 (2)C19—C18—H18119.7
C9—C8—C7121.3 (3)C18—C19—C20119.7 (3)
C9—C8—H8119.4C18—C19—H19120.1
C7—C8—H8119.4C20—C19—H19120.1
C8—C9—C10121.5 (3)C19—C20—C15120.3 (2)
C8—C9—H9119.3C19—C20—H20119.9
C10—C9—H9119.3C15—C20—H20119.9
C11—C10—C9116.9 (3)
C4—N1—N2—C60.6 (3)C12—C7—C8—C90.2 (4)
C14—N1—N2—C6176.1 (2)C6—C7—C8—C9179.8 (2)
C3—O2—C2—C1175.4 (3)C7—C8—C9—C100.2 (5)
C2—O2—C3—O11.8 (4)C8—C9—C10—C110.4 (5)
C2—O2—C3—C4177.9 (2)C8—C9—C10—C13179.3 (3)
N2—N1—C4—C50.6 (3)C9—C10—C11—C120.6 (5)
C14—N1—C4—C5175.4 (2)C13—C10—C11—C12179.1 (3)
N2—N1—C4—C3178.8 (2)C10—C11—C12—C70.7 (5)
C14—N1—C4—C36.4 (4)C8—C7—C12—C110.4 (4)
O1—C3—C4—N15.4 (4)C6—C7—C12—C11179.6 (3)
O2—C3—C4—N1174.9 (2)N2—N1—C14—C1599.0 (3)
O1—C3—C4—C5172.3 (3)C4—N1—C14—C1575.5 (3)
O2—C3—C4—C57.4 (4)N1—C14—C15—C2042.9 (4)
N1—C4—C5—C60.4 (3)N1—C14—C15—C16140.7 (3)
C3—C4—C5—C6178.4 (2)C20—C15—C16—C170.2 (4)
N1—N2—C6—C50.4 (3)C14—C15—C16—C17176.3 (3)
N1—N2—C6—C7179.9 (2)C15—C16—C17—C181.3 (5)
C4—C5—C6—N20.0 (3)C16—C17—C18—C191.5 (5)
C4—C5—C6—C7179.5 (2)C17—C18—C19—C200.6 (5)
N2—C6—C7—C1216.0 (4)C18—C19—C20—C150.5 (4)
C5—C6—C7—C12164.6 (3)C16—C15—C20—C190.7 (4)
N2—C6—C7—C8164.0 (2)C14—C15—C20—C19177.2 (2)
C5—C6—C7—C815.4 (4)

Experimental details

Crystal data
Chemical formulaC20H20N2O2
Mr320.38
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)7.666 (4), 10.160 (6), 11.381 (7)
α, β, γ (°)83.991 (9), 87.466 (9), 85.47 (1)
V3)878.2 (9)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.21 × 0.16 × 0.12
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1997)
Tmin, Tmax0.984, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
4489, 3045, 2182
Rint0.032
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.220, 1.06
No. of reflections3045
No. of parameters217
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.21

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

References

First citationBruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGe, Y.-Q., Dong, W.-L., Xia, Y., Wei, F. & Zhao, B.-X. (2007). Acta Cryst. E63, o1313–o1314.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGe, Y. Q., Jia, J., Li, Y., Yin, L. & Wang, J. W. (2009a). Heterocycles, 42, 197–206.  Google Scholar
First citationGe, Y. Q., Jia, J., Yang, H., Tao, X. T. & Wang, J. W. (2011). Dyes Pigm. 88, 344–349.  Web of Science CSD CrossRef CAS Google Scholar
First citationGe, Y. Q., Jia, J., Yang, H., Zhao, G. L., Zhan, F. X. & Wang, J. W. (2009b). Heterocycles, 72, 725–736.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds