organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,3-Di­allyl-5-chloro-1H-benzimidazol-2(3H)-one

aLaboratoire de Chimie Organique Appliquée, Faculté des Sciences et Techniques, Université Sidi Mohamed Ben Abdallah, Fés, Morocco, bService Commun Rayons-X FR2599, Université Paul Sabatier Bâtiment 2R1, 118 route de Narbonne, Toulouse, France, cLaboratoire de Chimie Organique Hétérocyclique, Pôle de Compétences Pharmacochimie, Université Mohammed V-Agdal, BP 1014 Avenue Ibn Batout, Rabat, Morocco, and dDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 19 January 2011; accepted 23 January 2011; online 29 January 2011)

The benzimidazolone part of the title mol­ecule, C13H13ClN2O, is almost planar (r.m.s. deviation = 0.006 Å) and its mean plane is aligned at dihedral angles of 62.5 (1) and 78.0 (1)° with respect to the mean planes of the allyl substituents.

Related literature

For the synthesis, see: Vernin et al. (1981[Vernin, G., Domlog, H., Siv, C., Metzger, J. & El-Shafei, A. K. (1981). J. Heterocycl. Chem. 18, 85-89.]).

[Scheme 1]

Experimental

Crystal data
  • C13H13ClN2O

  • Mr = 248.70

  • Monoclinic, P 21 /c

  • a = 7.8831 (1) Å

  • b = 15.2481 (3) Å

  • c = 10.3593 (2) Å

  • β = 93.056 (1)°

  • V = 1243.44 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 295 K

  • 0.35 × 0.20 × 0.20 mm

Data collection
  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1997[Sheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.]) Tmin = 0.905, Tmax = 0.944

  • 17723 measured reflections

  • 2858 independent reflections

  • 2230 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.156

  • S = 1.03

  • 2858 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 0.98 e Å−3

  • Δρmin = −0.34 e Å−3

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Tetraalkylammonium halides are used as phase-transfer catalyst in the synthesis of 1,3-dialkyl-1,2-benzimidazolones, butyltriethylammonium chloride being used in the synthesis of the 1,3-diallyl derivative (Vernin et al., 1981). Thhis compound as well as its derivatives possess pharmalogically important properties. The title chlorine-substitutent compound (Scheme I) was synthesized for evaluation of such properties. The benzimidazolone part of the C13H13ClN2O molecule (Fig. 1) is planar (r.m.s. deviation 0.006 Å); its mean plane is aligned at 62.5 (1) and 78.0 (1) with respect to the mean planes of the allyl substituents.

Related literature top

For the synthesis, see: Vernin et al. (1981).

Experimental top

To 5-chloro-1H-benzo[d]imidazol-2(3H)-one (0.2 g, 1.18 mmol), potassium carbonate (0.4 g, 2.8 mmol), and tetra-n-butylammonium bromide (0.08 g, 0.23 mmol) in DMF (15 ml) was added allyl-bromide (0.22 ml, 2.6 mmol). Stirring was continued at room temperature for 6 h. The salts were removed by filtration and the filtrate concentrated under reduced pressure. The residue was separated by chromatography on a column of silica gel with ethyl acetate/hexane (1/2) as eluent. Colorless crystals were isolated when the solvent was allowed to evaporate.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.93–0.97 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2–1.5U(C).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of C13H13ClN2O at the 50% probability level; hydrogen atoms are drawn as arbitrary radius.
1,3-Diallyl-5-chloro-1H-benzimidazol-2(3H)-one top
Crystal data top
C13H13ClN2OF(000) = 520
Mr = 248.70Dx = 1.329 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4645 reflections
a = 7.8831 (1) Åθ = 2.4–29.0°
b = 15.2481 (3) ŵ = 0.29 mm1
c = 10.3593 (2) ÅT = 295 K
β = 93.056 (1)°Block, colourless
V = 1243.44 (4) Å30.35 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker APEXII
diffractometer
2858 independent reflections
Radiation source: fine-focus sealed tube2230 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ϕ and ω scansθmax = 27.5°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
h = 1010
Tmin = 0.905, Tmax = 0.944k = 1919
17723 measured reflectionsl = 1213
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.156H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0846P)2 + 0.6164P]
where P = (Fo2 + 2Fc2)/3
2858 reflections(Δ/σ)max = 0.001
154 parametersΔρmax = 0.98 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
C13H13ClN2OV = 1243.44 (4) Å3
Mr = 248.70Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.8831 (1) ŵ = 0.29 mm1
b = 15.2481 (3) ÅT = 295 K
c = 10.3593 (2) Å0.35 × 0.20 × 0.20 mm
β = 93.056 (1)°
Data collection top
Bruker APEXII
diffractometer
2858 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
2230 reflections with I > 2σ(I)
Tmin = 0.905, Tmax = 0.944Rint = 0.033
17723 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.156H-atom parameters constrained
S = 1.03Δρmax = 0.98 e Å3
2858 reflectionsΔρmin = 0.34 e Å3
154 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.25390 (9)0.66457 (5)0.19928 (6)0.0609 (2)
O10.6243 (2)0.62064 (10)0.86933 (14)0.0468 (4)
N10.5616 (2)0.66732 (10)0.65711 (15)0.0341 (4)
N20.4252 (2)0.55197 (10)0.72844 (15)0.0340 (4)
C10.4530 (2)0.63903 (12)0.55655 (17)0.0304 (4)
C20.4221 (2)0.67167 (12)0.43253 (18)0.0346 (4)
H20.47810.72080.40290.042*
C30.3021 (3)0.62631 (14)0.35525 (19)0.0388 (5)
C40.2168 (3)0.55288 (14)0.3964 (2)0.0407 (5)
H40.13910.52440.34030.049*
C50.2476 (2)0.52151 (13)0.5227 (2)0.0371 (4)
H50.19040.47280.55260.045*
C60.3663 (2)0.56580 (12)0.60094 (17)0.0307 (4)
C70.5461 (3)0.61349 (12)0.76399 (18)0.0348 (4)
C80.6889 (3)0.73629 (13)0.6498 (2)0.0385 (5)
H8A0.71270.76070.73530.046*
H8B0.64420.78290.59410.046*
C90.8507 (3)0.70238 (14)0.5983 (2)0.0438 (5)
H90.90550.65600.64140.053*
C100.9186 (3)0.73440 (16)0.4965 (3)0.0548 (6)
H10A0.86640.78080.45160.066*
H10B1.01920.71090.46870.066*
C110.3710 (3)0.48204 (13)0.8125 (2)0.0410 (5)
H11A0.45440.47570.88420.049*
H11B0.36810.42740.76450.049*
C120.2008 (3)0.49716 (17)0.8649 (2)0.0561 (7)
H120.15360.45070.90880.067*
C130.1120 (4)0.5692 (2)0.8550 (3)0.0647 (8)
H13A0.15400.61740.81200.078*
H13B0.00660.57230.89110.078*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0596 (4)0.0792 (5)0.0427 (3)0.0024 (3)0.0096 (3)0.0139 (3)
O10.0592 (10)0.0442 (8)0.0362 (7)0.0043 (7)0.0055 (7)0.0002 (6)
N10.0399 (9)0.0296 (8)0.0326 (8)0.0039 (6)0.0018 (7)0.0010 (6)
N20.0393 (9)0.0291 (8)0.0339 (8)0.0015 (6)0.0054 (6)0.0019 (6)
C10.0300 (9)0.0290 (8)0.0329 (9)0.0024 (7)0.0062 (7)0.0024 (7)
C20.0335 (10)0.0357 (10)0.0352 (9)0.0027 (7)0.0070 (8)0.0034 (7)
C30.0355 (10)0.0477 (11)0.0335 (9)0.0087 (8)0.0041 (8)0.0005 (8)
C40.0320 (10)0.0473 (11)0.0427 (11)0.0002 (8)0.0013 (8)0.0081 (9)
C50.0332 (10)0.0350 (9)0.0437 (10)0.0031 (8)0.0069 (8)0.0039 (8)
C60.0303 (9)0.0288 (8)0.0336 (9)0.0028 (7)0.0071 (7)0.0023 (7)
C70.0406 (10)0.0288 (9)0.0351 (9)0.0020 (8)0.0043 (8)0.0014 (7)
C80.0465 (12)0.0300 (9)0.0391 (10)0.0081 (8)0.0024 (8)0.0036 (8)
C90.0348 (11)0.0325 (10)0.0627 (13)0.0023 (8)0.0097 (9)0.0045 (9)
C100.0429 (13)0.0474 (12)0.0750 (17)0.0005 (10)0.0119 (11)0.0051 (12)
C110.0500 (12)0.0313 (10)0.0424 (11)0.0032 (8)0.0094 (9)0.0089 (8)
C120.0663 (16)0.0553 (14)0.0492 (13)0.0046 (12)0.0263 (12)0.0163 (10)
C130.0656 (17)0.0776 (18)0.0535 (14)0.0202 (14)0.0259 (13)0.0098 (13)
Geometric parameters (Å, º) top
Cl1—C31.741 (2)C5—H50.9300
O1—C71.229 (2)C8—C91.501 (3)
N1—C11.382 (2)C8—H8A0.9700
N1—C71.389 (2)C8—H8B0.9700
N1—C81.459 (2)C9—C101.303 (3)
N2—C71.373 (3)C9—H90.9300
N2—C61.393 (2)C10—H10A0.9300
N2—C111.455 (2)C10—H10B0.9300
C1—C21.387 (3)C11—C121.492 (3)
C1—C61.400 (3)C11—H11A0.9700
C2—C31.390 (3)C11—H11B0.9700
C2—H20.9300C12—C131.303 (4)
C3—C41.385 (3)C12—H120.9300
C4—C51.402 (3)C13—H13A0.9300
C4—H40.9300C13—H13B0.9300
C5—C61.381 (3)
C1—N1—C7109.83 (16)N2—C7—N1106.21 (16)
C1—N1—C8125.89 (16)N1—C8—C9111.75 (16)
C7—N1—C8123.90 (17)N1—C8—H8A109.3
C7—N2—C6110.02 (15)C9—C8—H8A109.3
C7—N2—C11124.17 (17)N1—C8—H8B109.3
C6—N2—C11125.80 (17)C9—C8—H8B109.3
N1—C1—C2131.12 (17)H8A—C8—H8B107.9
N1—C1—C6107.17 (16)C10—C9—C8123.5 (2)
C2—C1—C6121.71 (18)C10—C9—H9118.2
C3—C2—C1115.81 (18)C8—C9—H9118.2
C3—C2—H2122.1C9—C10—H10A120.0
C1—C2—H2122.1C9—C10—H10B120.0
C4—C3—C2123.46 (19)H10A—C10—H10B120.0
C4—C3—Cl1118.11 (17)N2—C11—C12113.75 (17)
C2—C3—Cl1118.43 (16)N2—C11—H11A108.8
C3—C4—C5120.04 (19)C12—C11—H11A108.8
C3—C4—H4120.0N2—C11—H11B108.8
C5—C4—H4120.0C12—C11—H11B108.8
C6—C5—C4117.31 (18)H11A—C11—H11B107.7
C6—C5—H5121.3C13—C12—C11126.3 (2)
C4—C5—H5121.3C13—C12—H12116.9
C5—C6—N2131.58 (17)C11—C12—H12116.9
C5—C6—C1121.65 (18)C12—C13—H13A120.0
N2—C6—C1106.76 (16)C12—C13—H13B120.0
O1—C7—N2127.35 (18)H13A—C13—H13B120.0
O1—C7—N1126.44 (18)
C7—N1—C1—C2179.23 (19)C2—C1—C6—C51.1 (3)
C8—N1—C1—C27.7 (3)N1—C1—C6—N20.17 (19)
C7—N1—C1—C60.2 (2)C2—C1—C6—N2178.95 (16)
C8—N1—C1—C6173.33 (17)C6—N2—C7—O1179.96 (19)
N1—C1—C2—C3179.86 (18)C11—N2—C7—O11.2 (3)
C6—C1—C2—C31.0 (3)C6—N2—C7—N10.6 (2)
C1—C2—C3—C40.1 (3)C11—N2—C7—N1179.50 (16)
C1—C2—C3—Cl1178.90 (14)C1—N1—C7—O1179.86 (19)
C2—C3—C4—C51.1 (3)C8—N1—C7—O16.9 (3)
Cl1—C3—C4—C5177.91 (15)C1—N1—C7—N20.5 (2)
C3—C4—C5—C61.0 (3)C8—N1—C7—N2173.81 (16)
C4—C5—C6—N2179.97 (18)C1—N1—C8—C983.2 (2)
C4—C5—C6—C10.1 (3)C7—N1—C8—C988.9 (2)
C7—N2—C6—C5179.44 (19)N1—C8—C9—C10122.9 (2)
C11—N2—C6—C50.6 (3)C7—N2—C11—C12104.9 (2)
C7—N2—C6—C10.5 (2)C6—N2—C11—C1276.4 (3)
C11—N2—C6—C1179.34 (17)N2—C11—C12—C139.0 (4)
N1—C1—C6—C5179.79 (17)

Experimental details

Crystal data
Chemical formulaC13H13ClN2O
Mr248.70
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)7.8831 (1), 15.2481 (3), 10.3593 (2)
β (°) 93.056 (1)
V3)1243.44 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.35 × 0.20 × 0.20
Data collection
DiffractometerBruker APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1997)
Tmin, Tmax0.905, 0.944
No. of measured, independent and
observed [I > 2σ(I)] reflections
17723, 2858, 2230
Rint0.033
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.156, 1.03
No. of reflections2858
No. of parameters154
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.98, 0.34

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

 

Acknowledgements

We thank Université Sidi Mohamed Ben Abdallah, Université Mohammed V-Agdal and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVernin, G., Domlog, H., Siv, C., Metzger, J. & El-Shafei, A. K. (1981). J. Heterocycl. Chem. 18, 85–89.  CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds