organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-[(Furan-2-yl­methyl­­idene)amino]-1-(4-methyl­phen­yl)thio­urea

aCollege of Chemistry and Chemical Engineering, Xuchang University, Xuchang, Henan Province 461000, People's Republic of China
*Correspondence e-mail: zhangyanling315@126.com

(Received 9 December 2010; accepted 4 January 2011; online 8 January 2011)

There are two independent mol­ecules in the asymmetric unit of the title compound, C13H13N3OS, which was obtained from a condensation reaction of N-(p-tol­yl)hydrazinecarbothio­amide and furfural. The dihedral angles between the mean planes of the tolyl ring and the (furan-2-yl­methyl­ene)hydrazine unit are 39.83 (8) and 48.95 (7)° in the two mol­ecules. The mol­ecules both exhibit an E configuration. In the crystal, inter­molecular N—H⋯N and N—H⋯S hydrogen bonds connect the two independent mol­ecules.

Related literature

For biological applications of thio­semicarbazones, see: Okabe et al. (1993[Okabe, N., Nakamura, T. & Fukuda, H. (1993). Acta Cryst. C49, 1678-1680.]); Hu et al. (2006[Hu, W.-X., Zhou, W., Xia, C.-N. & Wen, X. (2006). Bioorg. Med. Chem. Lett. 16, 2213-2218.]). For related structures, see: Zhang et al. (2005[Zhang, Y.-L., Shan, S. & Xu, D.-J. (2005). Acta Cryst. E61, o1173-o1175.]); Shan et al. (2006[Shan, S. & Zhang, Y.-L. (2006). Acta Cryst. E62, o2051-o2052.]).

[Scheme 1]

Experimental

Crystal data
  • C13H13N3OS

  • Mr = 259.32

  • Monoclinic, P 21 /c

  • a = 12.9464 (3) Å

  • b = 13.8613 (3) Å

  • c = 16.6155 (5) Å

  • β = 118.028 (2)°

  • V = 2632.01 (12) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 2.12 mm−1

  • T = 293 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Oxford Diffraction Xcalibur Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.677, Tmax = 0.677

  • 19253 measured reflections

  • 4697 independent reflections

  • 3878 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.147

  • S = 1.03

  • 4697 reflections

  • 328 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯S1Ai 0.86 2.59 3.4397 (19) 171
N2A—H2A⋯S1ii 0.86 2.66 3.3696 (17) 141
N3A—H3A⋯N1A 0.86 2.20 2.628 (2) 111
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Thiosemicarbazones have attracted our attention because of their biological applications (Okabe et al., 1993; Hu et al., 2006). A few single-crystal structres (Zhang et al., 2005; Shan et al., 2006) were reported. For understanding their anticancer activity, it is necessary to have detailed information on their molecular geometries. Both molecules of the asymmetric unit (I) (Fig. 1) reveal an E-configuration. these molecules are related by a pseudo-inversion symmetry. The dihedral angles between the mean planes of the tolyl ring and the (furan-2-ylmethylene)hydrazine unit are 39.83 (8) and 48.95 (7)°. A dominant motif in a crystal packing are hydrogen bonded dimers via intermolecular N(2)—H(2)···S(1 A)and N(2 A)—H(2 A)···S(1), interactions (Table 1 and Fig. 1). Intramolecular hydrogen bond N3A-H3A···N1A is observed (Table 1) whereas the other molecule of asymmetric unit does not meet the angle criterium (N-H···N angle is 108 °) for intramolecular hydrogen bond. The value of this angle might be affected by lower accuracy of hydrogen atom position or slight difference between molecular conformations of these two molecules.

Related literature top

For biological applications of thiosemicarbazones, see: Okabe et al. (1993); Hu et al. (2006). For related structures, see: Zhang et al. (2005); Shan et al. (2006).

Experimental top

N-(p-Tolyl)hydrazinecarbothioamide (1.8 g,10 mmol) and furfural (0.96 g, 10 mmol) was dissolved in 95% ethanol (15 mL) and the solution was refluxed for 2.5 h. Fine colourless crystals appeared on cooling. They were filtered and washed by 95% ethanol to give 2.06 g of the title compound in 79.5% yield. Single crystals of (I) were obtained by recrystallisation from acetone.

Refinement top

H atoms were placed in calculated positions with C—H = 0.93–0.96 and N—H = 0.86 Å, and refined using a riding model, Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C,N).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXL97 (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at 30% probability level. The two molecules of the asymmetric unit are connected by hydrogen bonds N-H···S (dashed lines).
3-[(Furan-2-ylmethylidene)amino]-1-(4-methylphenyl)thiourea top
Crystal data top
C13H13N3OSF(000) = 1088
Mr = 259.32Dx = 1.309 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ybcCell parameters from 7546 reflections
a = 12.9464 (3) Åθ = 3.0–72.2°
b = 13.8613 (3) ŵ = 2.12 mm1
c = 16.6155 (5) ÅT = 293 K
β = 118.028 (2)°Prismatic, colorless
V = 2632.01 (12) Å30.20 × 0.20 × 0.20 mm
Z = 8
Data collection top
Oxford Diffraction Xcalibur Eos Gemini
diffractometer
4697 independent reflections
Radiation source: fine-focus sealed tube3878 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
ω scansθmax = 67.1°, θmin = 3.9°
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
h = 1515
Tmin = 0.677, Tmax = 0.677k = 1616
19253 measured reflectionsl = 1913
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.147 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
4697 reflectionsΔρmax = 0.19 e Å3
328 parametersΔρmin = 0.24 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0044 (4)
Crystal data top
C13H13N3OSV = 2632.01 (12) Å3
Mr = 259.32Z = 8
Monoclinic, P21/cCu Kα radiation
a = 12.9464 (3) ŵ = 2.12 mm1
b = 13.8613 (3) ÅT = 293 K
c = 16.6155 (5) Å0.20 × 0.20 × 0.20 mm
β = 118.028 (2)°
Data collection top
Oxford Diffraction Xcalibur Eos Gemini
diffractometer
4697 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
3878 reflections with I > 2σ(I)
Tmin = 0.677, Tmax = 0.677Rint = 0.042
19253 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.147H-atom parameters constrained
S = 1.03Δρmax = 0.19 e Å3
4697 reflectionsΔρmin = 0.24 e Å3
328 parameters
Special details top

Experimental. CrysAlisPro, Oxford Diffraction Ltd., Version 1.171.34.40 (release 27-08-2010 CrysAlis171 .NET) (compiled Aug 27 2010,11:50:40) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.12468 (5)0.04591 (4)0.57517 (3)0.05268 (19)
S1A0.30556 (5)0.53789 (4)0.36034 (4)0.0548 (2)
O10.63171 (13)0.26407 (12)0.80209 (9)0.0551 (4)
O1A0.24494 (16)0.36883 (14)0.18097 (11)0.0676 (5)
N10.42256 (15)0.16907 (13)0.73490 (11)0.0482 (4)
N1A0.02089 (16)0.45411 (12)0.24339 (12)0.0466 (4)
N20.32088 (16)0.11669 (14)0.70435 (12)0.0526 (4)
H20.30890.08110.74150.063*
N2A0.08617 (16)0.48994 (14)0.25989 (11)0.0488 (4)
H2A0.09530.51220.21530.059*
N30.26010 (16)0.18718 (14)0.56597 (12)0.0534 (4)
H30.31720.22630.59530.064*
N3A0.15430 (16)0.45539 (14)0.40998 (12)0.0516 (4)
H3A0.08480.43310.39130.062*
C10.7393 (2)0.3023 (2)0.85542 (18)0.0656 (6)
H10.77720.34530.83510.079*
C1A0.3614 (3)0.3434 (2)0.12705 (19)0.0734 (7)
H1A0.40450.30370.14530.088*
C20.7830 (2)0.2704 (2)0.93994 (16)0.0684 (7)
H2B0.85520.28640.98840.082*
C2A0.4018 (2)0.3844 (2)0.04573 (17)0.0697 (7)
H2AA0.47720.37890.00250.084*
C30.6988 (2)0.20724 (19)0.94272 (15)0.0600 (6)
H3B0.70470.17370.99320.072*
C3A0.3098 (2)0.43732 (19)0.04610 (15)0.0568 (5)
H3AA0.31260.47380.00190.068*
C40.60805 (18)0.20553 (15)0.85729 (13)0.0456 (4)
C4A0.2166 (2)0.42593 (15)0.12823 (14)0.0488 (5)
C50.49801 (19)0.15645 (15)0.81887 (13)0.0478 (5)
H50.48090.11500.85500.057*
C5A0.10118 (19)0.46325 (15)0.16071 (14)0.0475 (5)
H5A0.08330.49580.11990.057*
C60.23996 (18)0.12135 (15)0.61564 (13)0.0457 (4)
C6A0.17739 (18)0.49072 (14)0.34471 (13)0.0434 (4)
C70.19719 (18)0.19935 (14)0.46945 (14)0.0468 (4)
C7A0.22866 (19)0.45001 (15)0.50532 (14)0.0463 (5)
C80.2592 (2)0.20326 (18)0.42067 (16)0.0570 (5)
H80.34050.19960.45120.068*
C8A0.1803 (2)0.4686 (2)0.56153 (17)0.0674 (7)
H8A0.10160.48510.53620.081*
C90.2013 (2)0.21261 (18)0.32708 (17)0.0622 (6)
H90.24430.21550.29540.075*
C9A0.2462 (3)0.4631 (2)0.65487 (17)0.0696 (7)
H9A0.21140.47640.69150.084*
C100.0806 (2)0.21771 (16)0.27934 (15)0.0572 (6)
C10A0.3629 (2)0.43844 (17)0.69498 (15)0.0535 (5)
C110.0199 (2)0.21777 (18)0.32891 (16)0.0602 (6)
H11A0.06120.22330.29830.072*
C11A0.41067 (19)0.41712 (16)0.63797 (14)0.0508 (5)
H110.48880.39870.66340.061*
C120.07673 (19)0.20985 (17)0.42347 (15)0.0550 (5)
H12A0.03410.21160.45550.066*
C12A0.34502 (19)0.42261 (16)0.54403 (14)0.0485 (5)
H120.37900.40790.50710.058*
C130.0164 (3)0.2217 (2)0.17613 (17)0.0784 (8)
H13D0.05400.26750.15510.118*
H13E0.06320.24100.15600.118*
H13F0.01770.15910.15190.118*
C13A0.4365 (3)0.4347 (2)0.79706 (17)0.0710 (7)
H13A0.39250.45980.82550.106*
H13B0.50580.47280.81490.106*
H13C0.45810.36910.81590.106*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0500 (3)0.0630 (3)0.0400 (3)0.0190 (2)0.0169 (2)0.0050 (2)
S1A0.0495 (3)0.0691 (4)0.0465 (3)0.0145 (2)0.0231 (2)0.0043 (2)
O10.0478 (8)0.0680 (10)0.0420 (7)0.0072 (7)0.0149 (6)0.0030 (6)
O1A0.0630 (11)0.0806 (12)0.0538 (9)0.0012 (9)0.0230 (8)0.0119 (8)
N10.0433 (9)0.0527 (9)0.0410 (8)0.0064 (7)0.0135 (7)0.0019 (7)
N1A0.0440 (9)0.0521 (9)0.0412 (9)0.0009 (7)0.0178 (8)0.0003 (7)
N20.0482 (10)0.0609 (10)0.0411 (9)0.0140 (8)0.0148 (8)0.0005 (7)
N2A0.0448 (9)0.0615 (10)0.0390 (8)0.0020 (8)0.0188 (7)0.0046 (7)
N30.0454 (9)0.0605 (11)0.0422 (9)0.0160 (8)0.0107 (7)0.0014 (7)
N3A0.0401 (9)0.0709 (12)0.0401 (9)0.0100 (8)0.0156 (8)0.0018 (7)
C10.0520 (13)0.0771 (16)0.0630 (14)0.0173 (12)0.0232 (11)0.0052 (12)
C1A0.0677 (16)0.0854 (18)0.0701 (16)0.0179 (14)0.0349 (14)0.0011 (14)
C20.0456 (12)0.0907 (19)0.0490 (12)0.0128 (12)0.0056 (10)0.0063 (12)
C2A0.0501 (13)0.0953 (19)0.0528 (13)0.0161 (13)0.0151 (11)0.0055 (12)
C30.0540 (13)0.0713 (14)0.0393 (10)0.0026 (11)0.0091 (9)0.0042 (10)
C3A0.0462 (12)0.0749 (14)0.0402 (10)0.0061 (11)0.0127 (9)0.0084 (10)
C40.0442 (11)0.0475 (10)0.0390 (10)0.0015 (8)0.0145 (8)0.0006 (8)
C4A0.0487 (11)0.0518 (11)0.0423 (10)0.0035 (9)0.0183 (9)0.0001 (8)
C50.0480 (11)0.0466 (10)0.0431 (10)0.0004 (9)0.0168 (9)0.0010 (8)
C5A0.0450 (11)0.0540 (11)0.0390 (10)0.0036 (8)0.0161 (9)0.0031 (8)
C60.0438 (10)0.0498 (10)0.0411 (10)0.0050 (8)0.0181 (8)0.0058 (8)
C6A0.0444 (10)0.0465 (10)0.0398 (9)0.0004 (8)0.0201 (8)0.0028 (8)
C70.0434 (10)0.0448 (10)0.0435 (10)0.0038 (8)0.0132 (9)0.0027 (8)
C7A0.0431 (10)0.0542 (11)0.0392 (10)0.0071 (8)0.0172 (9)0.0004 (8)
C80.0431 (11)0.0670 (14)0.0569 (12)0.0036 (10)0.0203 (10)0.0062 (10)
C8A0.0452 (12)0.109 (2)0.0491 (13)0.0111 (12)0.0232 (11)0.0067 (12)
C90.0703 (15)0.0666 (14)0.0552 (13)0.0088 (12)0.0341 (12)0.0059 (11)
C9A0.0627 (15)0.105 (2)0.0467 (13)0.0066 (14)0.0306 (12)0.0004 (12)
C100.0662 (14)0.0475 (11)0.0450 (11)0.0019 (10)0.0155 (10)0.0034 (9)
C10A0.0554 (13)0.0565 (12)0.0429 (11)0.0058 (10)0.0183 (10)0.0015 (9)
C110.0450 (12)0.0625 (13)0.0554 (13)0.0003 (10)0.0090 (10)0.0104 (10)
C11A0.0441 (11)0.0530 (11)0.0490 (11)0.0009 (9)0.0166 (9)0.0041 (9)
C120.0434 (11)0.0656 (13)0.0532 (12)0.0014 (10)0.0204 (10)0.0076 (10)
C12A0.0465 (11)0.0553 (11)0.0440 (10)0.0015 (9)0.0217 (9)0.0022 (8)
C130.095 (2)0.0716 (16)0.0469 (13)0.0048 (15)0.0153 (13)0.0059 (11)
C13A0.0754 (17)0.0839 (17)0.0437 (12)0.0012 (14)0.0197 (12)0.0006 (11)
Geometric parameters (Å, º) top
S1—C61.682 (2)C4—C51.430 (3)
S1A—C6A1.686 (2)C4A—C5A1.427 (3)
O1—C11.359 (3)C5—H50.9300
O1—C41.363 (3)C5A—H5A0.9300
O1A—C4A1.353 (3)C7—C121.385 (3)
O1A—C1A1.389 (3)C7—C81.385 (3)
N1—C51.285 (3)C7A—C8A1.371 (3)
N1—N21.375 (2)C7A—C12A1.384 (3)
N1A—C5A1.281 (3)C8—C91.379 (3)
N1A—N2A1.373 (2)C8—H80.9300
N2—C61.350 (3)C8A—C9A1.377 (4)
N2—H20.8599C8A—H8A0.9300
N2A—C6A1.348 (3)C9—C101.382 (4)
N2A—H2A0.8600C9—H90.9300
N3—C61.336 (3)C9A—C10A1.377 (4)
N3—C71.427 (3)C9A—H9A0.9300
N3—H30.8600C10—C111.380 (4)
N3A—C6A1.345 (3)C10—C131.515 (3)
N3A—C7A1.417 (3)C10A—C11A1.385 (3)
N3A—H3A0.8600C10A—C13A1.506 (3)
C1—C21.320 (4)C11—C121.391 (3)
C1—H10.9300C11—H11A0.9300
C1A—C2A1.326 (4)C11A—C12A1.385 (3)
C1A—H1A0.9300C11A—H110.9300
C2—C31.415 (4)C12—H12A0.9300
C2—H2B0.9300C12A—H120.9300
C2A—C3A1.397 (3)C13—H13D0.9600
C2A—H2AA0.9300C13—H13E0.9600
C3—C41.352 (3)C13—H13F0.9600
C3—H3B0.9300C13A—H13A0.9600
C3A—C4A1.340 (3)C13A—H13B0.9600
C3A—H3AA0.9300C13A—H13C0.9600
C1—O1—C4106.22 (18)N3A—C6A—S1A126.32 (16)
C4A—O1A—C1A105.83 (19)N2A—C6A—S1A118.65 (15)
C5—N1—N2115.88 (17)C12—C7—C8119.1 (2)
C5A—N1A—N2A114.36 (17)C12—C7—N3122.2 (2)
C6—N2—N1119.67 (17)C8—C7—N3118.73 (19)
C6—N2—H2120.2C8A—C7A—C12A118.7 (2)
N1—N2—H2120.1C8A—C7A—N3A117.6 (2)
C6A—N2A—N1A121.19 (16)C12A—C7A—N3A123.58 (19)
C6A—N2A—H2A119.4C9—C8—C7120.4 (2)
N1A—N2A—H2A119.5C9—C8—H8119.8
C6—N3—C7126.95 (18)C7—C8—H8119.8
C6—N3—H3116.5C7A—C8A—C9A121.1 (2)
C7—N3—H3116.5C7A—C8A—H8A119.4
C6A—N3A—C7A128.95 (18)C9A—C8A—H8A119.4
C6A—N3A—H3A115.5C8—C9—C10121.4 (2)
C7A—N3A—H3A115.5C8—C9—H9119.3
C2—C1—O1111.0 (2)C10—C9—H9119.3
C2—C1—H1124.5C10A—C9A—C8A121.2 (2)
O1—C1—H1124.5C10A—C9A—H9A119.4
C2A—C1A—O1A109.7 (2)C8A—C9A—H9A119.4
C2A—C1A—H1A125.1C11—C10—C9117.7 (2)
O1A—C1A—H1A125.1C11—C10—C13120.8 (2)
C1—C2—C3106.9 (2)C9—C10—C13121.5 (3)
C1—C2—H2B126.5C9A—C10A—C11A117.6 (2)
C3—C2—H2B126.5C9A—C10A—C13A121.6 (2)
C1A—C2A—C3A107.0 (2)C11A—C10A—C13A120.9 (2)
C1A—C2A—H2AA126.5C10—C11—C12121.8 (2)
C3A—C2A—H2AA126.5C10—C11—H11A119.1
C4—C3—C2106.2 (2)C12—C11—H11A119.1
C4—C3—H3B126.9C12A—C11A—C10A121.6 (2)
C2—C3—H3B126.9C12A—C11A—H11119.2
C4A—C3A—C2A107.5 (2)C10A—C11A—H11119.2
C4A—C3A—H3AA126.3C7—C12—C11119.5 (2)
C2A—C3A—H3AA126.3C7—C12—H12A120.3
C3—C4—O1109.7 (2)C11—C12—H12A120.3
C3—C4—C5132.0 (2)C7A—C12A—C11A119.75 (19)
O1—C4—C5118.33 (17)C7A—C12A—H12120.1
C3A—C4A—O1A109.9 (2)C11A—C12A—H12120.1
C3A—C4A—C5A128.6 (2)C10—C13—H13D109.5
O1A—C4A—C5A121.45 (19)C10—C13—H13E109.5
N1—C5—C4120.63 (19)H13D—C13—H13E109.5
N1—C5—H5119.7C10—C13—H13F109.5
C4—C5—H5119.7H13D—C13—H13F109.5
N1A—C5A—C4A123.2 (2)H13E—C13—H13F109.5
N1A—C5A—H5A118.4C10A—C13A—H13A109.5
C4A—C5A—H5A118.4C10A—C13A—H13B109.5
N3—C6—N2115.50 (18)H13A—C13A—H13B109.5
N3—C6—S1124.88 (16)C10A—C13A—H13C109.5
N2—C6—S1119.62 (16)H13A—C13A—H13C109.5
N3A—C6A—N2A115.00 (18)H13B—C13A—H13C109.5
C5—N1—N2—C6176.10 (19)C7A—N3A—C6A—S1A0.8 (3)
C5A—N1A—N2A—C6A176.01 (19)N1A—N2A—C6A—N3A0.8 (3)
C4—O1—C1—C20.2 (3)N1A—N2A—C6A—S1A178.76 (15)
C4A—O1A—C1A—C2A0.7 (3)C6—N3—C7—C1253.4 (3)
O1—C1—C2—C30.2 (3)C6—N3—C7—C8128.4 (3)
O1A—C1A—C2A—C3A0.3 (4)C6A—N3A—C7A—C8A140.9 (3)
C1—C2—C3—C40.1 (3)C6A—N3A—C7A—C12A42.4 (3)
C1A—C2A—C3A—C4A0.2 (3)C12—C7—C8—C93.2 (4)
C2—C3—C4—O10.0 (3)N3—C7—C8—C9178.4 (2)
C2—C3—C4—C5178.9 (2)C12A—C7A—C8A—C9A2.0 (4)
C1—O1—C4—C30.1 (3)N3A—C7A—C8A—C9A178.8 (3)
C1—O1—C4—C5179.0 (2)C7—C8—C9—C100.4 (4)
C2A—C3A—C4A—O1A0.6 (3)C7A—C8A—C9A—C10A0.3 (5)
C2A—C3A—C4A—C5A177.9 (2)C8—C9—C10—C113.0 (4)
C1A—O1A—C4A—C3A0.8 (3)C8—C9—C10—C13176.1 (2)
C1A—O1A—C4A—C5A177.9 (2)C8A—C9A—C10A—C11A1.5 (4)
N2—N1—C5—C4178.51 (19)C8A—C9A—C10A—C13A178.5 (3)
C3—C4—C5—N1177.4 (2)C9—C10—C11—C122.1 (4)
O1—C4—C5—N11.5 (3)C13—C10—C11—C12177.1 (2)
N2A—N1A—C5A—C4A176.32 (19)C9A—C10A—C11A—C12A1.6 (4)
C3A—C4A—C5A—N1A174.2 (2)C13A—C10A—C11A—C12A178.3 (2)
O1A—C4A—C5A—N1A7.4 (3)C8—C7—C12—C114.1 (3)
C7—N3—C6—N2171.9 (2)N3—C7—C12—C11177.6 (2)
C7—N3—C6—S17.4 (3)C10—C11—C12—C71.5 (4)
N1—N2—C6—N37.8 (3)C8A—C7A—C12A—C11A1.8 (3)
N1—N2—C6—S1171.49 (16)N3A—C7A—C12A—C11A178.48 (19)
C7A—N3A—C6A—N2A177.0 (2)C10A—C11A—C12A—C7A0.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···S1Ai0.862.593.4397 (19)171
N2A—H2A···S1ii0.862.663.3696 (17)141
N3A—H3A···N1A0.862.202.628 (2)111
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC13H13N3OS
Mr259.32
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)12.9464 (3), 13.8613 (3), 16.6155 (5)
β (°) 118.028 (2)
V3)2632.01 (12)
Z8
Radiation typeCu Kα
µ (mm1)2.12
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerOxford Diffraction Xcalibur Eos Gemini
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.677, 0.677
No. of measured, independent and
observed [I > 2σ(I)] reflections
19253, 4697, 3878
Rint0.042
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.147, 1.03
No. of reflections4697
No. of parameters328
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.24

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···S1Ai0.862.593.4397 (19)171
N2A—H2A···S1ii0.862.663.3696 (17)141
N3A—H3A···N1A0.862.202.628 (2)111
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+1/2, z1/2.
 

Acknowledgements

The authors thank the Natural Science Foundation of the Education Department of Henan Province, China (2010B150029), the Science Foundation of Henan Province, China (082300420110) and the Scientific Research Foundation of Xuchang University of Henan Province, China (2009086) for supporting this work.

References

First citationHu, W.-X., Zhou, W., Xia, C.-N. & Wen, X. (2006). Bioorg. Med. Chem. Lett. 16, 2213–2218.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOkabe, N., Nakamura, T. & Fukuda, H. (1993). Acta Cryst. C49, 1678–1680.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationShan, S. & Zhang, Y.-L. (2006). Acta Cryst. E62, o2051–o2052.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, Y.-L., Shan, S. & Xu, D.-J. (2005). Acta Cryst. E61, o1173–o1175.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds