organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 2| February 2011| Pages o503-o504

rac-6-Hy­dr­oxy-2,5,7,8-tetra­methyl­chroman-2-carboxamide from synchrotron data

aSynchrotron Radiation Research Section, MCL, National Cancer Institute, Argonne National Laboratory, Biosciences Division, Bldg 202, Argonne, IL 60439, USA, and bInstitute of Chemistry, University of Białystok, Piłsudskiego 11/4, 15-443 Białystok, Poland
*Correspondence e-mail: kbrzezinski@anl.gov

(Received 12 January 2011; accepted 20 January 2011; online 29 January 2011)

The crystal structure of the title water-soluble analogue of vitamin E, trolox amide, C14H19NO3, solved and refined against synchrotron diffraction data, contains two mol­ecules in the asymmetric unit. In both molecules, the heterocyclic ring is in a half-chair conformation. The crystal packing features a herring-bone pattern generated by N—H⋯O hydrogen bonds between the hy­droxy and amide groups. O—H⋯O hydrogen bonds also occur.

Related literature

For background to the chemistry of trolox, its substituted amides and their applications as anti­oxidants and anti-inflamatory agents, see: Ross et al. (1995[Ross, L., Barclay, C., Artz, J. D. & Mowat, J. J. (1995). Biochim. Biophys. Acta, 1237, 77-85.]); Scott et al. (1974[Scott, J. W., Cort, W. M., Harley, H., Parish, D. R. & Saucy, G. (1974). J. Am. Oil Chem. Soc. 51, 200-203.]); Cort et al. (1975[Cort, W. M., Scott, J. W., Araujo, M., Mergens, W. J., Cannalonga, M. A., Osadca, M., Harley, H. & Pool, W. R. (1975). J. Am. Oil Chem. Soc. 521, 174-178.]); Cohen et al. (1981[Cohen, N., Lopresti, R. & Neukom, C. (1981). J. Org. Chem. 46, 2445-2450.]); Walther et al. (1991[Walther, W., Vetter, W., Vecchi, M., Schneider, H., Muller, R. K. & Netscher, T. (1991). Chimia, 45, 121-123.]); Silver et al. (1992[Silver, P. J., Gordon, R. J., Horan, P. J., Bushover, C. R., Gorzyca, W. P., Etzler, J. R. & Buchholz, R. A. (1992). Drug. Develop. Res. 27, 45-52.]); Netscher & Gautschi (1992[Netscher, T. & Gautschi, I. (1992). Liebigs Ann. Chem. pp. 543-546.]); Van Ginkel et al. (1992)[Van Ginkel, G., Muller, J. M., Siemens, F., van't Veld, A. A., Kornstanje, L. J. & van Zandvoort, M. A. M. (1992). J. Chem. Soc. Faraday Trans. 88, 1901-1912.]; Moulin et al. (1998[Moulin, C., Duflos, M., Le Baut, G., Grimaut, N., Renard, P. & Caignard, D.-H. (1998). Eur. J. Med. Chem. 33, 321-329.]); Vajragupta et al. (2000[Vajragupta, O., Toasaksiri, S., Boonyatat, C., Wongkrajang, Y., Peungwicha, P., Watanabe, H. & Boonchoong, P. (2000). Free Rad. Res. 32, 145-155.]); Koufaki et al. (2010[Koufaki, M., Theodorou, E., Alexi, X. & Alexis, M. N. (2010). Bioorg. Med. Chem. 18, 3898-3909.]). For the use of trolox as an inter­mediate for the synthesis of natural tocols such as vitamin E and α-tocotrienol, see: Cohen et al. (1979[Cohen, N., Lopresti, R. J. & Sausy, G. (1979). J. Am. Chem. Soc. 101, 6710-6716.]); Hyatt & Skelton (1997[Hyatt, J. A. & Skelton, C. (1997). Tetrahedron Asymmetry, 8, 523-526.]); Sakito & Suzokamo (1982[Sakito, Y. & Suzokamo, G. (1982). Tetrahedron Lett. 23, 4953-4954.]); Sugai et al. (1991[Sugai, T., Watanabe, N. & Ohta, H. (1991). Tetrahedron Asymmetry, 2, 371-376.]).

[Scheme 1]

Experimental

Crystal data
  • C14H19NO3

  • Mr = 249.31

  • Monoclinic, P 21 /c

  • a = 9.11 (1) Å

  • b = 17.92 (2) Å

  • c = 15.95 (1) Å

  • β = 100.43 (1)°

  • V = 2561 (4) Å3

  • Z = 8

  • Synchrotron radiation

  • λ = 0.59040 Å

  • μ = 0.06 mm−1

  • T = 100 K

  • 0.2 × 0.05 × 0.04 mm

Data collection
  • MAR315 CCD diffractometer

  • Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 2003[Otwinowski, Z., Borek, D., Majewski, W. & Minor, W. (2003). Acta Cryst. A59, 228-234.]) Tmin = 0.988, Tmax = 0.997

  • 14016 measured reflections

  • 6360 independent reflections

  • 5153 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.147

  • S = 1.08

  • 6360 reflections

  • 327 parameters

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N13—H13A⋯O16i 0.88 2.13 2.971 (2) 160
N13—H13B⋯O32ii 0.88 2.49 2.896 (3) 109
O16—H16A⋯O32iii 0.84 1.91 2.631 (2) 143
N33—H33B⋯O12 0.88 2.29 2.861 (3) 123
N33—H33A⋯O36i 0.88 2.53 3.281 (3) 143
O36—H36A⋯O12iv 0.84 1.91 2.727 (2) 165
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) x+1, y, z; (iii) [x+1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: NECAT APS beamline software; cell refinement: HKL-2000 (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: HKL-2000; program(s) used to solve structure: SHELXD (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and pyMOL (DeLano, 2002[DeLano, W. L. (2002). The pyMOL Molecular Graphics System. DeLano Scientific, San Carlos, CA, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Trolox is a water-soluble analog of α-tocopherol (vitamin E), in which lipophilic side chain was replaced with carboxylic group (Ross et al., 1995). Owing to its high radical scavenging activity it is often used as a model compound for investigation of some aspects of vitamin E biological activity as well as for structural studies. It is commercially available in both enantiomerically pure forms, and is an important intermediate for the synthesis of natural tocols such as vitamin E and α-tocotrienol (Cohen et al., 1979; Sakito et al., 1982; Sugai et al., 1991); Hyatt & Skelton, 1997).

The asymmetric unit contains two molecules differing in chirality of C2 (C22) atoms and in conformation of dihydropyranyl ring of chroman system. In both molecules the heterocyclic ring is in a half-chair conformation but the two out of plane atoms (C2 and C3 or C22 and C23) have the inverted configuration (Fig. 2). In one molecule the methyl group is axial and amide group is equatorial, whereas in the second molecule this arrangement is opposite. The average planes of the two unique molecules are highly parallel, but their aromatic rings are shifted and do not participate in effective π-stacking interactions. Together with their centrosymmetric mates they form columns of molecules extending along the b axis. The presence of the neighbouring columns related by the 21 axes or c-glide planes results in the overall herring-bone type arrangement of molecules in the crystal (Fig. 2). Each molecule participates in three intermolecular hydrogen bonds engaging both amide oxygen and nitrogen atoms and the hydroxy group. The hydrogen bond network connects molecules of the adjacent columns (Table 1 and Fig. 2).

Related literature top

For background to the chemistry of trolox, its substituted amides and their applications as antioxidants and anti-inflamatory agents, see: Ross et al. (1995); Scott et al. (1974); Cort et al. (1975); Cohen et al. (1981); Walther et al. (1991); Silver et al. (1992); Netscher & Gautschi (1992); Van Ginkel et al. (1992); Moulin et al. (1998); Vajragupta et al. (2000); Koufaki et al. (2010). For the use of trolox as an intermediate for the synthesis of natural tocols such as vitamin E and α-tocotrienol, see: Cohen et al. (1979); Hyatt & Skelton (1997); Sakito & Suzokamo (1982); Sugai et al. (1991).

Experimental top

The title compound was obtained from RS-trolox in two-step synthesis via acyl chloride (SOCl2, DMF) followed by aminolysis (NH3 in CHCl3). After purification by column-flush chromatography pure crystalline compound was obtained (80% yield); mp 491–493 K; 1H NMR (MeOH-d4): δ 2.65–2.56 (m, 2H), 2.34–2.28 (m, 1H), 2.17 (s, 6H), 2.09 (s, 3H), 1.88–1.81 (m, 1H), 1.50 (s, 3H) p.p.m.; 13 C NMR (MeOH-d4) 178.6, 145.7, 144.3, 123.4, 121.4, 120.8, 117.1, 72.6, 29.4, 23.3, 20.1, 11.3, 10.7, 10.4 p.p.m.; IR (KBr): 3493; 3372; 2927; 1647; 1578 cm-1; ESI – MS: 272 (M+Na+). The crystallization was carried out at room temperature by slow evaporation of acetone solution of 6-hydroxy-2,5,7,8- tetramethylchroman-2-carboxamide.

Refinement top

All hydrogen atoms were constrained to idealized positions with C—H distances fixed at 0.98–0.99 Å and N—H distances fixed at 0.88 Å and Uiso(H) = 1.5Ueq(C) for methyl and hydroxy hydrogen atoms and 1.2Ueq(C) for others.

Computing details top

Data collection: NECAT APS beamline software; cell refinement: HKL-2000 (Otwinowski & Minor, 1997); data reduction: HKL-2000 (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXD (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and pyMOL (DeLano, 2002); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The view of the asymmetric unit of I. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Crystal packing with hydrogen bonds (dashed lines) viewed along the a axis.
rac-6-Hydroxy-2,5,7,8-tetramethylchroman-2-carboxamide top
Crystal data top
C14H19NO3F(000) = 1072
Mr = 249.31Dx = 1.293 Mg m3
Monoclinic, P21/cMelting point: 492 K
Hall symbol: -P 2ybcSynchrotron radiation, λ = 0.59040 Å
a = 9.11 (1) ÅCell parameters from 6360 reflections
b = 17.92 (2) Åθ = 1.4–23.5°
c = 15.95 (1) ŵ = 0.06 mm1
β = 100.43 (1)°T = 100 K
V = 2561 (4) Å3Needle, colourless
Z = 80.2 × 0.05 × 0.04 mm
Data collection top
MAR315 CCD
diffractometer
6360 independent reflections
Radiation source: NECAT 24ID-C synchrotron beamline APS, USA5153 reflections with I > 2σ(I)
Si111 double crystal monochromatorRint = 0.030
ω scansθmax = 23.5°, θmin = 1.4°
Absorption correction: multi-scan
(SCALEPACK; Otwinowski et al., 2003)
h = 012
Tmin = 0.988, Tmax = 0.997k = 024
14016 measured reflectionsl = 2120
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.147H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0846P)2 + 0.4358P]
where P = (Fo2 + 2Fc2)/3
6360 reflections(Δ/σ)max < 0.001
327 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C14H19NO3V = 2561 (4) Å3
Mr = 249.31Z = 8
Monoclinic, P21/cSynchrotron radiation, λ = 0.59040 Å
a = 9.11 (1) ŵ = 0.06 mm1
b = 17.92 (2) ÅT = 100 K
c = 15.95 (1) Å0.2 × 0.05 × 0.04 mm
β = 100.43 (1)°
Data collection top
MAR315 CCD
diffractometer
6360 independent reflections
Absorption correction: multi-scan
(SCALEPACK; Otwinowski et al., 2003)
5153 reflections with I > 2σ(I)
Tmin = 0.988, Tmax = 0.997Rint = 0.030
14016 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.147H-atom parameters constrained
S = 1.08Δρmax = 0.41 e Å3
6360 reflectionsΔρmin = 0.25 e Å3
327 parameters
Special details top

Experimental. The crystal was mounted with vaseline on a pin attached capillary. Upon mounting, the crystal was quenched to 100 K in a nitrogen-gas stream supplied by an Oxford Cryo-Jet. Diffraction data were measured at the station 24-ID—C of the APS synchrotron by rotation method.

Geometry. All e.s.d.'s are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.61019 (10)0.45827 (5)0.16067 (5)0.0245 (2)
C20.47454 (14)0.45990 (7)0.19461 (8)0.0237 (3)
C30.34104 (15)0.47162 (7)0.12365 (8)0.0268 (3)
H3A0.35150.51980.09500.032*
H3B0.24870.47360.14810.032*
C40.32903 (14)0.40842 (7)0.05855 (8)0.0247 (3)
H4A0.28870.36330.08220.030*
H4B0.25870.42310.00630.030*
C50.48962 (14)0.34738 (7)0.03638 (8)0.0231 (3)
C60.62994 (14)0.33351 (7)0.05616 (8)0.0235 (3)
C70.76145 (14)0.36122 (7)0.00604 (8)0.0232 (3)
C80.75096 (14)0.40469 (7)0.06572 (8)0.0224 (2)
C90.61017 (14)0.41713 (6)0.08636 (7)0.0215 (2)
C100.47925 (14)0.39050 (7)0.03598 (8)0.0217 (2)
C110.45591 (14)0.38690 (7)0.24307 (8)0.0233 (3)
O120.33708 (11)0.37440 (5)0.26791 (6)0.0303 (2)
N130.57098 (13)0.34076 (6)0.25872 (7)0.0271 (2)
H13A0.56470.29950.28770.033*
H13B0.65380.35140.24010.033*
C140.49388 (17)0.52489 (7)0.25803 (9)0.0312 (3)
H14A0.40950.52590.28840.047*
H14B0.49750.57200.22720.047*
H14C0.58700.51840.29910.047*
C150.35081 (15)0.31770 (8)0.09261 (9)0.0299 (3)
H15A0.30000.35840.12740.045*
H15B0.28380.29680.05700.045*
H15C0.37840.27870.12990.045*
O160.63187 (11)0.29210 (6)0.12892 (6)0.0325 (2)
H16A0.71830.29250.14040.049*
C170.91159 (15)0.34490 (8)0.02946 (9)0.0304 (3)
H17A0.91230.29380.05130.046*
H17B0.98980.35020.02120.046*
H17C0.93010.38010.07340.046*
C180.88847 (15)0.43836 (8)0.12025 (9)0.0302 (3)
H18A0.85810.47290.16150.045*
H18B0.94620.46540.08380.045*
H18C0.95000.39850.15070.045*
O210.09463 (10)0.20376 (5)0.15518 (6)0.0261 (2)
C220.03768 (14)0.18816 (7)0.18944 (8)0.0246 (3)
C230.17485 (14)0.19491 (8)0.11915 (9)0.0277 (3)
H23A0.18170.24640.09630.033*
H23B0.26580.18490.14310.033*
C240.16637 (14)0.13979 (8)0.04698 (9)0.0278 (3)
H24A0.20010.09010.06290.033*
H24B0.23500.15630.00510.033*
C250.01411 (14)0.09450 (7)0.04523 (8)0.0242 (3)
C260.16025 (14)0.08797 (7)0.06026 (8)0.0244 (3)
C270.28233 (14)0.11907 (7)0.00506 (8)0.0236 (3)
C280.25737 (14)0.15918 (7)0.06677 (8)0.0229 (3)
C290.11127 (14)0.16416 (7)0.08231 (8)0.0228 (3)
C300.01047 (14)0.13307 (7)0.02768 (8)0.0235 (3)
C310.04526 (15)0.24820 (7)0.25651 (8)0.0270 (3)
O320.15782 (11)0.25283 (6)0.28939 (6)0.0353 (2)
N330.07066 (14)0.29294 (7)0.27773 (8)0.0360 (3)
H33A0.06960.32770.31660.043*
H33B0.14900.28800.25300.043*
C340.02493 (16)0.11133 (7)0.23290 (9)0.0300 (3)
H34A0.10730.10490.26420.045*
H34B0.07040.10790.27270.045*
H34C0.02980.07220.18960.045*
C350.11451 (15)0.06001 (8)0.10581 (8)0.0291 (3)
H35A0.08270.04800.15970.044*
H35B0.19790.09540.11640.044*
H35C0.14650.01430.08060.044*
O360.17961 (12)0.04723 (6)0.13154 (6)0.0315 (2)
H36A0.24160.06910.15610.047*
C370.43909 (15)0.10894 (8)0.02105 (9)0.0294 (3)
H37A0.46980.15370.04860.044*
H37B0.44260.06570.05820.044*
H37C0.50690.10080.03330.044*
C380.38410 (14)0.19683 (7)0.12563 (8)0.0268 (3)
H38A0.43580.23090.09270.040*
H38B0.45430.15900.15320.040*
H38C0.34450.22500.16920.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0261 (5)0.0241 (4)0.0258 (4)0.0053 (3)0.0114 (4)0.0031 (3)
C20.0277 (6)0.0182 (5)0.0282 (6)0.0000 (5)0.0130 (5)0.0012 (4)
C30.0281 (6)0.0216 (6)0.0326 (7)0.0044 (5)0.0104 (5)0.0027 (5)
C40.0230 (6)0.0242 (6)0.0285 (6)0.0001 (5)0.0091 (5)0.0002 (5)
C50.0243 (6)0.0203 (6)0.0262 (6)0.0031 (5)0.0083 (5)0.0012 (5)
C60.0266 (6)0.0203 (6)0.0260 (6)0.0020 (5)0.0112 (5)0.0013 (4)
C70.0231 (6)0.0214 (6)0.0273 (6)0.0016 (5)0.0104 (5)0.0033 (5)
C80.0231 (6)0.0203 (6)0.0255 (6)0.0023 (5)0.0086 (5)0.0040 (4)
C90.0256 (6)0.0178 (5)0.0232 (6)0.0030 (4)0.0099 (5)0.0010 (4)
C100.0225 (6)0.0185 (5)0.0261 (6)0.0015 (4)0.0097 (5)0.0025 (4)
C110.0280 (6)0.0214 (6)0.0225 (6)0.0009 (5)0.0103 (5)0.0023 (4)
O120.0315 (5)0.0293 (5)0.0349 (5)0.0014 (4)0.0189 (4)0.0001 (4)
N130.0286 (6)0.0229 (5)0.0320 (6)0.0012 (4)0.0117 (5)0.0041 (4)
C140.0400 (8)0.0214 (6)0.0349 (7)0.0012 (5)0.0140 (6)0.0062 (5)
C150.0259 (7)0.0327 (7)0.0323 (7)0.0054 (5)0.0087 (5)0.0049 (5)
O160.0290 (5)0.0368 (5)0.0349 (5)0.0045 (4)0.0144 (4)0.0126 (4)
C170.0240 (6)0.0363 (7)0.0340 (7)0.0015 (5)0.0136 (5)0.0005 (6)
C180.0252 (7)0.0353 (7)0.0309 (7)0.0073 (5)0.0073 (5)0.0018 (5)
O210.0220 (4)0.0269 (5)0.0332 (5)0.0036 (3)0.0152 (4)0.0040 (4)
C220.0223 (6)0.0229 (6)0.0322 (6)0.0006 (5)0.0144 (5)0.0041 (5)
C230.0209 (6)0.0299 (7)0.0353 (7)0.0029 (5)0.0131 (5)0.0063 (5)
C240.0193 (6)0.0312 (7)0.0342 (7)0.0012 (5)0.0086 (5)0.0048 (5)
C250.0245 (6)0.0224 (6)0.0269 (6)0.0027 (5)0.0078 (5)0.0066 (5)
C260.0284 (6)0.0222 (6)0.0250 (6)0.0023 (5)0.0113 (5)0.0034 (5)
C270.0226 (6)0.0225 (6)0.0285 (6)0.0011 (5)0.0120 (5)0.0043 (5)
C280.0214 (6)0.0208 (6)0.0286 (6)0.0011 (4)0.0102 (5)0.0036 (5)
C290.0226 (6)0.0203 (6)0.0279 (6)0.0001 (4)0.0112 (5)0.0023 (4)
C300.0200 (6)0.0226 (6)0.0298 (6)0.0006 (4)0.0098 (5)0.0056 (5)
C310.0278 (7)0.0237 (6)0.0330 (7)0.0047 (5)0.0146 (5)0.0040 (5)
O320.0342 (6)0.0344 (5)0.0434 (6)0.0027 (4)0.0238 (5)0.0012 (4)
N330.0321 (6)0.0329 (6)0.0473 (7)0.0029 (5)0.0189 (5)0.0144 (5)
C340.0332 (7)0.0234 (6)0.0342 (7)0.0021 (5)0.0082 (6)0.0041 (5)
C350.0282 (7)0.0302 (7)0.0292 (6)0.0047 (5)0.0056 (5)0.0049 (5)
O360.0366 (6)0.0325 (5)0.0296 (5)0.0084 (4)0.0173 (4)0.0026 (4)
C370.0246 (6)0.0331 (7)0.0339 (7)0.0005 (5)0.0143 (5)0.0004 (5)
C380.0224 (6)0.0274 (6)0.0326 (7)0.0026 (5)0.0104 (5)0.0008 (5)
Geometric parameters (Å, º) top
O1—C91.3958 (18)O21—C291.3933 (18)
O1—C21.4364 (19)O21—C221.4381 (18)
C2—C31.518 (2)C22—C231.525 (2)
C2—C141.532 (2)C22—C311.527 (2)
C2—C111.544 (2)C22—C341.536 (2)
C3—C41.527 (2)C23—C241.529 (2)
C3—H3A0.9900C23—H23A0.9900
C3—H3B0.9900C23—H23B0.9900
C4—C101.511 (2)C24—C301.511 (2)
C4—H4A0.9900C24—H24A0.9900
C4—H4B0.9900C24—H24B0.9900
C5—C61.393 (2)C25—C261.400 (2)
C5—C101.406 (2)C25—C301.405 (2)
C5—C151.509 (2)C25—C351.510 (2)
C6—O161.3803 (18)C26—O361.3889 (18)
C6—C71.405 (2)C26—C271.403 (2)
C7—C81.402 (2)C27—C281.406 (2)
C7—C171.510 (2)C27—C371.506 (2)
C8—C91.399 (2)C28—C291.400 (2)
C8—C181.515 (2)C28—C381.509 (2)
C9—C101.396 (2)C29—C301.396 (2)
C11—O121.2387 (18)C31—O321.2362 (18)
C11—N131.3230 (19)C31—N331.320 (2)
N13—H13A0.8800N33—H33A0.8800
N13—H13B0.8800N33—H33B0.8800
C14—H14A0.9800C34—H34A0.9800
C14—H14B0.9800C34—H34B0.9800
C14—H14C0.9800C34—H34C0.9800
C15—H15A0.9800C35—H35A0.9800
C15—H15B0.9800C35—H35B0.9800
C15—H15C0.9800C35—H35C0.9800
O16—H16A0.8400O36—H36A0.8400
C17—H17A0.9800C37—H37A0.9800
C17—H17B0.9800C37—H37B0.9800
C17—H17C0.9800C37—H37C0.9800
C18—H18A0.9800C38—H38A0.9800
C18—H18B0.9800C38—H38B0.9800
C18—H18C0.9800C38—H38C0.9800
C9—O1—C2117.57 (9)C29—O21—C22116.31 (10)
O1—C2—C3110.46 (12)O21—C22—C23109.68 (12)
O1—C2—C14105.09 (11)O21—C22—C31106.05 (10)
C3—C2—C14111.59 (11)C23—C22—C31108.91 (11)
O1—C2—C11110.57 (10)O21—C22—C34110.22 (10)
C3—C2—C11110.15 (11)C23—C22—C34112.81 (11)
C14—C2—C11108.87 (12)C31—C22—C34108.94 (12)
C2—C3—C4110.69 (11)C22—C23—C24110.84 (11)
C2—C3—H3A109.5C22—C23—H23A109.5
C4—C3—H3A109.5C24—C23—H23A109.5
C2—C3—H3B109.5C22—C23—H23B109.5
C4—C3—H3B109.5C24—C23—H23B109.5
H3A—C3—H3B108.1H23A—C23—H23B108.1
C10—C4—C3111.29 (11)C30—C24—C23112.47 (11)
C10—C4—H4A109.4C30—C24—H24A109.1
C3—C4—H4A109.4C23—C24—H24A109.1
C10—C4—H4B109.4C30—C24—H24B109.1
C3—C4—H4B109.4C23—C24—H24B109.1
H4A—C4—H4B108.0H24A—C24—H24B107.8
C6—C5—C10118.98 (11)C26—C25—C30118.81 (11)
C6—C5—C15120.47 (12)C26—C25—C35120.54 (13)
C10—C5—C15120.54 (12)C30—C25—C35120.64 (12)
O16—C6—C5115.99 (11)O36—C26—C25116.73 (11)
O16—C6—C7121.94 (12)O36—C26—C27121.25 (12)
C5—C6—C7122.06 (13)C25—C26—C27121.99 (13)
C8—C7—C6118.93 (12)C28—C27—C26119.20 (12)
C8—C7—C17120.54 (11)C28—C27—C37119.85 (11)
C6—C7—C17120.53 (13)C26—C27—C37120.93 (13)
C9—C8—C7118.79 (11)C29—C28—C27118.43 (11)
C9—C8—C18119.98 (12)C29—C28—C38120.41 (12)
C7—C8—C18121.23 (12)C27—C28—C38121.16 (12)
O1—C9—C8115.15 (11)O21—C29—C30121.98 (12)
O1—C9—C10122.55 (11)O21—C29—C28115.50 (11)
C8—C9—C10122.30 (12)C30—C29—C28122.50 (13)
C9—C10—C5118.88 (12)C29—C30—C25119.02 (12)
C9—C10—C4120.42 (12)C29—C30—C24120.70 (12)
C5—C10—C4120.70 (11)C25—C30—C24120.28 (11)
O12—C11—N13122.36 (13)O32—C31—N33122.47 (14)
O12—C11—C2119.66 (11)O32—C31—C22119.38 (12)
N13—C11—C2117.95 (12)N33—C31—C22118.15 (12)
C11—N13—H13A120.0C31—N33—H33A120.0
C11—N13—H13B120.0C31—N33—H33B120.0
H13A—N13—H13B120.0H33A—N33—H33B120.0
C2—C14—H14A109.5C22—C34—H34A109.5
C2—C14—H14B109.5C22—C34—H34B109.5
H14A—C14—H14B109.5H34A—C34—H34B109.5
C2—C14—H14C109.5C22—C34—H34C109.5
H14A—C14—H14C109.5H34A—C34—H34C109.5
H14B—C14—H14C109.5H34B—C34—H34C109.5
C5—C15—H15A109.5C25—C35—H35A109.5
C5—C15—H15B109.5C25—C35—H35B109.5
H15A—C15—H15B109.5H35A—C35—H35B109.5
C5—C15—H15C109.5C25—C35—H35C109.5
H15A—C15—H15C109.5H35A—C35—H35C109.5
H15B—C15—H15C109.5H35B—C35—H35C109.5
C6—O16—H16A109.5C26—O36—H36A109.5
C7—C17—H17A109.5C27—C37—H37A109.5
C7—C17—H17B109.5C27—C37—H37B109.5
H17A—C17—H17B109.5H37A—C37—H37B109.5
C7—C17—H17C109.5C27—C37—H37C109.5
H17A—C17—H17C109.5H37A—C37—H37C109.5
H17B—C17—H17C109.5H37B—C37—H37C109.5
C8—C18—H18A109.5C28—C38—H38A109.5
C8—C18—H18B109.5C28—C38—H38B109.5
H18A—C18—H18B109.5H38A—C38—H38B109.5
C8—C18—H18C109.5C28—C38—H38C109.5
H18A—C18—H18C109.5H38A—C38—H38C109.5
H18B—C18—H18C109.5H38B—C38—H38C109.5
C9—O1—C2—C343.88 (14)C29—O21—C22—C2351.64 (14)
C9—O1—C2—C14164.37 (10)C29—O21—C22—C31169.10 (10)
C9—O1—C2—C1178.31 (14)C29—O21—C22—C3473.14 (14)
O1—C2—C3—C460.30 (13)O21—C22—C23—C2459.96 (14)
C14—C2—C3—C4176.82 (11)C31—C22—C23—C24175.62 (10)
C11—C2—C3—C462.14 (14)C34—C22—C23—C2463.30 (15)
C2—C3—C4—C1044.86 (15)C22—C23—C24—C3039.37 (15)
C10—C5—C6—O16178.75 (10)C30—C25—C26—O36177.90 (11)
C15—C5—C6—O160.21 (17)C35—C25—C26—O361.46 (17)
C10—C5—C6—C70.03 (18)C30—C25—C26—C270.36 (18)
C15—C5—C6—C7178.99 (11)C35—C25—C26—C27179.72 (11)
O16—C6—C7—C8178.19 (11)O36—C26—C27—C28179.33 (11)
C5—C6—C7—C80.53 (18)C25—C26—C27—C281.15 (18)
O16—C6—C7—C171.37 (18)O36—C26—C27—C370.33 (18)
C5—C6—C7—C17179.92 (12)C25—C26—C27—C37177.85 (12)
C6—C7—C8—C91.86 (17)C26—C27—C28—C292.41 (17)
C17—C7—C8—C9178.58 (11)C37—C27—C28—C29176.60 (11)
C6—C7—C8—C18177.76 (11)C26—C27—C28—C38176.99 (11)
C17—C7—C8—C181.80 (18)C37—C27—C28—C384.00 (18)
C2—O1—C9—C8167.53 (10)C22—O21—C29—C3022.81 (16)
C2—O1—C9—C1012.70 (16)C22—O21—C29—C28158.56 (11)
C7—C8—C9—O1177.40 (10)C27—C28—C29—O21179.10 (10)
C18—C8—C9—O12.97 (16)C38—C28—C29—O211.49 (17)
C7—C8—C9—C102.83 (18)C27—C28—C29—C302.28 (18)
C18—C8—C9—C10176.80 (11)C38—C28—C29—C30177.13 (11)
O1—C9—C10—C5177.91 (10)O21—C29—C30—C25179.31 (11)
C8—C9—C10—C52.34 (18)C28—C29—C30—C250.78 (18)
O1—C9—C10—C42.66 (17)O21—C29—C30—C241.47 (18)
C8—C9—C10—C4177.10 (11)C28—C29—C30—C24179.99 (11)
C6—C5—C10—C90.90 (17)C26—C25—C30—C290.56 (18)
C15—C5—C10—C9179.86 (11)C35—C25—C30—C29179.91 (11)
C6—C5—C10—C4178.53 (11)C26—C25—C30—C24178.66 (11)
C15—C5—C10—C40.43 (18)C35—C25—C30—C240.69 (18)
C3—C4—C10—C914.64 (16)C23—C24—C30—C2911.06 (17)
C3—C4—C10—C5164.78 (11)C23—C24—C30—C25169.73 (11)
O1—C2—C11—O12171.35 (11)O21—C22—C31—O32171.96 (11)
C3—C2—C11—O1248.97 (16)C23—C22—C31—O3253.99 (16)
C14—C2—C11—O1273.68 (15)C34—C22—C31—O3269.42 (15)
O1—C2—C11—N1310.66 (15)O21—C22—C31—N338.72 (16)
C3—C2—C11—N13133.04 (13)C23—C22—C31—N33126.69 (14)
C14—C2—C11—N13104.31 (13)C34—C22—C31—N33109.89 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N13—H13A···O16i0.882.132.971 (2)160
N13—H13B···O32ii0.882.492.896 (3)109
O16—H16A···O32iii0.841.912.631 (2)143
N33—H33B···O120.882.292.861 (3)123
N33—H33A···O36i0.882.533.281 (3)143
O36—H36A···O12iv0.841.912.727 (2)165
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y, z; (iii) x+1, y+1/2, z1/2; (iv) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC14H19NO3
Mr249.31
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)9.11 (1), 17.92 (2), 15.95 (1)
β (°) 100.43 (1)
V3)2561 (4)
Z8
Radiation typeSynchrotron, λ = 0.59040 Å
µ (mm1)0.06
Crystal size (mm)0.2 × 0.05 × 0.04
Data collection
DiffractometerMAR315 CCD
diffractometer
Absorption correctionMulti-scan
(SCALEPACK; Otwinowski et al., 2003)
Tmin, Tmax0.988, 0.997
No. of measured, independent and
observed [I > 2σ(I)] reflections
14016, 6360, 5153
Rint0.030
(sin θ/λ)max1)0.676
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.147, 1.08
No. of reflections6360
No. of parameters327
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.25

Computer programs: NECAT APS beamline software, HKL-2000 (Otwinowski & Minor, 1997), SHELXD (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and pyMOL (DeLano, 2002).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N13—H13A···O16i0.882.132.971 (2)160
N13—H13B···O32ii0.882.492.896 (3)109
O16—H16A···O32iii0.841.912.631 (2)143
N33—H33B···O120.882.292.861 (3)123
N33—H33A···O36i0.882.533.281 (3)143
O36—H36A···O12iv0.841.912.727 (2)165
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y, z; (iii) x+1, y+1/2, z1/2; (iv) x, y+1/2, z1/2.
 

Acknowledgements

Financial support from the Polish Ministry of Science and Higher Education (grant No. N N204 177639) is gratefully acknowledged. This work was in part supported by the Intra­mural Research Program of the NIH, National Cancer Institute, Center for Cancer Research. X-ray data were collected at the NECAT 24ID-C beamline of the Advanced Photon Source, Argonne National Laboratory. Use of the APS was supported by the US Department of Energy under contract No. W-31–109-Eng-38.

References

First citationCohen, N., Lopresti, R. & Neukom, C. (1981). J. Org. Chem. 46, 2445–2450.  CrossRef CAS Web of Science Google Scholar
First citationCohen, N., Lopresti, R. J. & Sausy, G. (1979). J. Am. Chem. Soc. 101, 6710–6716.  CrossRef CAS Web of Science Google Scholar
First citationCort, W. M., Scott, J. W., Araujo, M., Mergens, W. J., Cannalonga, M. A., Osadca, M., Harley, H. & Pool, W. R. (1975). J. Am. Oil Chem. Soc. 521, 174–178.  CrossRef Web of Science Google Scholar
First citationDeLano, W. L. (2002). The pyMOL Molecular Graphics System. DeLano Scientific, San Carlos, CA, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHyatt, J. A. & Skelton, C. (1997). Tetrahedron Asymmetry, 8, 523–526.  CrossRef CAS Web of Science Google Scholar
First citationKoufaki, M., Theodorou, E., Alexi, X. & Alexis, M. N. (2010). Bioorg. Med. Chem. 18, 3898–3909.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMoulin, C., Duflos, M., Le Baut, G., Grimaut, N., Renard, P. & Caignard, D.-H. (1998). Eur. J. Med. Chem. 33, 321–329.  Web of Science CrossRef CAS Google Scholar
First citationNetscher, T. & Gautschi, I. (1992). Liebigs Ann. Chem. pp. 543–546.  CrossRef Google Scholar
First citationOtwinowski, Z., Borek, D., Majewski, W. & Minor, W. (2003). Acta Cryst. A59, 228–234.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationRoss, L., Barclay, C., Artz, J. D. & Mowat, J. J. (1995). Biochim. Biophys. Acta, 1237, 77–85.  CrossRef PubMed Web of Science Google Scholar
First citationSakito, Y. & Suzokamo, G. (1982). Tetrahedron Lett. 23, 4953–4954.  CrossRef CAS Web of Science Google Scholar
First citationScott, J. W., Cort, W. M., Harley, H., Parish, D. R. & Saucy, G. (1974). J. Am. Oil Chem. Soc. 51, 200–203.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSilver, P. J., Gordon, R. J., Horan, P. J., Bushover, C. R., Gorzyca, W. P., Etzler, J. R. & Buchholz, R. A. (1992). Drug. Develop. Res. 27, 45–52.  CrossRef CAS Web of Science Google Scholar
First citationSugai, T., Watanabe, N. & Ohta, H. (1991). Tetrahedron Asymmetry, 2, 371–376.  CrossRef CAS Web of Science Google Scholar
First citationVajragupta, O., Toasaksiri, S., Boonyatat, C., Wongkrajang, Y., Peungwicha, P., Watanabe, H. & Boonchoong, P. (2000). Free Rad. Res. 32, 145–155.  Web of Science CrossRef CAS Google Scholar
First citationVan Ginkel, G., Muller, J. M., Siemens, F., van't Veld, A. A., Kornstanje, L. J. & van Zandvoort, M. A. M. (1992). J. Chem. Soc. Faraday Trans. 88, 1901–1912.  CrossRef Google Scholar
First citationWalther, W., Vetter, W., Vecchi, M., Schneider, H., Muller, R. K. & Netscher, T. (1991). Chimia, 45, 121–123.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 2| February 2011| Pages o503-o504
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds