organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,4,6-Tri­fluoro­benzoic acid

aNelson Mandela Metropolitan University, Summerstrand Campus, Department of Chemistry, University Way, Summerstrand, PO Box 77000, Port Elizabeth 6031, South Africa
*Correspondence e-mail: richard.betz@webmail.co.za

(Received 19 January 2011; accepted 26 January 2011; online 29 January 2011)

In the title compound, C7H3F3O2, the C—C—C angles in the ring are greater than 120° for F-bonded C atoms [123.69 (13), 123.88 (12) and 123.66 (12)°]. In the crystal, inter­molecular O—H⋯O hydrogen bonds between carboxyl groups give rise to the formation of a centrosymmetric dimer, while dispersive F⋯O contacts [2.8849 (16) Å] connect the dimers into infinite strands along the a axis.

Related literature

For the crystal structure of benzoic acid (applying neutron diffraction), see: Wilson et al. (1996[Wilson, C. C., Shankland, N. & Florence, A. J. (1996). J. Chem. Soc. Faraday Trans. 92, 5051-5057.]) and of ortho-fluoro­benzoic acid, see: Krausse & Dunken (1966[Krausse, J. & Dunken, H. (1966). Acta Cryst. 20, 67-73.]). For the graph-set analysis of hydrogen bonds, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]); Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C7H3F3O2

  • Mr = 176.09

  • Monoclinic, P 21 /c

  • a = 7.2769 (3) Å

  • b = 13.7998 (6) Å

  • c = 7.3097 (3) Å

  • β = 115.041 (2)°

  • V = 665.04 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.18 mm−1

  • T = 200 K

  • 0.59 × 0.29 × 0.18 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • 6435 measured reflections

  • 1643 independent reflections

  • 1394 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.106

  • S = 1.05

  • 1643 reflections

  • 111 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.84 1.83 2.6560 (14) 169
Symmetry code: (i) -x+1, -y, -z+1.

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Benzoic acid has found widespread use as a ligand in coordination chemistry for a variety of transition metals and elements from the s- and p-block of the periodic system of the elements. It can act as a neutral or – upon deprotonation – an anionic ligand and serve as mono- or bidentate ligand. By varying the substituents on the phenyl moiety, the acidity of the carboxyl group can be fine-tuned. At the beginning of a comprehensive study aimed at rationalizing the coordination behaviour of various benzoic acid derivatives towards a number of transition metals in dependence of the pH value of the reaction batches it seemed interesting to determine the crystal structure of the title compound to enable comparative studies.

The C–C–C angles in the phenyl ring are found to be invariably larger than 120° for C-atoms bonded to F-atoms while the remaining C–C–C angles are measured at values smaller than 120°. The biggest deviation is found for the C-atom bearing the carboxyl group where a value of only about 115° is detected. The least-squares plane defined by the atoms of the carboxyl group encloses an angle of 38.17 (7)° with the plane of the aromatic system (Fig. 1).

In the crystal structure, intermolecular hydrogen bonds connect two molecules to centrosymmtric dimeric units. These dimers are joined by dispersive F···O contacts to infinite strands along the crystallographic a axis. In terms of graph-set analysis, the unitary descriptor for the hydrogen bonds is R22(8) while the F···O contacts are described by a R22(10) descriptor on the unitary level (Fig. 2).

The aromatic rings of the title compound show π-stacking with the COOH group rotated by about 90° with respect to the carboxyl groups of two neighbouring molecules (Fig. 3). The distance between two centers of gravity was determined to be 3.7501 (8) Å, the distance between the perpendicularily- projected centers of gravity of two neighbouring aromatic moieties with respect to the carbocycles was found to be 3.5507 (5) Å and 3.4651 (5) Å, respectively. The molecular packing of the compound is shown in Figure 4.

Related literature top

For the crystal structure of benzoic acid (applying neutron diffraction), see: Wilson et al. (1996). For the crystal structure of ortho-fluorobenzoic acid, see: Krausse & Dunken (1966). For the graph-set analysis of hydrogen bonds, see: Etter et al. (1990); Bernstein et al. (1995).

Experimental top

The compound was obtained commercially from Fluorochem. Crystals suitable for X-ray diffraction were obtained upon slow evaporation of an aqueous solution of the compound at room temperature.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C). The H atom of the carboxylic acid group was allowed to rotate with a fixed angle around the C—O bond to best fit the experimental electron density (HFIX 147 in the SHELX program suite (Sheldrick, 2008)).

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and anisotropic displacement ellipsoids (drawn at the 50% probability level).
[Figure 2] Fig. 2. Hydrogen bonds (blue) and intermolecular F···O contacts (yellow), viewed along [0 0 1]. Symmetry operators: i 1 - x, -y, 1 - z; ii 2 - x, -y, 1 - z.
[Figure 3] Fig. 3. Cg···Cg distance (blue), viewed approximately along [0 1 0]. Symmetry operators: i x, 1/2 - y, -1/2 + z; ii x, 1/2 - y, 1/2 + z.
[Figure 4] Fig. 4. Molecular packing of the title compound, viewed approximately along [-1 0 0] (anisotropic displacement ellipsoids drawn at the 50% probability level).
2,4,6-Trifluorobenzoic acid top
Crystal data top
C7H3F3O2F(000) = 352
Mr = 176.09Dx = 1.759 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4021 reflections
a = 7.2769 (3) Åθ = 3.0–28.3°
b = 13.7998 (6) ŵ = 0.18 mm1
c = 7.3097 (3) ÅT = 200 K
β = 115.041 (2)°Platelet, colourless
V = 665.04 (5) Å30.59 × 0.29 × 0.18 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
1394 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.034
Graphite monochromatorθmax = 28.4°, θmin = 3.0°
ϕ and ω scansh = 99
6435 measured reflectionsk = 1818
1643 independent reflectionsl = 59
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0562P)2 + 0.2027P]
where P = (Fo2 + 2Fc2)/3
1643 reflections(Δ/σ)max < 0.001
111 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C7H3F3O2V = 665.04 (5) Å3
Mr = 176.09Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.2769 (3) ŵ = 0.18 mm1
b = 13.7998 (6) ÅT = 200 K
c = 7.3097 (3) Å0.59 × 0.29 × 0.18 mm
β = 115.041 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
1394 reflections with I > 2σ(I)
6435 measured reflectionsRint = 0.034
1643 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.106H-atom parameters constrained
S = 1.05Δρmax = 0.34 e Å3
1643 reflectionsΔρmin = 0.24 e Å3
111 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F11.07313 (14)0.09987 (7)0.62543 (18)0.0511 (3)
F21.17560 (15)0.43353 (7)0.66407 (16)0.0529 (3)
F30.53852 (12)0.31106 (6)0.54957 (15)0.0430 (3)
O10.52914 (16)0.11612 (8)0.61602 (17)0.0400 (3)
H10.45960.06520.58290.060*
O20.67873 (17)0.04775 (7)0.43736 (17)0.0409 (3)
C10.65846 (19)0.11507 (9)0.5422 (2)0.0286 (3)
C20.79605 (19)0.20020 (9)0.58194 (19)0.0278 (3)
C30.9984 (2)0.18927 (10)0.6151 (2)0.0322 (3)
C41.1295 (2)0.26580 (11)0.6441 (2)0.0364 (3)
H41.26660.25600.66630.044*
C51.0518 (2)0.35709 (10)0.6392 (2)0.0353 (3)
C60.8555 (2)0.37499 (10)0.6104 (2)0.0347 (3)
H60.80720.43900.60950.043 (5)*
C70.7322 (2)0.29517 (9)0.5829 (2)0.0296 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0372 (5)0.0359 (5)0.0811 (7)0.0074 (4)0.0260 (5)0.0007 (5)
F20.0478 (5)0.0459 (6)0.0644 (7)0.0255 (4)0.0233 (5)0.0047 (4)
F30.0322 (4)0.0340 (4)0.0686 (6)0.0011 (3)0.0270 (4)0.0033 (4)
O10.0402 (6)0.0350 (5)0.0549 (7)0.0126 (4)0.0300 (5)0.0086 (5)
O20.0483 (6)0.0286 (5)0.0548 (7)0.0083 (4)0.0306 (5)0.0094 (4)
C10.0281 (6)0.0249 (6)0.0337 (7)0.0024 (5)0.0140 (5)0.0006 (5)
C20.0276 (6)0.0268 (6)0.0309 (6)0.0043 (4)0.0144 (5)0.0015 (5)
C30.0296 (6)0.0312 (6)0.0374 (7)0.0004 (5)0.0157 (5)0.0006 (5)
C40.0263 (6)0.0457 (8)0.0377 (7)0.0069 (5)0.0142 (5)0.0010 (6)
C50.0364 (7)0.0368 (7)0.0333 (7)0.0157 (5)0.0154 (6)0.0035 (5)
C60.0404 (7)0.0266 (6)0.0395 (7)0.0061 (5)0.0193 (6)0.0032 (5)
C70.0279 (6)0.0296 (6)0.0347 (7)0.0024 (5)0.0167 (5)0.0021 (5)
Geometric parameters (Å, º) top
F1—C31.3374 (16)C2—C31.3953 (17)
F2—C51.3486 (15)C3—C41.3782 (19)
F3—C71.3428 (15)C4—C51.375 (2)
O1—C11.2674 (16)C4—H40.9500
O1—H10.8400C5—C61.375 (2)
O2—C11.2523 (16)C6—C71.3806 (18)
C1—C21.4903 (17)C6—H60.9500
C2—C71.3915 (18)
C1—O1—H1109.5C5—C4—H4121.7
O2—C1—O1124.75 (12)C3—C4—H4121.7
O2—C1—C2117.42 (11)F2—C5—C4117.98 (13)
O1—C1—C2117.82 (11)F2—C5—C6118.13 (13)
C7—C2—C3115.53 (11)C4—C5—C6123.88 (12)
C7—C2—C1123.04 (11)C5—C6—C7116.61 (13)
C3—C2—C1121.40 (12)C5—C6—H6121.7
F1—C3—C4117.35 (12)C7—C6—H6121.7
F1—C3—C2118.93 (12)F3—C7—C6117.62 (12)
C4—C3—C2123.69 (13)F3—C7—C2118.69 (11)
C5—C4—C3116.60 (13)C6—C7—C2123.66 (12)
O2—C1—C2—C7140.81 (14)C3—C4—C5—F2179.03 (12)
O1—C1—C2—C738.89 (19)C3—C4—C5—C61.0 (2)
O2—C1—C2—C337.27 (19)F2—C5—C6—C7179.21 (13)
O1—C1—C2—C3143.02 (14)C4—C5—C6—C70.8 (2)
C7—C2—C3—F1177.00 (12)C5—C6—C7—F3178.40 (12)
C1—C2—C3—F14.8 (2)C5—C6—C7—C20.4 (2)
C7—C2—C3—C41.0 (2)C3—C2—C7—F3179.23 (12)
C1—C2—C3—C4177.20 (13)C1—C2—C7—F31.0 (2)
F1—C3—C4—C5178.06 (13)C3—C2—C7—C61.2 (2)
C2—C3—C4—C50.0 (2)C1—C2—C7—C6176.97 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.841.832.6560 (14)169
Symmetry code: (i) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC7H3F3O2
Mr176.09
Crystal system, space groupMonoclinic, P21/c
Temperature (K)200
a, b, c (Å)7.2769 (3), 13.7998 (6), 7.3097 (3)
β (°) 115.041 (2)
V3)665.04 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.18
Crystal size (mm)0.59 × 0.29 × 0.18
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
6435, 1643, 1394
Rint0.034
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.106, 1.05
No. of reflections1643
No. of parameters111
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.24

Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2010), SHELXS97 (Sheldrick, 2008), ORTEPIII (Farrugia, 1997) and Mercury (Macrae et al., 2006), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.841.832.6560 (14)169
Symmetry code: (i) x+1, y, z+1.
 

Acknowledgements

The authors thank Mr John Robbins for helpful discussions.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKrausse, J. & Dunken, H. (1966). Acta Cryst. 20, 67–73.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWilson, C. C., Shankland, N. & Florence, A. J. (1996). J. Chem. Soc. Faraday Trans. 92, 5051–5057.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds