metal-organic compounds
Diaquabis[5-(1-oxidopyridin-1-ium-2-yl)-1,2,3,4-tetrazolido]manganese(II) dihydrate
aSchool of Chemistry and Chemical Engineering, Xuzhou Normal University, Xuzhou 221116 Jiangsu, People's Republic of China
*Correspondence e-mail: gaofeng_xz2002@163.com
In the title compound, [Mn(C6H4N5O)2(H2O)2]·2H2O, the MnII ion is situated on an inversion centre and is coordinated by the O and N atoms of two bis-chelating 5-(2-pyridyl-1-oxide)tetrazolate ligands and two O atoms of two water molecules in a distorted octahedral geometry. All the water H atoms are involved in O—H⋯N and O—H⋯O hydrogen bonds with uncoordinated water O atoms and tetrazole N atoms, which link the molecules into a three-dimensional network.
Related literature
For backgroud to tetrazolate derivatives in coordination chemistry, see: Jiang et al. (2007); Song et al. (2009); Zhang (2009). For related structures, see: Facchetti et al. (2004); Lin et al. (2005); Vrbova et al. (2000)
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 2000); cell SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536811001620/lx2180sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811001620/lx2180Isup2.hkl
A solution of 5-(2-pyridyl-1-oxide)tetrazole (32.6 mg, 0.2 mmol) and K2CO3 (13.8 mg, 0.1 mmol) in H2O (10 ml) was dropped slowly into a solution of Mn(ClO4).6H2O (36.2 mg, 0.1 mmol) dissolved in methanol (10 ml). The resulting brown suspension solution was stirred for 24 h at room temperature and filtered. Yellow crystals were separated from filtrate after about one month and collected for X-ray analysis (m.p. >573 K).
H atoms were placed in calculated positions, with C–H = 0.93Å and O–H = 0.82-0.88 Å, and included in the final cycles of
using a riding model, with Uiso(H) = 1.2Ueq(parent atom).Data collection: SMART (Bruker, 2000); cell
SAINT (Bruker, 2000); data reduction: SAINT (Sheldrick, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Mn(C6H4N5O)2(H2O)2]·2H2O | F(000) = 462 |
Mr = 451.29 | Dx = 1.676 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 7005 reflections |
a = 6.4808 (13) Å | θ = 3.1–27.6° |
b = 12.034 (2) Å | µ = 0.80 mm−1 |
c = 12.787 (4) Å | T = 293 K |
β = 116.24 (2)° | Block, yellow |
V = 894.5 (4) Å3 | 0.10 × 0.10 × 0.08 mm |
Z = 2 |
Bruker SMART CCD area-detector diffractometer | 1579 independent reflections |
Radiation source: fine-focus sealed tube | 1102 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.115 |
Detector resolution: 10.0 pixels mm-1 | θmax = 25.0°, θmin = 3.4° |
ϕ and ω scans | h = −7→7 |
Absorption correction: multi-scan (SADABS; Bruker, 2000) | k = −14→14 |
Tmin = 0.925, Tmax = 0.939 | l = −15→15 |
7432 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.078 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.133 | H-atom parameters constrained |
S = 1.14 | w = 1/[σ2(Fo2) + (0.0354P)2 + 1.2794P] where P = (Fo2 + 2Fc2)/3 |
1579 reflections | (Δ/σ)max < 0.001 |
133 parameters | Δρmax = 0.39 e Å−3 |
0 restraints | Δρmin = −0.38 e Å−3 |
[Mn(C6H4N5O)2(H2O)2]·2H2O | V = 894.5 (4) Å3 |
Mr = 451.29 | Z = 2 |
Monoclinic, P21/c | Mo Kα radiation |
a = 6.4808 (13) Å | µ = 0.80 mm−1 |
b = 12.034 (2) Å | T = 293 K |
c = 12.787 (4) Å | 0.10 × 0.10 × 0.08 mm |
β = 116.24 (2)° |
Bruker SMART CCD area-detector diffractometer | 1579 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2000) | 1102 reflections with I > 2σ(I) |
Tmin = 0.925, Tmax = 0.939 | Rint = 0.115 |
7432 measured reflections |
R[F2 > 2σ(F2)] = 0.078 | 0 restraints |
wR(F2) = 0.133 | H-atom parameters constrained |
S = 1.14 | Δρmax = 0.39 e Å−3 |
1579 reflections | Δρmin = −0.38 e Å−3 |
133 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Mn1 | 0.5000 | 0.5000 | 0.5000 | 0.0282 (3) | |
C1 | 0.4458 (9) | 0.2469 (4) | 0.4227 (4) | 0.0260 (12) | |
C2 | 0.3159 (8) | 0.2280 (4) | 0.4903 (4) | 0.0276 (12) | |
C3 | 0.2946 (10) | 0.1223 (5) | 0.5282 (5) | 0.0406 (15) | |
H3 | 0.3648 | 0.0631 | 0.5099 | 0.049* | |
C4 | 0.1752 (11) | 0.1017 (6) | 0.5912 (5) | 0.0531 (18) | |
H4 | 0.1668 | 0.0303 | 0.6168 | 0.064* | |
C5 | 0.0688 (10) | 0.1883 (6) | 0.6155 (5) | 0.0508 (17) | |
H2 | −0.0165 | 0.1759 | 0.6568 | 0.061* | |
C6 | 0.0860 (9) | 0.2922 (5) | 0.5800 (5) | 0.0407 (15) | |
H1 | 0.0140 | 0.3510 | 0.5979 | 0.049* | |
N1 | 0.5349 (7) | 0.3443 (3) | 0.4111 (3) | 0.0289 (10) | |
N2 | 0.6423 (7) | 0.3211 (4) | 0.3443 (4) | 0.0338 (11) | |
N3 | 0.6179 (8) | 0.2138 (4) | 0.3188 (4) | 0.0368 (12) | |
N4 | 0.4943 (7) | 0.1654 (4) | 0.3670 (4) | 0.0346 (11) | |
N5 | 0.2085 (7) | 0.3114 (4) | 0.5179 (4) | 0.0344 (11) | |
O1 | 0.2069 (6) | 0.4131 (3) | 0.4819 (4) | 0.0491 (11) | |
O2 | 0.2698 (6) | 0.5780 (3) | 0.3322 (3) | 0.0396 (10) | |
H2A | 0.1657 | 0.5331 | 0.2904 | 0.048* | |
H2B | 0.2775 | 0.6340 | 0.2925 | 0.048* | |
O3 | 0.8363 (6) | 0.4852 (3) | 0.2336 (3) | 0.0447 (10) | |
H3A | 0.7951 | 0.4450 | 0.2787 | 0.054* | |
H3B | 0.7388 | 0.5334 | 0.2038 | 0.054* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Mn1 | 0.0324 (7) | 0.0249 (6) | 0.0313 (7) | −0.0007 (6) | 0.0178 (5) | −0.0026 (6) |
C1 | 0.028 (3) | 0.024 (3) | 0.025 (3) | 0.001 (2) | 0.011 (3) | 0.002 (2) |
C2 | 0.027 (3) | 0.027 (3) | 0.027 (3) | 0.003 (2) | 0.011 (3) | −0.005 (2) |
C3 | 0.053 (4) | 0.037 (4) | 0.040 (4) | −0.001 (3) | 0.028 (3) | −0.002 (3) |
C4 | 0.069 (5) | 0.050 (4) | 0.046 (4) | −0.012 (4) | 0.030 (4) | 0.000 (3) |
C5 | 0.046 (4) | 0.069 (5) | 0.038 (4) | −0.010 (4) | 0.019 (3) | 0.005 (4) |
C6 | 0.033 (3) | 0.061 (4) | 0.035 (4) | 0.005 (3) | 0.021 (3) | −0.014 (3) |
N1 | 0.030 (2) | 0.033 (3) | 0.026 (2) | 0.000 (2) | 0.016 (2) | −0.003 (2) |
N2 | 0.032 (3) | 0.041 (3) | 0.032 (3) | −0.001 (2) | 0.018 (2) | −0.003 (2) |
N3 | 0.038 (3) | 0.042 (3) | 0.034 (3) | 0.003 (2) | 0.019 (2) | −0.007 (2) |
N4 | 0.043 (3) | 0.032 (3) | 0.035 (3) | −0.002 (2) | 0.024 (3) | −0.009 (2) |
N5 | 0.035 (3) | 0.029 (3) | 0.034 (3) | 0.004 (2) | 0.011 (2) | 0.002 (2) |
O1 | 0.043 (3) | 0.038 (2) | 0.076 (3) | −0.0019 (19) | 0.035 (2) | 0.000 (2) |
O2 | 0.049 (2) | 0.038 (2) | 0.030 (2) | −0.0062 (19) | 0.016 (2) | 0.0060 (18) |
O3 | 0.046 (2) | 0.040 (2) | 0.055 (3) | 0.005 (2) | 0.028 (2) | 0.012 (2) |
Mn1—O1 | 2.090 (4) | C4—H4 | 0.9300 |
Mn1—O1i | 2.090 (4) | C5—C6 | 1.351 (8) |
Mn1—O2 | 2.209 (3) | C5—H2 | 0.9300 |
Mn1—O2i | 2.209 (3) | C6—N5 | 1.369 (6) |
Mn1—N1 | 2.255 (4) | C6—H1 | 0.9300 |
Mn1—N1i | 2.255 (4) | N1—N2 | 1.348 (5) |
C1—N4 | 1.329 (6) | N2—N3 | 1.324 (6) |
C1—N1 | 1.344 (6) | N3—N4 | 1.341 (6) |
C1—C2 | 1.467 (7) | N5—O1 | 1.306 (5) |
C2—N5 | 1.353 (6) | O2—H2A | 0.8446 |
C2—C3 | 1.390 (7) | O2—H2B | 0.8583 |
C3—C4 | 1.363 (7) | O3—H3A | 0.8803 |
C3—H3 | 0.9300 | O3—H3B | 0.8172 |
C4—C5 | 1.359 (8) | ||
O1—Mn1—O1i | 180.0 | C5—C4—C3 | 118.3 (6) |
O1—Mn1—O2 | 85.11 (15) | C5—C4—H4 | 120.9 |
O1i—Mn1—O2 | 94.89 (14) | C3—C4—H4 | 120.9 |
O1—Mn1—O2i | 94.89 (15) | C6—C5—C4 | 120.4 (6) |
O1i—Mn1—O2i | 85.11 (14) | C6—C5—H2 | 119.8 |
O2—Mn1—O2i | 180.000 (1) | C4—C5—H2 | 119.8 |
O1—Mn1—N1 | 79.47 (14) | C5—C6—N5 | 120.4 (5) |
O1i—Mn1—N1 | 100.53 (14) | C5—C6—H1 | 119.8 |
O2—Mn1—N1 | 92.20 (14) | N5—C6—H1 | 119.8 |
O2i—Mn1—N1 | 87.80 (14) | C1—N1—N2 | 104.9 (4) |
O1—Mn1—N1i | 100.53 (14) | C1—N1—Mn1 | 121.7 (3) |
O1i—Mn1—N1i | 79.47 (14) | N2—N1—Mn1 | 133.4 (3) |
O2—Mn1—N1i | 87.80 (14) | N3—N2—N1 | 108.6 (4) |
O2i—Mn1—N1i | 92.20 (14) | N2—N3—N4 | 109.9 (4) |
N1—Mn1—N1i | 180.000 (1) | C1—N4—N3 | 104.9 (4) |
N4—C1—N1 | 111.7 (4) | O1—N5—C2 | 121.8 (4) |
N4—C1—C2 | 122.4 (4) | O1—N5—C6 | 116.5 (5) |
N1—C1—C2 | 125.9 (4) | C2—N5—C6 | 121.6 (5) |
N5—C2—C3 | 116.4 (5) | N5—O1—Mn1 | 124.4 (3) |
N5—C2—C1 | 122.3 (5) | Mn1—O2—H2A | 110.5 |
C3—C2—C1 | 121.2 (5) | Mn1—O2—H2B | 135.8 |
C4—C3—C2 | 122.8 (6) | H2A—O2—H2B | 111.6 |
C4—C3—H3 | 118.6 | H3A—O3—H3B | 107.3 |
C2—C3—H3 | 118.6 | ||
N4—C1—C2—N5 | −160.1 (5) | O2i—Mn1—N1—N2 | −109.1 (4) |
N1—C1—C2—N5 | 21.7 (8) | C1—N1—N2—N3 | −0.5 (5) |
N4—C1—C2—C3 | 19.1 (8) | Mn1—N1—N2—N3 | 177.0 (3) |
N1—C1—C2—C3 | −159.1 (5) | N1—N2—N3—N4 | 0.4 (5) |
N5—C2—C3—C4 | −0.7 (8) | N1—C1—N4—N3 | −0.1 (6) |
C1—C2—C3—C4 | 180.0 (5) | C2—C1—N4—N3 | −178.5 (4) |
C2—C3—C4—C5 | 1.4 (9) | N2—N3—N4—C1 | −0.2 (5) |
C3—C4—C5—C6 | −1.4 (9) | C3—C2—N5—O1 | −176.5 (5) |
C4—C5—C6—N5 | 0.8 (9) | C1—C2—N5—O1 | 2.8 (7) |
N4—C1—N1—N2 | 0.3 (6) | C3—C2—N5—C6 | 0.1 (7) |
C2—C1—N1—N2 | 178.7 (5) | C1—C2—N5—C6 | 179.3 (5) |
N4—C1—N1—Mn1 | −177.5 (3) | C5—C6—N5—O1 | 176.6 (5) |
C2—C1—N1—Mn1 | 0.9 (7) | C5—C6—N5—C2 | −0.1 (8) |
O1—Mn1—N1—C1 | −27.4 (4) | C2—N5—O1—Mn1 | −50.6 (6) |
O1i—Mn1—N1—C1 | 152.6 (4) | C6—N5—O1—Mn1 | 132.7 (4) |
O2—Mn1—N1—C1 | −112.1 (4) | O2—Mn1—O1—N5 | 146.5 (4) |
O2i—Mn1—N1—C1 | 67.9 (4) | O2i—Mn1—O1—N5 | −33.5 (4) |
O1—Mn1—N1—N2 | 155.5 (4) | N1—Mn1—O1—N5 | 53.3 (4) |
O1i—Mn1—N1—N2 | −24.5 (4) | N1i—Mn1—O1—N5 | −126.7 (4) |
O2—Mn1—N1—N2 | 70.9 (4) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3A···N2 | 0.88 | 2.15 | 3.010 (5) | 164 |
O2—H2A···O3ii | 0.84 | 2.01 | 2.756 (5) | 147 |
O2—H2B···N3iii | 0.86 | 2.06 | 2.858 (5) | 154 |
O3—H3B···N4iii | 0.82 | 2.10 | 2.917 (6) | 176 |
Symmetry codes: (ii) x−1, y, z; (iii) −x+1, y+1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | [Mn(C6H4N5O)2(H2O)2]·2H2O |
Mr | 451.29 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 293 |
a, b, c (Å) | 6.4808 (13), 12.034 (2), 12.787 (4) |
β (°) | 116.24 (2) |
V (Å3) | 894.5 (4) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.80 |
Crystal size (mm) | 0.10 × 0.10 × 0.08 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2000) |
Tmin, Tmax | 0.925, 0.939 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7432, 1579, 1102 |
Rint | 0.115 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.078, 0.133, 1.14 |
No. of reflections | 1579 |
No. of parameters | 133 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.39, −0.38 |
Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SAINT (Sheldrick, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3A···N2 | 0.88 | 2.15 | 3.010 (5) | 164 |
O2—H2A···O3i | 0.84 | 2.01 | 2.756 (5) | 147 |
O2—H2B···N3ii | 0.86 | 2.06 | 2.858 (5) | 154 |
O3—H3B···N4ii | 0.82 | 2.10 | 2.917 (6) | 176 |
Symmetry codes: (i) x−1, y, z; (ii) −x+1, y+1/2, −z+1/2. |
Acknowledgements
This work was supported by the Natural Science Foundation of Xuzhou Normal University (grant No. 09XLA06) and the National Natural Science Foundation of China (grant No. 21071121).
References
Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Facchetti, A., Abbotto, A., Beverina, L., Bradamante, S., Mariani, P., Stern, C. L., Marks, T. J., Vacca, A. & Pagani, G. A. (2004). Chem. Commun. pp. 1770–1771. Web of Science CSD CrossRef Google Scholar
Jiang, T., Zhao, Y.-F. & Zhang, X.-M. (2007). Inorg. Chem. Commun. 10, 1194–1197. Web of Science CSD CrossRef CAS Google Scholar
Lin, P., Clegg, W., Harrington, R. W. & Henderson, R. A. (2005). Dalton Trans. pp. 2388–2394. Web of Science CSD CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Song, W.-C., Li, J.-R., Song, P.-C., Tao, Y., Yu, Q., Tong, X.-L. & Bu, X.-H. (2009). Inorg. Chem. 48, 3792–3799. Web of Science CSD CrossRef PubMed CAS Google Scholar
Vrbova, M., Baran, P., Boca, R., Fuess, H., Svoboda, I., Linert, W., Schubert, U. & Wiede, P. (2000). Polyhedron, 19, 2195–2201. CAS Google Scholar
Zhang, L. (2009). Acta Cryst. E65, m871–m872. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Tetrazole as functional group plays an important role in coordination chemistry, medicinal chemistry and materials science applications (Song et al., 2009; Jiang et al., 2007; Zhang, 2009). It's interesting for the study of tetrazolate complexes to delineate the ways in which tetrazoles bind to metal centres. Here we report the structure of a novel substituted tetrazolato-metal complex, diaquabis(5-(2-pyridyl-1-oxide)tetrazolato)manganese(II) dihydrate.
The crystal structure of the title complex consists of the mononuclear manganese (II) unit [Mn(C6H4N5O)2(H2O)2], and two lattice water molecules (Fig. 1). In the mononuclear unit, manganese(II) ion is in a distorted octahedral environment, being six-coordinated by two N atoms and two O atoms from two bidentate 5-(2-pyridyl-1-oxide)tetrazolato-ligands, and two O atoms of two coordinated water molecules with Mn–O distances from 2.090 (4)Å to 2.209 (3) Å, Mn–N bond length of 2.255 (4)Å and O1–Mn1–N1 angle of 79.47 (14)°, which are comparable with the values observed in other metal-tetrazolate complexes (Vrbova et al., 2000; Lin et al., 2005; Facchetti et al., 2004). The pyridine and tetrazole rings are twisted against each other by 20.466 (190)°. In the crystal structure, all the water H atoms are involved in O–H···N and O–H···O hydrogen bonds with the solvate water O (O3W) and the tetrazole N (N2, N4) atoms. The interactions link the molecules into a three dimensional network (Table 1 and Fig. 2).