metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­aqua­bis­­[5-(1-oxidopyridin-1-ium-2-yl)-1,2,3,4-tetrazolido]manganese(II) di­hydrate

aSchool of Chemistry and Chemical Engineering, Xuzhou Normal University, Xuzhou 221116 Jiangsu, People's Republic of China
*Correspondence e-mail: gaofeng_xz2002@163.com

(Received 14 October 2010; accepted 11 January 2011; online 15 January 2011)

In the title compound, [Mn(C6H4N5O)2(H2O)2]·2H2O, the MnII ion is situated on an inversion centre and is coordinated by the O and N atoms of two bis-chelating 5-(2-pyridyl-1-oxide)tetra­zolate ligands and two O atoms of two water mol­ecules in a distorted octa­hedral geometry. All the water H atoms are involved in O—H⋯N and O—H⋯O hydrogen bonds with uncoordinated water O atoms and tetra­zole N atoms, which link the mol­ecules into a three-dimensional network.

Related literature

For backgroud to tetra­zolate derivatives in coordination chemistry, see: Jiang et al. (2007[Jiang, T., Zhao, Y.-F. & Zhang, X.-M. (2007). Inorg. Chem. Commun. 10, 1194-1197.]); Song et al. (2009[Song, W.-C., Li, J.-R., Song, P.-C., Tao, Y., Yu, Q., Tong, X.-L. & Bu, X.-H. (2009). Inorg. Chem. 48, 3792-3799.]); Zhang (2009)[Zhang, L. (2009). Acta Cryst. E65, m871-m872.]. For related structures, see: Facchetti et al. (2004[Facchetti, A., Abbotto, A., Beverina, L., Bradamante, S., Mariani, P., Stern, C. L., Marks, T. J., Vacca, A. & Pagani, G. A. (2004). Chem. Commun. pp. 1770-1771.]); Lin et al. (2005[Lin, P., Clegg, W., Harrington, R. W. & Henderson, R. A. (2005). Dalton Trans. pp. 2388-2394.]); Vrbova et al. (2000[Vrbova, M., Baran, P., Boca, R., Fuess, H., Svoboda, I., Linert, W., Schubert, U. & Wiede, P. (2000). Polyhedron, 19, 2195-2201.])

[Scheme 1]

Experimental

Crystal data
  • [Mn(C6H4N5O)2(H2O)2]·2H2O

  • Mr = 451.29

  • Monoclinic, P 21 /c

  • a = 6.4808 (13) Å

  • b = 12.034 (2) Å

  • c = 12.787 (4) Å

  • β = 116.24 (2)°

  • V = 894.5 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.80 mm−1

  • T = 293 K

  • 0.10 × 0.10 × 0.08 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.925, Tmax = 0.939

  • 7432 measured reflections

  • 1579 independent reflections

  • 1102 reflections with I > 2σ(I)

  • Rint = 0.115

Refinement
  • R[F2 > 2σ(F2)] = 0.078

  • wR(F2) = 0.133

  • S = 1.14

  • 1579 reflections

  • 133 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯N2 0.88 2.15 3.010 (5) 164
O2—H2A⋯O3i 0.84 2.01 2.756 (5) 147
O2—H2B⋯N3ii 0.86 2.06 2.858 (5) 154
O3—H3B⋯N4ii 0.82 2.10 2.917 (6) 176
Symmetry codes: (i) x-1, y, z; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Tetrazole as functional group plays an important role in coordination chemistry, medicinal chemistry and materials science applications (Song et al., 2009; Jiang et al., 2007; Zhang, 2009). It's interesting for the study of tetrazolate complexes to delineate the ways in which tetrazoles bind to metal centres. Here we report the structure of a novel substituted tetrazolato-metal complex, diaquabis(5-(2-pyridyl-1-oxide)tetrazolato)manganese(II) dihydrate.

The crystal structure of the title complex consists of the mononuclear manganese (II) unit [Mn(C6H4N5O)2(H2O)2], and two lattice water molecules (Fig. 1). In the mononuclear unit, manganese(II) ion is in a distorted octahedral environment, being six-coordinated by two N atoms and two O atoms from two bidentate 5-(2-pyridyl-1-oxide)tetrazolato-ligands, and two O atoms of two coordinated water molecules with Mn–O distances from 2.090 (4)Å to 2.209 (3) Å, Mn–N bond length of 2.255 (4)Å and O1–Mn1–N1 angle of 79.47 (14)°, which are comparable with the values observed in other metal-tetrazolate complexes (Vrbova et al., 2000; Lin et al., 2005; Facchetti et al., 2004). The pyridine and tetrazole rings are twisted against each other by 20.466 (190)°. In the crystal structure, all the water H atoms are involved in O–H···N and O–H···O hydrogen bonds with the solvate water O (O3W) and the tetrazole N (N2, N4) atoms. The interactions link the molecules into a three dimensional network (Table 1 and Fig. 2).

Related literature top

For backgroud to tetrazolate derivatives in coordination chemistry, see: Jiang et al. (2007); Song et al. (2009); Zhang (2009). For related structures, see: Facchetti et al. (2004); Lin et al. (2005); Vrbova et al. (2000)

Experimental top

A solution of 5-(2-pyridyl-1-oxide)tetrazole (32.6 mg, 0.2 mmol) and K2CO3 (13.8 mg, 0.1 mmol) in H2O (10 ml) was dropped slowly into a solution of Mn(ClO4).6H2O (36.2 mg, 0.1 mmol) dissolved in methanol (10 ml). The resulting brown suspension solution was stirred for 24 h at room temperature and filtered. Yellow crystals were separated from filtrate after about one month and collected for X-ray analysis (m.p. >573 K).

Refinement top

H atoms were placed in calculated positions, with C–H = 0.93Å and O–H = 0.82-0.88 Å, and included in the final cycles of refinement using a riding model, with Uiso(H) = 1.2Ueq(parent atom).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Sheldrick, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry code: (i) - x + 1, - y + 1, - z + 1. ]
[Figure 2] Fig. 2. A view of the O–H···O and O–H···N hydrogen bonds (dotted lines) in the crystal structure of the title compound.
Diaquabis[5-(1-oxidopyridin-1-ium-2-yl)-1,2,3,4-tetrazolido]manganese(II) dihydrate top
Crystal data top
[Mn(C6H4N5O)2(H2O)2]·2H2OF(000) = 462
Mr = 451.29Dx = 1.676 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7005 reflections
a = 6.4808 (13) Åθ = 3.1–27.6°
b = 12.034 (2) ŵ = 0.80 mm1
c = 12.787 (4) ÅT = 293 K
β = 116.24 (2)°Block, yellow
V = 894.5 (4) Å30.10 × 0.10 × 0.08 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
1579 independent reflections
Radiation source: fine-focus sealed tube1102 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.115
Detector resolution: 10.0 pixels mm-1θmax = 25.0°, θmin = 3.4°
ϕ and ω scansh = 77
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
k = 1414
Tmin = 0.925, Tmax = 0.939l = 1515
7432 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.078Hydrogen site location: difference Fourier map
wR(F2) = 0.133H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.0354P)2 + 1.2794P]
where P = (Fo2 + 2Fc2)/3
1579 reflections(Δ/σ)max < 0.001
133 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
[Mn(C6H4N5O)2(H2O)2]·2H2OV = 894.5 (4) Å3
Mr = 451.29Z = 2
Monoclinic, P21/cMo Kα radiation
a = 6.4808 (13) ŵ = 0.80 mm1
b = 12.034 (2) ÅT = 293 K
c = 12.787 (4) Å0.10 × 0.10 × 0.08 mm
β = 116.24 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1579 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1102 reflections with I > 2σ(I)
Tmin = 0.925, Tmax = 0.939Rint = 0.115
7432 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0780 restraints
wR(F2) = 0.133H-atom parameters constrained
S = 1.14Δρmax = 0.39 e Å3
1579 reflectionsΔρmin = 0.38 e Å3
133 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.50000.50000.50000.0282 (3)
C10.4458 (9)0.2469 (4)0.4227 (4)0.0260 (12)
C20.3159 (8)0.2280 (4)0.4903 (4)0.0276 (12)
C30.2946 (10)0.1223 (5)0.5282 (5)0.0406 (15)
H30.36480.06310.50990.049*
C40.1752 (11)0.1017 (6)0.5912 (5)0.0531 (18)
H40.16680.03030.61680.064*
C50.0688 (10)0.1883 (6)0.6155 (5)0.0508 (17)
H20.01650.17590.65680.061*
C60.0860 (9)0.2922 (5)0.5800 (5)0.0407 (15)
H10.01400.35100.59790.049*
N10.5349 (7)0.3443 (3)0.4111 (3)0.0289 (10)
N20.6423 (7)0.3211 (4)0.3443 (4)0.0338 (11)
N30.6179 (8)0.2138 (4)0.3188 (4)0.0368 (12)
N40.4943 (7)0.1654 (4)0.3670 (4)0.0346 (11)
N50.2085 (7)0.3114 (4)0.5179 (4)0.0344 (11)
O10.2069 (6)0.4131 (3)0.4819 (4)0.0491 (11)
O20.2698 (6)0.5780 (3)0.3322 (3)0.0396 (10)
H2A0.16570.53310.29040.048*
H2B0.27750.63400.29250.048*
O30.8363 (6)0.4852 (3)0.2336 (3)0.0447 (10)
H3A0.79510.44500.27870.054*
H3B0.73880.53340.20380.054*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0324 (7)0.0249 (6)0.0313 (7)0.0007 (6)0.0178 (5)0.0026 (6)
C10.028 (3)0.024 (3)0.025 (3)0.001 (2)0.011 (3)0.002 (2)
C20.027 (3)0.027 (3)0.027 (3)0.003 (2)0.011 (3)0.005 (2)
C30.053 (4)0.037 (4)0.040 (4)0.001 (3)0.028 (3)0.002 (3)
C40.069 (5)0.050 (4)0.046 (4)0.012 (4)0.030 (4)0.000 (3)
C50.046 (4)0.069 (5)0.038 (4)0.010 (4)0.019 (3)0.005 (4)
C60.033 (3)0.061 (4)0.035 (4)0.005 (3)0.021 (3)0.014 (3)
N10.030 (2)0.033 (3)0.026 (2)0.000 (2)0.016 (2)0.003 (2)
N20.032 (3)0.041 (3)0.032 (3)0.001 (2)0.018 (2)0.003 (2)
N30.038 (3)0.042 (3)0.034 (3)0.003 (2)0.019 (2)0.007 (2)
N40.043 (3)0.032 (3)0.035 (3)0.002 (2)0.024 (3)0.009 (2)
N50.035 (3)0.029 (3)0.034 (3)0.004 (2)0.011 (2)0.002 (2)
O10.043 (3)0.038 (2)0.076 (3)0.0019 (19)0.035 (2)0.000 (2)
O20.049 (2)0.038 (2)0.030 (2)0.0062 (19)0.016 (2)0.0060 (18)
O30.046 (2)0.040 (2)0.055 (3)0.005 (2)0.028 (2)0.012 (2)
Geometric parameters (Å, º) top
Mn1—O12.090 (4)C4—H40.9300
Mn1—O1i2.090 (4)C5—C61.351 (8)
Mn1—O22.209 (3)C5—H20.9300
Mn1—O2i2.209 (3)C6—N51.369 (6)
Mn1—N12.255 (4)C6—H10.9300
Mn1—N1i2.255 (4)N1—N21.348 (5)
C1—N41.329 (6)N2—N31.324 (6)
C1—N11.344 (6)N3—N41.341 (6)
C1—C21.467 (7)N5—O11.306 (5)
C2—N51.353 (6)O2—H2A0.8446
C2—C31.390 (7)O2—H2B0.8583
C3—C41.363 (7)O3—H3A0.8803
C3—H30.9300O3—H3B0.8172
C4—C51.359 (8)
O1—Mn1—O1i180.0C5—C4—C3118.3 (6)
O1—Mn1—O285.11 (15)C5—C4—H4120.9
O1i—Mn1—O294.89 (14)C3—C4—H4120.9
O1—Mn1—O2i94.89 (15)C6—C5—C4120.4 (6)
O1i—Mn1—O2i85.11 (14)C6—C5—H2119.8
O2—Mn1—O2i180.000 (1)C4—C5—H2119.8
O1—Mn1—N179.47 (14)C5—C6—N5120.4 (5)
O1i—Mn1—N1100.53 (14)C5—C6—H1119.8
O2—Mn1—N192.20 (14)N5—C6—H1119.8
O2i—Mn1—N187.80 (14)C1—N1—N2104.9 (4)
O1—Mn1—N1i100.53 (14)C1—N1—Mn1121.7 (3)
O1i—Mn1—N1i79.47 (14)N2—N1—Mn1133.4 (3)
O2—Mn1—N1i87.80 (14)N3—N2—N1108.6 (4)
O2i—Mn1—N1i92.20 (14)N2—N3—N4109.9 (4)
N1—Mn1—N1i180.000 (1)C1—N4—N3104.9 (4)
N4—C1—N1111.7 (4)O1—N5—C2121.8 (4)
N4—C1—C2122.4 (4)O1—N5—C6116.5 (5)
N1—C1—C2125.9 (4)C2—N5—C6121.6 (5)
N5—C2—C3116.4 (5)N5—O1—Mn1124.4 (3)
N5—C2—C1122.3 (5)Mn1—O2—H2A110.5
C3—C2—C1121.2 (5)Mn1—O2—H2B135.8
C4—C3—C2122.8 (6)H2A—O2—H2B111.6
C4—C3—H3118.6H3A—O3—H3B107.3
C2—C3—H3118.6
N4—C1—C2—N5160.1 (5)O2i—Mn1—N1—N2109.1 (4)
N1—C1—C2—N521.7 (8)C1—N1—N2—N30.5 (5)
N4—C1—C2—C319.1 (8)Mn1—N1—N2—N3177.0 (3)
N1—C1—C2—C3159.1 (5)N1—N2—N3—N40.4 (5)
N5—C2—C3—C40.7 (8)N1—C1—N4—N30.1 (6)
C1—C2—C3—C4180.0 (5)C2—C1—N4—N3178.5 (4)
C2—C3—C4—C51.4 (9)N2—N3—N4—C10.2 (5)
C3—C4—C5—C61.4 (9)C3—C2—N5—O1176.5 (5)
C4—C5—C6—N50.8 (9)C1—C2—N5—O12.8 (7)
N4—C1—N1—N20.3 (6)C3—C2—N5—C60.1 (7)
C2—C1—N1—N2178.7 (5)C1—C2—N5—C6179.3 (5)
N4—C1—N1—Mn1177.5 (3)C5—C6—N5—O1176.6 (5)
C2—C1—N1—Mn10.9 (7)C5—C6—N5—C20.1 (8)
O1—Mn1—N1—C127.4 (4)C2—N5—O1—Mn150.6 (6)
O1i—Mn1—N1—C1152.6 (4)C6—N5—O1—Mn1132.7 (4)
O2—Mn1—N1—C1112.1 (4)O2—Mn1—O1—N5146.5 (4)
O2i—Mn1—N1—C167.9 (4)O2i—Mn1—O1—N533.5 (4)
O1—Mn1—N1—N2155.5 (4)N1—Mn1—O1—N553.3 (4)
O1i—Mn1—N1—N224.5 (4)N1i—Mn1—O1—N5126.7 (4)
O2—Mn1—N1—N270.9 (4)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···N20.882.153.010 (5)164
O2—H2A···O3ii0.842.012.756 (5)147
O2—H2B···N3iii0.862.062.858 (5)154
O3—H3B···N4iii0.822.102.917 (6)176
Symmetry codes: (ii) x1, y, z; (iii) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Mn(C6H4N5O)2(H2O)2]·2H2O
Mr451.29
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)6.4808 (13), 12.034 (2), 12.787 (4)
β (°) 116.24 (2)
V3)894.5 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.80
Crystal size (mm)0.10 × 0.10 × 0.08
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.925, 0.939
No. of measured, independent and
observed [I > 2σ(I)] reflections
7432, 1579, 1102
Rint0.115
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.078, 0.133, 1.14
No. of reflections1579
No. of parameters133
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.38

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SAINT (Sheldrick, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···N20.882.153.010 (5)164
O2—H2A···O3i0.842.012.756 (5)147
O2—H2B···N3ii0.862.062.858 (5)154
O3—H3B···N4ii0.822.102.917 (6)176
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1/2, z+1/2.
 

Acknowledgements

This work was supported by the Natural Science Foundation of Xuzhou Normal University (grant No. 09XLA06) and the National Natural Science Foundation of China (grant No. 21071121).

References

First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFacchetti, A., Abbotto, A., Beverina, L., Bradamante, S., Mariani, P., Stern, C. L., Marks, T. J., Vacca, A. & Pagani, G. A. (2004). Chem. Commun. pp. 1770–1771.  Web of Science CSD CrossRef Google Scholar
First citationJiang, T., Zhao, Y.-F. & Zhang, X.-M. (2007). Inorg. Chem. Commun. 10, 1194–1197.  Web of Science CSD CrossRef CAS Google Scholar
First citationLin, P., Clegg, W., Harrington, R. W. & Henderson, R. A. (2005). Dalton Trans. pp. 2388–2394.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSong, W.-C., Li, J.-R., Song, P.-C., Tao, Y., Yu, Q., Tong, X.-L. & Bu, X.-H. (2009). Inorg. Chem. 48, 3792–3799.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationVrbova, M., Baran, P., Boca, R., Fuess, H., Svoboda, I., Linert, W., Schubert, U. & Wiede, P. (2000). Polyhedron, 19, 2195–2201.  CAS Google Scholar
First citationZhang, L. (2009). Acta Cryst. E65, m871–m872.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds