organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4,5-Dicarb­­oxy­naphthalene-1,8-dicarb­­oxy­lic anhydride–1,10-phenanthroline (1/1)

aSchool of the Environment, Jiangsu University, Zhenjiang 212013, People's Republic of China, and bSchool of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
*Correspondence e-mail: xxj507@126.com

(Received 20 October 2010; accepted 18 January 2011; online 22 January 2011)

In the crystal structure of the title 1:1 adduct, C12H8N2·C14H6O7, the carboxyl groups are involved in inter­molecular O—H⋯O hydrogen bonds, which link the mol­ecules into centrosymmetric dimers. These dimers are further linked by inter­molecular O—H⋯N hydrogen bonds. C—H⋯O inter­actions also occur between the 1,10-phenanthroline (phen) and 4,5-dicarb­oxy­naphthalene-1,8-dicarb­oxy­lic anhydride (H2NTC) mol­ecules. In addition, the crystal structure exhibits ππ inter­actions of the phen⋯phen and H2NTC⋯H2NTC types with centroid–centroid distances of 3.579 (3) and 3.774 (3) Å, respectively.

Related literature

For background to the importance of 1,4,5,8-naphthalene­tetra­carb­oxy­lic acid and 1,10-phenanthroline, see: Chen et al. (2005[Chen, L.-F., Zhang, C., Song, L.-J. & Ju, Z.-F. (2005). Inorg. Chem. Commun. 8, 555-558.]); Che et al. (2006[Che, G.-B., Xu, Z.-L. & Liu, C.-B. (2006). Acta Cryst. E62, m1370-m1372.]).

[Scheme 1]

Experimental

Crystal data
  • C12H8N2·C14H6O7

  • Mr = 466.39

  • Triclinic, [P \overline 1]

  • a = 9.0189 (5) Å

  • b = 10.1588 (7) Å

  • c = 11.2140 (8) Å

  • α = 104.267 (6)°

  • β = 92.278 (5)°

  • γ = 101.256 (5)°

  • V = 972.42 (11) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.99 mm−1

  • T = 293 K

  • 0.35 × 0.25 × 0.2 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.858, Tmax = 1.000

  • 6756 measured reflections

  • 3416 independent reflections

  • 2679 reflections with I > 2σ(I)

  • Rint = 0.061

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.159

  • S = 0.99

  • 3416 reflections

  • 316 parameters

  • H-atom parameters constrained

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯N1i 0.82 1.97 2.683 (2) 144
O4—H4⋯O1ii 0.82 1.69 2.4637 (18) 158
C2—H2⋯O5iii 0.93 2.59 3.481 (3) 161
C8—H8⋯O3ii 0.93 2.57 3.312 (3) 137
C10—H10⋯O4iv 0.93 2.42 3.258 (3) 150
Symmetry codes: (i) x+1, y, z; (ii) -x+1, -y, -z+2; (iii) -x, -y+1, -z+1; (iv) -x, -y, -z+2.

Data collection: SMART (Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

1,4,5,8-Naphthalenetetracarboxylic acid (H4NTC) is of special interest since its high symmetry and large π-conjugated structure can allow to construct molecular assemblies with novel structure motifs and physical properties (Chen et al., 2005). The 1,10-phenanthroline (phen) has been widely used to build novel supramolecular architectures through aromatic π..π interactions (Che et al., 2006). We report herein on the crystal structure of the title compound (Fig. 1).

In the crystal packing (Fig. 2), the carboxyl groups are involved in intermolecular O–H···O hydrogen bonds, which link the molecules into centrosymmetric dimers. These dimers are further linked by an intermolecular O–H···N hydrogen bond. There are also C–H···O interactions between the phen and H2NTC (Table 1). In addition, the crystal structure exhibit the π-π interactions between the phen···phen and H2NTC···H2NTC, respectively. The π-π interaction distance (Cg1-to-Cg2i) between the phen···phen is 3.579 (3) Å, and the π-π interaction distance (Cg3-to-Cg4ii) between the H2NTC···H2NTC is 3.774 (3) Å (Fig. 3). Cg1, Cg2, Cg3 and Cg4 are centroids of the N2-C2, N1-C7, C18-C20 and C13-C15 ring, respectively.

Related literature top

For background to the importance of 1,4,5,8-naphthalenetetracarboxylic acid and 1,10-phenanthroline, see: Chen et al. (2005); Che et al. (2006).

Experimental top

The reagents, purchased from standard commercial sources and without further purification, were 1,4,5,8-naphthalenetetracarboxylic acid and 1,10-phenanthroline. A mixture of H4NTC (0.0304 g, 0.10 mmol), phen (0.018 g, 0.10 mmol) and water (10 mL) in a 25 mL Teflon-lined stainless steel autoclave was heated for 3 d at 433 K under autogenous pressure and cooled to room temperature. Yellow block crystals were obtained.

Refinement top

All H atoms on C atoms were positioned geometrically and refined as riding atoms, with C–H = 0.93 Å and Uiso= 1.2 Ueq(C). The hydroxyl H atoms were located in a difference Fourier map, and were refined with suitable O–H distance restraint; Uiso = 1.5 Ueq(O).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of the hydrogen bond and C–H···O interactions (dotted lines) in the crystal structure of the title compound. [Symmetry codes: (i) x + 1, y, z; (ii) - x + 1, - y, - z + 2; (iii) - x, - y + 1, - z + 1; (iv) - x, - y, - z + 2; (v) x - 1, y, z.]
[Figure 3] Fig. 3. A view of π-π interactions (dotted lines) in the unit cell of the title compound. [Symmetry codes: (i) - x, - y, - z + 1; (ii) -x + 1, - y + 1, - z + 2.]
4,5-Dicarboxynaphthalene-1,8-dicarboxylic anhydride–1,10-phenanthroline (1/1) top
Crystal data top
C12H8N2·C14H6O7Z = 2
Mr = 466.39F(000) = 480
Triclinic, P1Dx = 1.593 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54184 Å
a = 9.0189 (5) ÅCell parameters from 3294 reflections
b = 10.1588 (7) Åθ = 4.1–67.0°
c = 11.2140 (8) ŵ = 0.99 mm1
α = 104.267 (6)°T = 293 K
β = 92.278 (5)°Block, yellow
γ = 101.256 (5)°0.35 × 0.25 × 0.2 mm
V = 972.42 (11) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
3416 independent reflections
Radiation source: fine-focus sealed tube2679 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.061
ϕ and ω scansθmax = 67.1°, θmin = 4.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 710
Tmin = 0.858, Tmax = 1.000k = 1212
6756 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: difference Fourier map
wR(F2) = 0.159H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.1188P)2]
where P = (Fo2 + 2Fc2)/3
3416 reflections(Δ/σ)max < 0.001
316 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
C12H8N2·C14H6O7γ = 101.256 (5)°
Mr = 466.39V = 972.42 (11) Å3
Triclinic, P1Z = 2
a = 9.0189 (5) ÅCu Kα radiation
b = 10.1588 (7) ŵ = 0.99 mm1
c = 11.2140 (8) ÅT = 293 K
α = 104.267 (6)°0.35 × 0.25 × 0.2 mm
β = 92.278 (5)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3416 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
2679 reflections with I > 2σ(I)
Tmin = 0.858, Tmax = 1.000Rint = 0.061
6756 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.159H-atom parameters constrained
S = 0.99Δρmax = 0.49 e Å3
3416 reflectionsΔρmin = 0.41 e Å3
316 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.55753 (16)0.06531 (14)0.84023 (14)0.0425 (4)
O20.79210 (15)0.19823 (17)0.87789 (16)0.0469 (4)
H2A0.82730.15460.81810.070*
O30.57213 (15)0.23703 (14)1.08928 (14)0.0399 (4)
O40.33967 (16)0.10420 (17)1.07563 (16)0.0471 (4)
H40.38220.06571.11890.071*
O50.04091 (17)0.56071 (18)0.81155 (17)0.0538 (5)
O60.23485 (16)0.57884 (15)0.70001 (13)0.0415 (4)
O70.4382 (2)0.6322 (2)0.60562 (17)0.0583 (5)
N10.00536 (18)0.06070 (18)0.76513 (16)0.0364 (4)
N20.0387 (2)0.2209 (2)0.60381 (17)0.0437 (4)
C10.0510 (3)0.2947 (3)0.5239 (2)0.0510 (6)
H10.13580.33420.52380.061*
C20.0537 (3)0.3179 (2)0.4397 (2)0.0512 (6)
H20.03920.37180.38590.061*
C30.1778 (3)0.2602 (3)0.4375 (2)0.0498 (6)
H30.24940.27400.38190.060*
C40.1968 (2)0.1796 (2)0.5201 (2)0.0421 (5)
C50.3233 (3)0.1145 (3)0.5236 (3)0.0587 (7)
H50.39930.12860.47170.070*
C60.3346 (3)0.0337 (3)0.6003 (3)0.0567 (7)
H60.41760.00820.59950.068*
C70.2219 (2)0.0106 (2)0.6831 (2)0.0385 (5)
C80.2284 (2)0.0737 (2)0.7640 (2)0.0422 (5)
H80.30860.11890.76470.051*
C90.1178 (2)0.0901 (2)0.8420 (2)0.0405 (5)
H90.12110.14720.89490.049*
C100.0006 (2)0.0202 (2)0.84104 (19)0.0395 (5)
H100.07490.03010.89420.047*
C110.1000 (2)0.0779 (2)0.68408 (18)0.0325 (4)
C120.0848 (2)0.1632 (2)0.60101 (18)0.0348 (4)
C130.2358 (2)0.44630 (19)0.85406 (18)0.0314 (4)
C140.1623 (2)0.3913 (2)0.9408 (2)0.0375 (5)
H140.06720.40800.96010.045*
C150.2311 (2)0.3098 (2)1.00005 (19)0.0361 (4)
H150.18220.27561.06110.043*
C160.3691 (2)0.27875 (19)0.97076 (17)0.0303 (4)
C250.4381 (2)0.20230 (19)1.05024 (17)0.0316 (4)
C260.6530 (2)0.1802 (2)0.85624 (19)0.0350 (4)
C170.4462 (2)0.32898 (18)0.87661 (17)0.0282 (4)
C180.5859 (2)0.2975 (2)0.83327 (18)0.0330 (4)
C190.6576 (2)0.3638 (2)0.7515 (2)0.0417 (5)
H190.75220.34820.72930.050*
C200.5921 (2)0.4540 (2)0.7011 (2)0.0419 (5)
H200.64280.49740.64590.050*
C210.4528 (2)0.4785 (2)0.73298 (18)0.0338 (4)
C220.3780 (2)0.41784 (18)0.82119 (17)0.0289 (4)
C230.3816 (2)0.5682 (2)0.67520 (19)0.0389 (5)
C240.1622 (2)0.5316 (2)0.79219 (19)0.0371 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0442 (8)0.0336 (8)0.0555 (9)0.0109 (6)0.0002 (7)0.0212 (7)
O20.0352 (8)0.0528 (9)0.0640 (10)0.0208 (7)0.0146 (7)0.0256 (8)
O30.0383 (8)0.0401 (8)0.0454 (8)0.0087 (6)0.0018 (6)0.0190 (6)
O40.0385 (8)0.0480 (9)0.0698 (10)0.0107 (7)0.0066 (7)0.0417 (8)
O50.0447 (9)0.0638 (11)0.0712 (11)0.0291 (8)0.0095 (8)0.0372 (9)
O60.0459 (8)0.0451 (8)0.0428 (8)0.0162 (6)0.0012 (6)0.0240 (7)
O70.0721 (11)0.0672 (11)0.0600 (11)0.0310 (9)0.0226 (9)0.0462 (9)
N10.0358 (9)0.0413 (9)0.0357 (9)0.0130 (7)0.0040 (7)0.0128 (7)
N20.0476 (10)0.0500 (11)0.0421 (10)0.0231 (8)0.0037 (8)0.0177 (8)
C10.0599 (14)0.0536 (14)0.0475 (13)0.0245 (11)0.0022 (11)0.0190 (11)
C20.0679 (15)0.0445 (12)0.0453 (12)0.0111 (11)0.0047 (11)0.0214 (10)
C30.0553 (14)0.0497 (13)0.0477 (13)0.0050 (11)0.0045 (10)0.0240 (11)
C40.0403 (11)0.0440 (12)0.0455 (12)0.0088 (9)0.0037 (9)0.0180 (10)
C50.0470 (13)0.0779 (18)0.0676 (16)0.0252 (12)0.0226 (12)0.0373 (14)
C60.0441 (12)0.0761 (17)0.0690 (16)0.0325 (12)0.0222 (11)0.0359 (14)
C70.0340 (10)0.0409 (11)0.0440 (11)0.0122 (8)0.0036 (8)0.0140 (9)
C80.0400 (11)0.0407 (11)0.0508 (12)0.0163 (9)0.0001 (9)0.0158 (10)
C90.0468 (11)0.0366 (11)0.0409 (11)0.0098 (9)0.0003 (9)0.0150 (9)
C100.0431 (11)0.0430 (11)0.0377 (10)0.0129 (9)0.0061 (8)0.0172 (9)
C110.0312 (9)0.0335 (10)0.0340 (10)0.0093 (8)0.0009 (7)0.0096 (8)
C120.0369 (10)0.0350 (10)0.0338 (10)0.0095 (8)0.0013 (8)0.0104 (8)
C130.0324 (9)0.0296 (9)0.0365 (10)0.0104 (7)0.0018 (8)0.0133 (8)
C140.0357 (10)0.0390 (11)0.0463 (11)0.0155 (9)0.0108 (9)0.0199 (9)
C150.0380 (10)0.0357 (10)0.0425 (11)0.0129 (8)0.0117 (8)0.0199 (9)
C160.0321 (9)0.0280 (9)0.0344 (10)0.0089 (7)0.0033 (8)0.0129 (8)
C250.0346 (10)0.0303 (9)0.0345 (10)0.0104 (8)0.0055 (8)0.0136 (8)
C260.0353 (10)0.0377 (11)0.0399 (10)0.0141 (8)0.0104 (8)0.0187 (9)
C170.0281 (9)0.0258 (8)0.0342 (9)0.0072 (7)0.0029 (7)0.0133 (7)
C180.0333 (10)0.0310 (10)0.0405 (10)0.0095 (8)0.0067 (8)0.0173 (8)
C190.0371 (10)0.0446 (12)0.0554 (13)0.0162 (9)0.0179 (9)0.0272 (10)
C200.0463 (12)0.0412 (11)0.0493 (12)0.0142 (9)0.0178 (9)0.0264 (10)
C210.0403 (10)0.0323 (10)0.0337 (10)0.0102 (8)0.0063 (8)0.0152 (8)
C220.0322 (9)0.0264 (9)0.0303 (9)0.0071 (7)0.0016 (7)0.0110 (7)
C230.0474 (12)0.0385 (11)0.0378 (11)0.0144 (9)0.0071 (9)0.0185 (9)
C240.0388 (10)0.0352 (10)0.0415 (11)0.0111 (8)0.0007 (8)0.0152 (9)
Geometric parameters (Å, º) top
O1—C261.276 (2)C7—C111.403 (3)
O2—C261.237 (2)C8—C91.365 (3)
O2—H2A0.8200C8—H80.9300
O3—C251.222 (2)C9—C101.384 (3)
O4—C251.295 (2)C9—H90.9300
O4—H40.8200C10—H100.9300
O5—C241.202 (3)C11—C121.439 (3)
O6—C241.380 (3)C13—C141.369 (3)
O6—C231.382 (3)C13—C221.412 (3)
O7—C231.201 (3)C13—C241.469 (3)
N1—C101.327 (3)C14—C151.396 (3)
N1—C111.357 (3)C14—H140.9300
N2—C11.317 (3)C15—C161.376 (3)
N2—C121.354 (3)C15—H150.9300
C1—C21.391 (4)C16—C171.430 (3)
C1—H10.9300C16—C251.507 (2)
C2—C31.359 (4)C26—C181.508 (3)
C2—H20.9300C17—C221.429 (2)
C3—C41.405 (3)C17—C181.434 (3)
C3—H30.9300C18—C191.376 (3)
C4—C121.398 (3)C19—C201.396 (3)
C4—C51.429 (3)C19—H190.9300
C5—C61.341 (3)C20—C211.372 (3)
C5—H50.9300C20—H200.9300
C6—C71.428 (3)C21—C221.416 (3)
C6—H60.9300C21—C231.466 (3)
C7—C81.399 (3)
C26—O2—H2A109.5C14—C13—C24119.01 (17)
C25—O4—H4109.5C22—C13—C24120.29 (17)
C24—O6—C23123.76 (15)C13—C14—C15119.51 (18)
C10—N1—C11122.47 (17)C13—C14—H14120.2
C1—N2—C12116.5 (2)C15—C14—H14120.2
N2—C1—C2124.6 (2)C16—C15—C14121.89 (18)
N2—C1—H1117.7C16—C15—H15119.1
C2—C1—H1117.7C14—C15—H15119.1
C3—C2—C1118.6 (2)C15—C16—C17120.23 (16)
C3—C2—H2120.7C15—C16—C25116.49 (16)
C1—C2—H2120.7C17—C16—C25123.04 (16)
C2—C3—C4119.4 (2)O3—C25—O4125.51 (17)
C2—C3—H3120.3O3—C25—C16121.47 (16)
C4—C3—H3120.3O4—C25—C16112.93 (16)
C12—C4—C3117.3 (2)O2—C26—O1125.89 (18)
C12—C4—C5119.7 (2)O2—C26—C18119.39 (17)
C3—C4—C5123.1 (2)O1—C26—C18114.43 (16)
C6—C5—C4121.4 (2)C22—C17—C16117.17 (16)
C6—C5—H5119.3C22—C17—C18117.40 (17)
C4—C5—H5119.3C16—C17—C18125.43 (16)
C5—C6—C7121.4 (2)C19—C18—C17120.01 (17)
C5—C6—H6119.3C19—C18—C26114.89 (17)
C7—C6—H6119.3C17—C18—C26124.54 (16)
C8—C7—C11118.72 (19)C18—C19—C20121.70 (18)
C8—C7—C6123.41 (19)C18—C19—H19119.2
C11—C7—C6117.86 (19)C20—C19—H19119.2
C9—C8—C7120.47 (19)C21—C20—C19119.95 (19)
C9—C8—H8119.8C21—C20—H20120.0
C7—C8—H8119.8C19—C20—H20120.0
C8—C9—C10118.9 (2)C20—C21—C22120.37 (18)
C8—C9—H9120.6C20—C21—C23119.60 (18)
C10—C9—H9120.6C22—C21—C23120.03 (17)
N1—C10—C9120.8 (2)C13—C22—C21119.40 (16)
N1—C10—H10119.6C13—C22—C17120.38 (17)
C9—C10—H10119.6C21—C22—C17120.23 (17)
N1—C11—C7118.59 (18)O7—C23—O6116.28 (18)
N1—C11—C12120.00 (17)O7—C23—C21125.9 (2)
C7—C11—C12121.40 (18)O6—C23—C21117.81 (17)
N2—C12—C4123.60 (19)O5—C24—O6116.34 (17)
N2—C12—C11118.22 (18)O5—C24—C13125.90 (19)
C4—C12—C11118.17 (18)O6—C24—C13117.71 (17)
C14—C13—C22120.67 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···N1i0.821.972.683 (2)144
O4—H4···O1ii0.821.692.4637 (18)158
C2—H2···O5iii0.932.593.481 (3)161
C8—H8···O3ii0.932.573.312 (3)137
C10—H10···O4iv0.932.423.258 (3)150
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z+2; (iii) x, y+1, z+1; (iv) x, y, z+2.

Experimental details

Crystal data
Chemical formulaC12H8N2·C14H6O7
Mr466.39
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.0189 (5), 10.1588 (7), 11.2140 (8)
α, β, γ (°)104.267 (6), 92.278 (5), 101.256 (5)
V3)972.42 (11)
Z2
Radiation typeCu Kα
µ (mm1)0.99
Crystal size (mm)0.35 × 0.25 × 0.2
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.858, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
6756, 3416, 2679
Rint0.061
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.159, 0.99
No. of reflections3416
No. of parameters316
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.49, 0.41

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1998), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···N1i0.821.972.683 (2)144
O4—H4···O1ii0.821.692.4637 (18)158
C2—H2···O5iii0.932.593.481 (3)161
C8—H8···O3ii0.932.573.312 (3)137
C10—H10···O4iv0.932.423.258 (3)150
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z+2; (iii) x, y+1, z+1; (iv) x, y, z+2.
 

Acknowledgements

The authors thank Jiangsu University for supporting this work.

References

First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChe, G.-B., Xu, Z.-L. & Liu, C.-B. (2006). Acta Cryst. E62, m1370–m1372.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChen, L.-F., Zhang, C., Song, L.-J. & Ju, Z.-F. (2005). Inorg. Chem. Commun. 8, 555–558.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds