inorganic compounds
Nickel bismuth boride, Ni23-xBixB6 [x = 2.44 (1)]
aNational Institute for Materials Science, Namiki 1-1, Tsukuba, 305-0044 Japan
*Correspondence e-mail: mori.takao@nims.go.jp
The τ-boride Ni23-xBixB6 [x = 2.44 (1)] adopts a ternary variant of the cubic Cr23C6-type structure, with Ni8 cubes and Ni12 cuboctahedra arranged in a NaCl-type pattern. Two of the four independent metal sites (8c, 3m symmetry; 4a, mm symmetry) are occupied by a mixture of Ni and Bi atoms in a 0.106 (6):0.894 (6) and a 0.350 (7):0.650 (7) ratio, respectively.
Related literature
For the structure of Cr23C6, see: Westgren (1933). For other examples of τ-borides, which have more than 80 representatives, see: Villars & Calvert (1985). For ternary ordered variants, see: Hillebrecht & Ade (1998) for M20M′3B6; Veremchuk et al. (2009) for M21M′2B6. For isotypic cobalt-containing solid solutions Co23-xM'xB6, see: Kotzott et al. (2009).
Experimental
Crystal data
|
Data collection: SMART (Bruker, 1999); cell SAINT-Plus (Bruker, 1999); data reduction: SAINT-Plus; program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536811000894/mg2107sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811000894/mg2107Isup2.hkl
A mixture of Ni, Bi, and B powders with nominal composition Ni20Bi3B12 was pressed into a pellet and placed in an alumina crucible. It was melted under Ar gas at 1473 K for 6 h, cooled at 20 K h-1 to 1273 K, and further cooled at 300 K h-1 to room temperature. The sample contained crystals of the title compound, in the presence of binary nickel borides, as revealed by powder X-ray diffraction analysis.
Several models involving mixed occupancy of Ni and Bi atoms, or vacancies (or both) within the metal sites were considered. We concluded that all sites are fully occupied, but two of them (4a and 8c) were disordered with a mixture of Ni and Bi atoms. Only an isotropic displacement parameter was refined for the B atom. The highest peak and the deepest hole in the final difference map are located at 2.12 and 0.57 Å from Ni3 and Bi1, respectively.
Data collection: SMART (Bruker, 1999); cell
SAINT-Plus (Bruker, 1999); data reduction: SAINT-Plus (Bruker, 1999); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).B6Bi2.44Ni20.56 | Dx = 9.999 Mg m−3 |
Mr = 1780.35 | Mo Kα radiation, λ = 0.71073 Å |
Cubic, Fm3m | Cell parameters from 834 reflections |
Hall symbol: -F 4 2 3 | θ = 3.3–40.4° |
a = 10.575 (5) Å | µ = 67.81 mm−1 |
V = 1182.6 (10) Å3 | T = 293 K |
Z = 4 | Prism, grey |
F(000) = 3231 | 0.10 × 0.08 × 0.06 mm |
Bruker SMART APEX CCD diffractometer | 235 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.044 |
ω scans | θmax = 40.4°, θmin = 3.3° |
Absorption correction: multi-scan (SADABS; Bruker, 1999) | h = −19→19 |
Tmin = 0.010, Tmax = 0.067 | k = −19→19 |
6672 measured reflections | l = −17→19 |
236 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.020 | w = 1/[σ2(Fo2) + (0.0165P)2 + 39.3966P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.045 | (Δ/σ)max < 0.001 |
S = 1.16 | Δρmax = 2.18 e Å−3 |
236 reflections | Δρmin = −2.22 e Å−3 |
15 parameters | Extinction correction: SHELXL97 (Sheldrick, 2008) |
0 restraints | Extinction coefficient: 0.00047 (4) |
B6Bi2.44Ni20.56 | Z = 4 |
Mr = 1780.35 | Mo Kα radiation |
Cubic, Fm3m | µ = 67.81 mm−1 |
a = 10.575 (5) Å | T = 293 K |
V = 1182.6 (10) Å3 | 0.10 × 0.08 × 0.06 mm |
Bruker SMART APEX CCD diffractometer | 236 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 1999) | 235 reflections with I > 2σ(I) |
Tmin = 0.010, Tmax = 0.067 | Rint = 0.044 |
6672 measured reflections |
R[F2 > 2σ(F2)] = 0.020 | 0 restraints |
wR(F2) = 0.045 | w = 1/[σ2(Fo2) + (0.0165P)2 + 39.3966P] where P = (Fo2 + 2Fc2)/3 |
S = 1.16 | Δρmax = 2.18 e Å−3 |
236 reflections | Δρmin = −2.22 e Å−3 |
15 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Ni2 | 0.38433 (4) | 0.38433 (4) | 0.38433 (4) | 0.00939 (16) | |
Ni3 | 0 | 0.17150 (4) | 0.17150 (4) | 0.01007 (16) | |
Ni4 | 0.25 | 0.25 | 0.25 | 0.01036 (13) | 0.106 (6) |
Ni1 | 0 | 0 | 0 | 0.0092 (2) | 0.349 (7) |
Bi1 | 0.25 | 0.25 | 0.25 | 0.01036 (13) | 0.894 (6) |
Bi2 | 0 | 0 | 0 | 0.0092 (2) | 0.650 (7) |
B | 0 | 0.2663 (7) | 0 | 0.0109 (11)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni2 | 0.00939 (16) | 0.00939 (16) | 0.00939 (16) | 0.00036 (13) | 0.00036 (13) | 0.00036 (13) |
Ni3 | 0.0116 (3) | 0.00930 (19) | 0.00930 (19) | 0 | 0 | −0.00020 (16) |
Ni4 | 0.01036 (13) | 0.01036 (13) | 0.01036 (13) | 0 | 0 | 0 |
Ni1 | 0.0092 (2) | 0.0092 (2) | 0.0092 (2) | 0 | 0 | 0 |
Bi1 | 0.01036 (13) | 0.01036 (13) | 0.01036 (13) | 0 | 0 | 0 |
Bi2 | 0.0092 (2) | 0.0092 (2) | 0.0092 (2) | 0 | 0 | 0 |
Ni2—Bi | 2.133 (5) | Ni4—Ni3xv | 2.8927 (14) |
Ni2—Bii | 2.133 (5) | Ni4—Ni3xi | 2.8927 (14) |
Ni2—Biii | 2.133 (5) | Ni4—Ni3x | 2.8927 (14) |
Ni2—Ni2iv | 2.4465 (15) | Ni4—Ni3vii | 2.8927 (14) |
Ni2—Ni2v | 2.4465 (15) | Ni4—Ni3ix | 2.8927 (14) |
Ni2—Ni2vi | 2.4465 (15) | Ni4—Ni3viii | 2.8927 (14) |
Ni2—Ni4 | 2.4604 (14) | Ni4—Ni3xvi | 2.8927 (14) |
Ni2—Ni3vii | 2.6287 (13) | Ni1—Ni3xx | 2.5648 (14) |
Ni2—Ni3viii | 2.6287 (13) | Ni1—Ni3xxi | 2.5648 (14) |
Ni2—Ni3ix | 2.6287 (13) | Ni1—Ni3xv | 2.5648 (14) |
Ni2—Ni3x | 2.6287 (13) | Ni1—Ni3xxii | 2.5648 (14) |
Ni3—B | 2.072 (4) | Ni1—Ni3xi | 2.5648 (14) |
Ni3—Bxi | 2.072 (4) | Ni1—Ni3xxiii | 2.5648 (14) |
Ni3—Ni3xii | 2.3480 (17) | Ni1—Ni3xxiv | 2.5648 (14) |
Ni3—Ni1 | 2.5648 (14) | Ni1—Ni3xxv | 2.5648 (14) |
Ni3—Ni3xiii | 2.5648 (14) | Ni1—Ni3xiv | 2.5648 (14) |
Ni3—Ni3xiv | 2.5648 (14) | Ni1—Ni3xxvi | 2.5648 (14) |
Ni3—Ni3xv | 2.5648 (14) | Ni1—Ni3xiii | 2.5648 (14) |
Ni3—Ni3xi | 2.5648 (14) | B—Ni3xiii | 2.072 (4) |
Ni3—Ni2xvi | 2.6287 (13) | B—Ni3xxiv | 2.072 (4) |
Ni3—Ni2xvii | 2.6287 (13) | B—Ni3xv | 2.072 (4) |
Ni3—Ni2xviii | 2.6287 (13) | B—Ni2xvii | 2.133 (5) |
Ni4—Ni2xvii | 2.4604 (14) | B—Ni2xxvii | 2.133 (5) |
Ni4—Ni2xix | 2.4604 (14) | B—Ni2xxviii | 2.133 (5) |
Ni4—Ni2xvi | 2.4604 (14) | B—Ni2xviii | 2.133 (5) |
Bi—Ni2—Bii | 110.02 (17) | Ni3xv—Ni4—Ni3x | 146.645 (15) |
Bi—Ni2—Biii | 110.02 (17) | Ni3xi—Ni4—Ni3x | 116.245 (7) |
Bii—Ni2—Biii | 110.02 (17) | Ni3—Ni4—Ni3x | 94.724 (4) |
Bi—Ni2—Ni2iv | 55.01 (9) | Ni2—Ni4—Ni3vii | 58.152 (3) |
Bii—Ni2—Ni2iv | 125.82 (17) | Ni2xvii—Ni4—Ni3vii | 149.209 (11) |
Biii—Ni2—Ni2iv | 55.01 (9) | Ni2xix—Ni4—Ni3vii | 58.152 (3) |
Bi—Ni2—Ni2v | 125.82 (17) | Ni2xvi—Ni4—Ni3vii | 101.320 (11) |
Bii—Ni2—Ni2v | 55.01 (9) | Ni3xv—Ni4—Ni3vii | 116.245 (7) |
Biii—Ni2—Ni2v | 55.01 (9) | Ni3xi—Ni4—Ni3vii | 94.724 (4) |
Ni2iv—Ni2—Ni2v | 90 | Ni3—Ni4—Ni3vii | 146.645 (15) |
Bi—Ni2—Ni2vi | 55.01 (9) | Ni3x—Ni4—Ni3vii | 94.724 (4) |
Bii—Ni2—Ni2vi | 55.01 (9) | Ni2—Ni4—Ni3ix | 58.152 (3) |
Biii—Ni2—Ni2vi | 125.82 (17) | Ni2xvii—Ni4—Ni3ix | 149.209 (11) |
Ni2iv—Ni2—Ni2vi | 90 | Ni2xix—Ni4—Ni3ix | 101.320 (11) |
Ni2v—Ni2—Ni2vi | 90 | Ni2xvi—Ni4—Ni3ix | 58.152 (3) |
Bi—Ni2—Ni4 | 108.92 (17) | Ni3xv—Ni4—Ni3ix | 146.645 (15) |
Bii—Ni2—Ni4 | 108.92 (17) | Ni3xi—Ni4—Ni3ix | 94.724 (4) |
Biii—Ni2—Ni4 | 108.92 (17) | Ni3—Ni4—Ni3ix | 116.245 (7) |
Ni2iv—Ni2—Ni4 | 125.3 | Ni3x—Ni4—Ni3ix | 47.89 (2) |
Ni2v—Ni2—Ni4 | 125.3 | Ni3vii—Ni4—Ni3ix | 52.632 (19) |
Ni2vi—Ni2—Ni4 | 125.3 | Ni2—Ni4—Ni3viii | 58.152 (3) |
Bi—Ni2—Ni3vii | 153.13 (3) | Ni2xvii—Ni4—Ni3viii | 58.152 (3) |
Bii—Ni2—Ni3vii | 95.32 (6) | Ni2xix—Ni4—Ni3viii | 149.209 (11) |
Biii—Ni2—Ni3vii | 50.27 (13) | Ni2xvi—Ni4—Ni3viii | 101.320 (11) |
Ni2iv—Ni2—Ni3vii | 102.978 (14) | Ni3xv—Ni4—Ni3viii | 116.245 (7) |
Ni2v—Ni2—Ni3vii | 62.268 (15) | Ni3xi—Ni4—Ni3viii | 146.645 (15) |
Ni2vi—Ni2—Ni3vii | 148.889 (13) | Ni3—Ni4—Ni3viii | 94.724 (4) |
Ni4—Ni2—Ni3vii | 69.188 (17) | Ni3x—Ni4—Ni3viii | 52.632 (19) |
Bi—Ni2—Ni3viii | 50.27 (13) | Ni3vii—Ni4—Ni3viii | 116.245 (7) |
Bii—Ni2—Ni3viii | 95.32 (6) | Ni3ix—Ni4—Ni3viii | 94.724 (4) |
Biii—Ni2—Ni3viii | 153.12 (3) | Ni2—Ni4—Ni3xvi | 58.152 (3) |
Ni2iv—Ni2—Ni3viii | 102.978 (14) | Ni2xvii—Ni4—Ni3xvi | 101.320 (11) |
Ni2v—Ni2—Ni3viii | 148.889 (13) | Ni2xix—Ni4—Ni3xvi | 58.152 (3) |
Ni2vi—Ni2—Ni3viii | 62.268 (15) | Ni2xvi—Ni4—Ni3xvi | 149.209 (11) |
Ni4—Ni2—Ni3viii | 69.188 (17) | Ni3xv—Ni4—Ni3xvi | 94.724 (4) |
Ni3vii—Ni2—Ni3viii | 138.28 (3) | Ni3xi—Ni4—Ni3xvi | 116.245 (7) |
Bi—Ni2—Ni3ix | 95.32 (6) | Ni3—Ni4—Ni3xvi | 146.645 (15) |
Bii—Ni2—Ni3ix | 153.13 (3) | Ni3x—Ni4—Ni3xvi | 116.245 (7) |
Biii—Ni2—Ni3ix | 50.27 (13) | Ni3vii—Ni4—Ni3xvi | 47.89 (2) |
Ni2iv—Ni2—Ni3ix | 62.268 (15) | Ni3ix—Ni4—Ni3xvi | 94.724 (4) |
Ni2v—Ni2—Ni3ix | 102.978 (14) | Ni3viii—Ni4—Ni3xvi | 94.724 (4) |
Ni2vi—Ni2—Ni3ix | 148.889 (13) | Ni3—Ni1—Ni3xx | 120 |
Ni4—Ni2—Ni3ix | 69.188 (17) | Ni3—Ni1—Ni3xxi | 180.00 (3) |
Ni3vii—Ni2—Ni3ix | 58.40 (2) | Ni3xx—Ni1—Ni3xxi | 60 |
Ni3viii—Ni2—Ni3ix | 108.098 (18) | Ni3—Ni1—Ni3xv | 60 |
Bi—Ni2—Ni3x | 50.27 (13) | Ni3xx—Ni1—Ni3xv | 180.00 (3) |
Bii—Ni2—Ni3x | 153.13 (3) | Ni3xxi—Ni1—Ni3xv | 120 |
Biii—Ni2—Ni3x | 95.32 (6) | Ni3—Ni1—Ni3xxii | 120 |
Ni2iv—Ni2—Ni3x | 62.268 (15) | Ni3xx—Ni1—Ni3xxii | 60 |
Ni2v—Ni2—Ni3x | 148.889 (13) | Ni3xxi—Ni1—Ni3xxii | 60 |
Ni2vi—Ni2—Ni3x | 102.978 (14) | Ni3xv—Ni1—Ni3xxii | 120 |
Ni4—Ni2—Ni3x | 69.188 (17) | Ni3—Ni1—Ni3xi | 60 |
Ni3vii—Ni2—Ni3x | 108.098 (18) | Ni3xx—Ni1—Ni3xi | 120 |
Ni3viii—Ni2—Ni3x | 58.40 (2) | Ni3xxi—Ni1—Ni3xi | 120 |
Ni3ix—Ni2—Ni3x | 53.05 (2) | Ni3xv—Ni1—Ni3xi | 60 |
B—Ni3—Bxi | 147.8 (4) | Ni3xxii—Ni1—Ni3xi | 180.00 (3) |
B—Ni3—Ni3xii | 106.08 (19) | Ni3—Ni1—Ni3xxiii | 120 |
Bxi—Ni3—Ni3xii | 106.08 (19) | Ni3xx—Ni1—Ni3xxiii | 90 |
B—Ni3—Ni1 | 73.92 (19) | Ni3xxi—Ni1—Ni3xxiii | 60 |
Bxi—Ni3—Ni1 | 73.92 (19) | Ni3xv—Ni1—Ni3xxiii | 90 |
Ni3xii—Ni3—Ni1 | 180.00 (3) | Ni3xxii—Ni1—Ni3xxiii | 120 |
B—Ni3—Ni3xiii | 51.76 (8) | Ni3xi—Ni1—Ni3xxiii | 60 |
Bxi—Ni3—Ni3xiii | 110.00 (12) | Ni3—Ni1—Ni3xxiv | 90 |
Ni3xii—Ni3—Ni3xiii | 120 | Ni3xx—Ni1—Ni3xxiv | 120 |
Ni1—Ni3—Ni3xiii | 60 | Ni3xxi—Ni1—Ni3xxiv | 90 |
B—Ni3—Ni3xiv | 110.00 (12) | Ni3xv—Ni1—Ni3xxiv | 60 |
Bxi—Ni3—Ni3xiv | 51.76 (8) | Ni3xxii—Ni1—Ni3xxiv | 60 |
Ni3xii—Ni3—Ni3xiv | 120 | Ni3xi—Ni1—Ni3xxiv | 120 |
Ni1—Ni3—Ni3xiv | 60 | Ni3xxiii—Ni1—Ni3xxiv | 120 |
Ni3xiii—Ni3—Ni3xiv | 60 | Ni3—Ni1—Ni3xxv | 90 |
B—Ni3—Ni3xv | 51.76 (8) | Ni3xx—Ni1—Ni3xxv | 60 |
Bxi—Ni3—Ni3xv | 110.00 (12) | Ni3xxi—Ni1—Ni3xxv | 90 |
Ni3xii—Ni3—Ni3xv | 120 | Ni3xv—Ni1—Ni3xxv | 120 |
Ni1—Ni3—Ni3xv | 60 | Ni3xxii—Ni1—Ni3xxv | 120 |
Ni3xiii—Ni3—Ni3xv | 90 | Ni3xi—Ni1—Ni3xxv | 60 |
Ni3xiv—Ni3—Ni3xv | 120 | Ni3xxiii—Ni1—Ni3xxv | 60 |
B—Ni3—Ni3xi | 110.00 (12) | Ni3xxiv—Ni1—Ni3xxv | 180.00 (3) |
Bxi—Ni3—Ni3xi | 51.76 (8) | Ni3—Ni1—Ni3xiv | 60 |
Ni3xii—Ni3—Ni3xi | 120 | Ni3xx—Ni1—Ni3xiv | 60 |
Ni1—Ni3—Ni3xi | 60 | Ni3xxi—Ni1—Ni3xiv | 120 |
Ni3xiii—Ni3—Ni3xi | 120 | Ni3xv—Ni1—Ni3xiv | 120 |
Ni3xiv—Ni3—Ni3xi | 90 | Ni3xxii—Ni1—Ni3xiv | 90 |
Ni3xv—Ni3—Ni3xi | 60 | Ni3xi—Ni1—Ni3xiv | 90 |
B—Ni3—Ni2xvi | 149.09 (8) | Ni3xxiii—Ni1—Ni3xiv | 120 |
Bxi—Ni3—Ni2xvi | 52.37 (15) | Ni3xxiv—Ni1—Ni3xiv | 120 |
Ni3xii—Ni3—Ni2xvi | 63.474 (12) | Ni3xxv—Ni1—Ni3xiv | 60 |
Ni1—Ni3—Ni2xvi | 116.526 (12) | Ni3—Ni1—Ni3xxvi | 120 |
Ni3xiii—Ni3—Ni2xvi | 159.139 (17) | Ni3xx—Ni1—Ni3xxvi | 120 |
Ni3xiv—Ni3—Ni2xvi | 99.802 (17) | Ni3xxi—Ni1—Ni3xxvi | 60 |
Ni3xv—Ni3—Ni2xvi | 106.043 (14) | Ni3xv—Ni1—Ni3xxvi | 60 |
Ni3xi—Ni3—Ni2xvi | 60.801 (12) | Ni3xxii—Ni1—Ni3xxvi | 90 |
B—Ni3—Ni2xvii | 52.37 (15) | Ni3xi—Ni1—Ni3xxvi | 90 |
Bxi—Ni3—Ni2xvii | 149.09 (8) | Ni3xxiii—Ni1—Ni3xxvi | 60 |
Ni3xii—Ni3—Ni2xvii | 63.474 (12) | Ni3xxiv—Ni1—Ni3xxvi | 60 |
Ni1—Ni3—Ni2xvii | 116.526 (12) | Ni3xxv—Ni1—Ni3xxvi | 120 |
Ni3xiii—Ni3—Ni2xvii | 99.802 (17) | Ni3xiv—Ni1—Ni3xxvi | 180.00 (3) |
Ni3xiv—Ni3—Ni2xvii | 159.139 (17) | Ni3—Ni1—Ni3xiii | 60 |
Ni3xv—Ni3—Ni2xvii | 60.801 (12) | Ni3xx—Ni1—Ni3xiii | 90 |
Ni3xi—Ni3—Ni2xvii | 106.043 (14) | Ni3xxi—Ni1—Ni3xiii | 120 |
Ni2xvi—Ni3—Ni2xvii | 99.67 (3) | Ni3xv—Ni1—Ni3xiii | 90 |
B—Ni3—Ni2xviii | 52.37 (15) | Ni3xxii—Ni1—Ni3xiii | 60 |
Bxi—Ni3—Ni2xviii | 149.09 (8) | Ni3xi—Ni1—Ni3xiii | 120 |
Ni3xii—Ni3—Ni2xviii | 63.474 (12) | Ni3xxiii—Ni1—Ni3xiii | 180.00 (3) |
Ni1—Ni3—Ni2xviii | 116.526 (12) | Ni3xxiv—Ni1—Ni3xiii | 60 |
Ni3xiii—Ni3—Ni2xviii | 60.801 (12) | Ni3xxv—Ni1—Ni3xiii | 120 |
Ni3xiv—Ni3—Ni2xviii | 106.043 (14) | Ni3xiv—Ni1—Ni3xiii | 60 |
Ni3xv—Ni3—Ni2xviii | 99.802 (17) | Ni3xxvi—Ni1—Ni3xiii | 120 |
Ni3xi—Ni3—Ni2xviii | 159.139 (17) | Ni3xiii—B—Ni3xxiv | 76.47 (16) |
Ni2xvi—Ni3—Ni2xviii | 126.95 (2) | Ni3xiii—B—Ni3 | 76.47 (16) |
Ni2xvii—Ni3—Ni2xviii | 55.46 (3) | Ni3xxiv—B—Ni3 | 122.2 (4) |
Ni2—Ni4—Ni2xvii | 109.5 | Ni3xiii—B—Ni3xv | 122.2 (4) |
Ni2—Ni4—Ni2xix | 109.5 | Ni3xxiv—B—Ni3xv | 76.47 (16) |
Ni2xvii—Ni4—Ni2xix | 109.5 | Ni3—B—Ni3xv | 76.47 (16) |
Ni2—Ni4—Ni2xvi | 109.5 | Ni3xiii—B—Ni2xvii | 141.71 (6) |
Ni2xvii—Ni4—Ni2xvi | 109.5 | Ni3xxiv—B—Ni2xvii | 141.71 (6) |
Ni2xix—Ni4—Ni2xvi | 109.5 | Ni3—B—Ni2xvii | 77.36 (3) |
Ni2—Ni4—Ni3xv | 149.209 (11) | Ni3xv—B—Ni2xvii | 77.36 (3) |
Ni2xvii—Ni4—Ni3xv | 58.152 (3) | Ni3xiii—B—Ni2xxvii | 77.36 (3) |
Ni2xix—Ni4—Ni3xv | 58.152 (3) | Ni3xxiv—B—Ni2xxvii | 77.36 (3) |
Ni2xvi—Ni4—Ni3xv | 101.320 (11) | Ni3—B—Ni2xxvii | 141.71 (6) |
Ni2—Ni4—Ni3xi | 149.209 (11) | Ni3xv—B—Ni2xxvii | 141.71 (6) |
Ni2xvii—Ni4—Ni3xi | 101.320 (11) | Ni2xvii—B—Ni2xxvii | 108.4 (3) |
Ni2xix—Ni4—Ni3xi | 58.152 (3) | Ni3xiii—B—Ni2xxviii | 141.71 (6) |
Ni2xvi—Ni4—Ni3xi | 58.152 (3) | Ni3xxiv—B—Ni2xxviii | 77.36 (3) |
Ni3xv—Ni4—Ni3xi | 52.632 (19) | Ni3—B—Ni2xxviii | 141.71 (6) |
Ni2—Ni4—Ni3 | 149.209 (11) | Ni3xv—B—Ni2xxviii | 77.36 (3) |
Ni2xvii—Ni4—Ni3 | 58.152 (3) | Ni2xvii—B—Ni2xxviii | 69.97 (17) |
Ni2xix—Ni4—Ni3 | 101.320 (11) | Ni2xxvii—B—Ni2xxviii | 69.97 (17) |
Ni2xvi—Ni4—Ni3 | 58.152 (3) | Ni3xiii—B—Ni2xviii | 77.36 (3) |
Ni3xv—Ni4—Ni3 | 52.632 (19) | Ni3xxiv—B—Ni2xviii | 141.71 (6) |
Ni3xi—Ni4—Ni3 | 52.632 (19) | Ni3—B—Ni2xviii | 77.36 (3) |
Ni2—Ni4—Ni3x | 58.152 (3) | Ni3xv—B—Ni2xviii | 141.71 (6) |
Ni2xvii—Ni4—Ni3x | 101.320 (11) | Ni2xvii—B—Ni2xviii | 69.97 (17) |
Ni2xix—Ni4—Ni3x | 149.209 (11) | Ni2xxvii—B—Ni2xviii | 69.97 (17) |
Ni2xvi—Ni4—Ni3x | 58.152 (3) | Ni2xxviii—B—Ni2xviii | 108.4 (3) |
Symmetry codes: (i) y, z+1/2, x+1/2; (ii) z+1/2, x+1/2, y; (iii) x+1/2, y, z+1/2; (iv) x, y, −z+1; (v) −x+1, y, z; (vi) x, −y+1, z; (vii) x+1/2, y, −z+1/2; (viii) z, x+1/2, −y+1/2; (ix) −y+1/2, z, −x+1/2; (x) y, −z+1/2, x+1/2; (xi) z, x, y; (xii) −x, −y+1/2, −z+1/2; (xiii) −y, z, −x; (xiv) −z, −x, y; (xv) y, z, x; (xvi) −x+1/2, −y+1/2, z; (xvii) −x+1/2, y, −z+1/2; (xviii) x−1/2, y, −z+1/2; (xix) x, −y+1/2, −z+1/2; (xx) −y, −z, −x; (xxi) −x, −y, −z; (xxii) −z, −x, −y; (xxiii) y, −z, x; (xxiv) x, y, −z; (xxv) −x, −y, z; (xxvi) z, x, −y; (xxvii) x−1/2, y, z−1/2; (xxviii) −x+1/2, y, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | B6Bi2.44Ni20.56 |
Mr | 1780.35 |
Crystal system, space group | Cubic, Fm3m |
Temperature (K) | 293 |
a (Å) | 10.575 (5) |
V (Å3) | 1182.6 (10) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 67.81 |
Crystal size (mm) | 0.10 × 0.08 × 0.06 |
Data collection | |
Diffractometer | Bruker SMART APEX CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 1999) |
Tmin, Tmax | 0.010, 0.067 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6672, 236, 235 |
Rint | 0.044 |
(sin θ/λ)max (Å−1) | 0.912 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.020, 0.045, 1.16 |
No. of reflections | 236 |
No. of parameters | 15 |
w = 1/[σ2(Fo2) + (0.0165P)2 + 39.3966P] where P = (Fo2 + 2Fc2)/3 | |
Δρmax, Δρmin (e Å−3) | 2.18, −2.22 |
Computer programs: SMART (Bruker, 1999), SAINT-Plus (Bruker, 1999), SIR2002 (Burla et al., 2003), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2005), WinGX (Farrugia, 1999).
Acknowledgements
This work was supported in part by a grant from AOARD (AOARD 104144).
References
Brandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (1999). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Hillebrecht, H. & Ade, M. (1998). Angew. Chem. Int. Ed. 37, 935–938. CrossRef CAS Google Scholar
Kotzott, D., Ade, M. & Hillebrecht, H. (2009). J. Solid State Chem. 182, 538–546. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Veremchuk, I., Gumeniuk, R., Prots, Yu., Schnelle, W., Burkhardt, U., Rosner, H., Kuz'ma, Yu., & Leithe-Jasper, A. (2009). Solid State Sci. 11, 507–512. Web of Science CrossRef CAS Google Scholar
Villars, P. & Calvert, L. D. (1985). Pearson's Handbook of Crystallographic Data for Intermetallics Phases. Metals Park, Ohio: American Society for Metals. Google Scholar
Westgren, A. (1933). Nature (London), 132, 480–481. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Ni23-xBixB6 belongs to a class of metal-rich compounds known as τ-borides, which are interesting ceramic materials. It is isostructural to numerous related M20M'3B6 and M21M'2B6 (M = 3d metal; M' = rare-earth, 4d, 5d, or main-group metal) phases, which adopt a ternary variant of the cubic Cr23C6-type structure (Westgren, 1933; Villars & Calvert, 1985; Hillebrecht & Ade, 1998; Veremchuk et al., 2009). Of the four metal sites, two (32f and 48h) are occupied exclusively by Ni atoms giving a NaCl-type arrangement of Ni8 cubes and Ni12 cuboctahedra, and two (4a and 8c) are occupied by a mixture of Ni and Bi atoms, resulting in the composition Ni20.56Bi2.44B6 (Fig. 1). Mixed occupation of the 4a and 8c sites has also been previously reported in the Co-containing τ-borides Co23-xM'xB6 (Kotzott et al., 2009).