inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Penta­europium dicadmium penta­anti­monide oxide, Eu5Cd2Sb5O

aDepartment of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
*Correspondence e-mail: sbobev@mail.chem.udel.edu

(Received 16 December 2010; accepted 4 January 2011; online 15 January 2011)

The title compound, Eu5Cd2Sb5O adopts the Ba5Cd2Sb5F-type structure (Pearson symbol oC52), which contains nine crystallographically unique sites in the asymmetric unit, all on special positions. One Eu, two Sb, and the Cd atom have site symmetry m..; two other Eu, the third Sb and the O atom have site symmetry m2m; the remaining Eu atom has 2/m.. symmetry. Eu atoms fill penta­gonal channels built from corner-sharing CdSb4 tetra­hedra. The isolated O atom, i.e., an oxide ion O2−, is located in a distorted tetra­hedral cavity formed by four Eu cations.

Related literature

For related ternary pnictides, see: Xia & Bobev (2007a[Xia, S.-Q. & Bobev, S. (2007a). J. Am. Chem. Soc. 129, 4049-4057.],b[Xia, S.-Q. & Bobev, S. (2007b). J. Am. Chem. Soc. 129, 10011-10018.], 2008a[Xia, S.-Q. & Bobev, S. (2008a). J. Comput. Chem. 29, 2125-2133.],b[Xia, S.-Q. & Bobev, S. (2008b). Inorg. Chem. 47, 1919-1921.]); Saparov et al. (2008a[Saparov, B., Xia, S.-Q. & Bobev, S. (2008a). Inorg. Chem. 47, 11237-11244.],b[Saparov, B., Bobev, S., Ozbay, A. & Nowak, E. R. (2008b). J. Solid State Chem. 181, 2690-2696.], 2010[Saparov, B., He, H., Zhang, H., Greene, R. & Bobev, S. (2010). Dalton Trans. pp. 1063-1070.], 2011[Saparov, B., Saito, M. & Bobev, S. (2011). J. Solid State Chem. doi:10.1016/j.jssc.2010.12.015. ]); Park & Kim (2004[Park, S.-M. & Kim, S.-J. (2004). J. Solid State Chem. 177, 3418-3422.]). For related anti­monide fluorides and oxides [A5Cd2Sb5F (A = Sr, Ba, Eu); Ba5Cd2Sb5Ox], see: Saparov & Bobev (2010[Saparov, B. & Bobev, S. (2010). Dalton Trans. pp. 11335-11343.]). For another related bis­muthide oxide (Ba2Cd2.13Bi3O), see: Xia & Bobev (2010[Xia, S.-Q. & Bobev, S. (2010). Acta Cryst. E66, i81.]). For ionic and covalent radii, see: Shannon (1976[Shannon, R. D. (1976). Acta Cryst. A32, 751-767.]); Pauling (1960[Pauling, L. (1960). The Nature of the Chemical Bond, 3rd ed. Ithaca, NY: Cornell University Press.]).

Experimental

Crystal data
  • Eu5Cd2Sb5O

  • Mr = 1609.37

  • Orthorhombic, C m c m

  • a = 4.7088 (5) Å

  • b = 21.965 (2) Å

  • c = 14.5982 (15) Å

  • V = 1509.9 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 31.92 mm−1

  • T = 120 K

  • 0.06 × 0.05 × 0.04 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.161, Tmax = 0.279

  • 10204 measured reflections

  • 1092 independent reflections

  • 1031 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.020

  • wR(F2) = 0.044

  • S = 1.14

  • 1092 reflections

  • 46 parameters

  • Δρmax = 1.18 e Å−3

  • Δρmin = −1.16 e Å−3

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: XP in SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound, Eu5Cd2Sb5O, is isostructural to Ba5Cd2Sb5F, recently reported (Saparov & Bobev, 2010). The structure contains one-dimensional [Cd2Sb5]9- polyanions and isolated O2- ions surrounded tetrahedrally by Eu cations (Fig. 1). The polyanions are constructed from two chains of corner-sharing CdSb4 tetrahedra connected through Sb3 atoms and Sb2–Sb2 bonds [2.8078 (10) Å]. Similar strong homoatomic Sb–Sb interactions are found in related polyanionic Zn–Sb and Cd–Sb substructures [Ba3Cd2Sb4 (Saparov et al., 2008a), Sr11Cd6Sb12 (Park & Kim, 2004; Xia & Bobev, 2008a), Eu11Cd6Sb12 and Eu11Cd6Sb12 (Saparov et al., 2008b), Ba2Cd2Sb3 (Saparov et al., 2010)]. The Cd–Sb interactions [2.8413 (5) Å to 2.9624 (8) Å] are comparable to the sum of the covalent radii (Pauling, 1960) and to distances found in other structures based on CdSb4 tetrahedra [Ba3Cd2Sb4 (Saparov et al., 2008a), Ba21Cd4Sb18 (Xia and Bobev, 2008b), Eu11Cd6Sb12 (Saparov et al., 2008b), A2CdSb2 (Xia & Bobev, 2007a; Saparov et al., 2011), Sr9Cd4.49 (1)Sb9 (Xia & Bobev, 2007b)].

Band structure calculations highlight the importance of ionic Ba–F interations near the Fermi level to optimize bonding in Ba5Cd2Sb5F, but exact electron balance is achieved in the corresponding oxide Ba5Cd2Sb5Ox only when x = 0.5 (Saparov & Bobev, 2010). Whereas the fluoride is free of disorder, the oxide exhibits underoccupancy of the oxygen site, causing positional disorder of the next-nearest Ba atoms, as revealed by elongated atomic displacement parameters on the Ba2 site (modeled as a split position) in Ba5Cd2Sb5O0.59 (3). The Ba2 atoms move away from their equilibrium positions towards the empty space that results when the oxygen site is vacant. Thus, it is surprising that the present structure of Eu5Cd2Sb5O contains a fully occupied oxygen site, because the formula would show a one-electron deficiency, viz. (Eu2+)5(Cd2+)2(Sb3-)3(Sb2-)2(O2-). A possible resolution is to propose the occurrence of Eu in both +2 and +3 oxidation states. Because phase-pure samples were unavailable, magnetic measurements could not be performed to verify this proposal. Nevertheless, we note that the Eu1–O distance [2.528 (4) Å] is only 0.4% longer than the Eu1–F distance in Eu5Cd2Sb5F (Saparov & Bobev, 2010); this increase does not scale with the difference between the ionic radii of O2- and F-, the former being nearly 5% bigger than the latter (Shannon, 1976). A similar conclusion can be drawn by comparing the Eu2–O [2.634 (3) Å] and Eu2–F [2.635 (3) Å] distances.

Related literature top

For related ternary pnictides, see: Xia & Bobev (2007a,b, 2008a,b); Saparov et al. (2008a,b, 2010, 2011); Park & Kim (2004). For related antimonide fluorides and oxides [A5Cd2Sb5F (A = Sr, Ba, Eu); Ba5Cd2Sb5Ox], see: Saparov & Bobev (2010). For another related bismuthide oxide (Ba2Cd2.13Bi3O), see: Xia & Bobev (2010). For ionic and covalent radii, see: Shannon (1976); Pauling (1960).

Experimental top

The reagents were handled in an argon-filled glove box or under vacuum. All metals were with a stated purity higher than 99.9% (metal basis). They were purchased from Alfa, kept in the glove box, and were used as received.

A mixture of elemental Eu, Cd, Sb, and Pb (flux) in a molar ratio Eu:Cd:Sb:Pb = 2:1:2:10 was loaded in an alumina crucible. To prevent oxidation, the elements were weighed inside the glove box, but the mixture was accidently left in contact with ambient air for ca. 20–30 minutes, prior to sealing it under vacuum inside a silica tube. After that, the reaction mixture was put in a box-furnace and heated to 1273 K at a rate of 200 K h-1, homogenized at this temperature for 24 h, and then slowly cooled to 823 K at a rate of 5 K h-1. After an equilibration step at 823 K for 96 h, the crystals were separated from the Pb flux.

This reaction was aimed at obtaining large single-crystals of Eu11Cd6Sb12 (Saparov et al., 2008b), which was indeed the major product. However, alongside the needle crystals of Eu11Cd6Sb12, a small block-shaped crystal was also found. After the X-ray data were collected and the structure was solved, it turned out to be that of Eu5Cd2Sb5O. Other reactions using the same starting materials produced only the intermetallic phase, suggesting that the likely source of oxygen in this particular experiment was an unexpected partial oxidation. Attempts to increase the yield by using Eu2O3 as a deliberate source of oxygen were not successful and yielded multiple phases. Reactions aimed at obtaining the isostructural Eu5Cd2Sb5F (Saparov & Bobev, 2010) were successful – they were performed using CdF2 (Alfa), Eu, Cd, and Sb.

Refinement top

Because the determined unit-cell dimensions and space group suggested isomorphism with Ba5Cd2Sb5F (Saparov & Bobev, 2010), the diffraction data were readily refined using this model. The refinements smoothly converged to low conventional residuals and a flat difference Fourier map. The maximum peak and deepest hole were located 0.86 Å from Eu2 and 0.93 Å from O, respectively.

We note that when oxygen was excluded from the model, a residual peak of about 15 e- Å-3, located ca. 2.6–2.7 Å from Eu, remained in the difference Fourier map. Unlike the case of Ba2Cd3-δBi3O (Xia & Bobev, 2010), where the residual density lacked the typical oxoanion coordination and was modeled as a partially occupied Cd site, here the tetrahedral coordination by Eu matches very well the bonding requirements of O2-. The distances are reasonable and the oxygen site was fully occupied, as verified by freeing the site occupation factor, which led to an occupancy factor of 1.05 (2). In the final refinement cycles, all atoms were refined as fully occupied.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Projection of Eu5Cd2Sb5O approximately along [100]. Displacement ellipsoids are drawn at the 95% probability level. Color key: Eu orange, Cd green, Sb turquoise, O red. Symmetry transformation used to generate the equivalent Sb atom: (vi) x,y,-z+1/2.
Pentaeuropium dicadmium pentaantimonide oxide top
Crystal data top
Eu5Cd2Sb5OF(000) = 2702
Mr = 1609.37Dx = 7.078 Mg m3
Orthorhombic, CmcmMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2c 2Cell parameters from 1092 reflections
a = 4.7088 (5) Åθ = 1.9–28.3°
b = 21.965 (2) ŵ = 31.92 mm1
c = 14.5982 (15) ÅT = 120 K
V = 1509.9 (3) Å3Block, black
Z = 40.06 × 0.05 × 0.04 mm
Data collection top
Bruker SMART APEX
diffractometer
1092 independent reflections
Radiation source: fine-focus sealed tube1031 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
ω scansθmax = 28.3°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 66
Tmin = 0.161, Tmax = 0.279k = 2828
10204 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.020 w = 1/[σ2(Fo2) + (0.0174P)2 + 9.1021P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.044(Δ/σ)max = 0.001
S = 1.14Δρmax = 1.18 e Å3
1092 reflectionsΔρmin = 1.16 e Å3
46 parametersExtinction correction: SHELXTL (Bruker, 2002), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.000112 (14)
Crystal data top
Eu5Cd2Sb5OV = 1509.9 (3) Å3
Mr = 1609.37Z = 4
Orthorhombic, CmcmMo Kα radiation
a = 4.7088 (5) ŵ = 31.92 mm1
b = 21.965 (2) ÅT = 120 K
c = 14.5982 (15) Å0.06 × 0.05 × 0.04 mm
Data collection top
Bruker SMART APEX
diffractometer
1092 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
1031 reflections with I > 2σ(I)
Tmin = 0.161, Tmax = 0.279Rint = 0.043
10204 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02046 parameters
wR(F2) = 0.0440 restraints
S = 1.14Δρmax = 1.18 e Å3
1092 reflectionsΔρmin = 1.16 e Å3
Special details top

Experimental. Selected in the glove box, crystals were put in a Paratone N oil and cut to the desired dimensions. Chosen crystal was mounted on a tip of a glass fiber and quickly onto the goniometer. The crystal was kept under a cold nitrogen stream to protect from ambient conditions.

Data collection is performed with four batch runs at ϕ = 0.00 ° (600 frames), at ϕ = 90.00 ° (600 frames), at ϕ = 180.00 ° (600 frames), and at ϕ = 270.00 (600 frames). Frame width = 0.30 ° in ω. Data are merged and treated with multi-scan absorption corrections.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Eu10.00000.270509 (17)0.61940 (3)0.01436 (11)
Eu20.00000.10016 (3)0.25000.02034 (14)
Eu30.00000.90247 (2)0.25000.01461 (12)
Eu40.00000.00000.00000.01393 (12)
Sb10.00000.14937 (2)0.02068 (3)0.01333 (12)
Sb20.00000.49492 (2)0.15383 (3)0.01439 (12)
Sb30.00000.29312 (3)0.25000.01319 (15)
Cd0.00000.36803 (3)0.08509 (4)0.01540 (13)
O0.00000.6539 (3)0.25000.0058 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Eu10.01347 (18)0.01609 (19)0.01352 (19)0.0000.0000.00131 (14)
Eu20.0283 (3)0.0179 (3)0.0148 (3)0.0000.0000.000
Eu30.0119 (2)0.0152 (3)0.0167 (3)0.0000.0000.000
Eu40.0145 (3)0.0151 (3)0.0122 (2)0.0000.0000.00009 (19)
Sb10.0121 (2)0.0142 (2)0.0136 (2)0.0000.0000.00025 (18)
Sb20.0137 (2)0.0171 (2)0.0123 (2)0.0000.0000.00042 (18)
Sb30.0123 (3)0.0146 (3)0.0127 (3)0.0000.0000.000
Cd0.0137 (3)0.0186 (3)0.0140 (3)0.0000.0000.0012 (2)
O0.006 (3)0.008 (3)0.003 (3)0.0000.0000.000
Geometric parameters (Å, º) top
Eu1—Oi2.528 (4)Sb1—Eu1xvi3.2738 (5)
Eu1—Sb1ii3.2738 (5)Sb1—Eu1xvii3.2738 (5)
Eu1—Sb1iii3.2738 (5)Sb1—Eu1vi3.3559 (7)
Eu1—Sb3iv3.3363 (4)Sb2—Sb2vi2.8078 (10)
Eu1—Sb3v3.3363 (4)Sb2—Cd2.9624 (8)
Eu1—Sb1vi3.3559 (7)Sb2—Eu4ix3.2556 (4)
Eu2—Ovii2.634 (3)Sb2—Eu4x3.2556 (4)
Eu2—Oviii2.634 (3)Sb2—Eu3viii3.4115 (5)
Eu3—Sb3ix3.3634 (7)Sb2—Eu3vii3.4115 (5)
Eu3—Sb3x3.3634 (7)Sb3—Cd2.9160 (7)
Eu3—Sb2xi3.4115 (5)Sb3—Cdvi2.9160 (7)
Eu3—Sb2x3.4115 (5)Sb3—Eu1xvii3.3363 (4)
Eu3—Sb2ix3.4115 (5)Sb3—Eu1iv3.3363 (4)
Eu3—Sb2xii3.4115 (5)Sb3—Eu1v3.3363 (4)
Eu3—Cdix3.4512 (5)Sb3—Eu1xvi3.3363 (4)
Eu3—Cdxi3.4512 (5)Sb3—Eu3vii3.3634 (7)
Eu3—Cdxii3.4512 (5)Sb3—Eu3viii3.3634 (7)
Eu3—Cdx3.4512 (5)Cd—Sb1xiii2.8413 (5)
Eu4—Sb2xiii3.2556 (4)Cd—Sb1xiv2.8413 (5)
Eu4—Sb2vii3.2556 (4)Cd—Eu3vii3.4512 (5)
Eu4—Sb2xiv3.2556 (4)Cd—Eu3viii3.4512 (5)
Eu4—Sb2viii3.2556 (4)O—Eu1i2.528 (4)
Eu4—Sb13.2947 (6)O—Eu1xviii2.528 (4)
Eu4—Sb1xv3.2948 (6)O—Eu2ix2.634 (3)
Sb1—Cdxiii2.8413 (5)O—Eu2x2.634 (3)
Sb1—Cdxiv2.8413 (5)
Oi—Eu1—Sb1ii88.79 (8)Sb2xiii—Eu4—Sb2viii87.362 (15)
Oi—Eu1—Sb1iii88.79 (8)Sb2vii—Eu4—Sb2viii92.638 (15)
Sb1ii—Eu1—Sb1iii91.972 (17)Sb2xiv—Eu4—Sb2viii180.00 (2)
Oi—Eu1—Sb3iv81.04 (8)Sb2xiii—Eu4—Sb191.665 (10)
Sb1ii—Eu1—Sb3iv88.237 (12)Sb2vii—Eu4—Sb188.335 (10)
Sb1iii—Eu1—Sb3iv169.821 (18)Sb2xiv—Eu4—Sb191.665 (10)
Oi—Eu1—Sb3v81.04 (8)Sb2viii—Eu4—Sb188.335 (10)
Sb1ii—Eu1—Sb3v169.821 (18)Sb2xiii—Eu4—Sb1xv88.335 (10)
Sb1iii—Eu1—Sb3v88.237 (12)Sb2vii—Eu4—Sb1xv91.665 (10)
Sb3iv—Eu1—Sb3v89.772 (15)Sb2xiv—Eu4—Sb1xv88.335 (10)
Oi—Eu1—Sb1vi168.60 (11)Sb2viii—Eu4—Sb1xv91.665 (10)
Sb1ii—Eu1—Sb1vi99.089 (14)Sb1—Eu4—Sb1xv180.0
Sb1iii—Eu1—Sb1vi99.089 (14)Sb2xiii—Eu4—Cdxiv100.934 (11)
Sb3iv—Eu1—Sb1vi90.921 (15)Sb2vii—Eu4—Cdxiv79.066 (11)
Sb3v—Eu1—Sb1vi90.921 (15)Sb2xiv—Eu4—Cdxiv47.500 (11)
Oi—Eu1—Cdvi103.28 (11)Sb2viii—Eu4—Cdxiv132.500 (11)
Sb1ii—Eu1—Cdvi47.849 (9)Sb1—Eu4—Cdxiv45.208 (9)
Sb1iii—Eu1—Cdvi47.849 (9)Sb1xv—Eu4—Cdxiv134.793 (9)
Sb3iv—Eu1—Cdvi135.111 (8)Sb2xiii—Eu4—Cdviii79.066 (11)
Sb3v—Eu1—Cdvi135.111 (7)Sb2vii—Eu4—Cdviii100.934 (11)
Sb1vi—Eu1—Cdvi88.118 (17)Sb2xiv—Eu4—Cdviii132.500 (11)
Oi—Eu1—Eu1xix41.06 (11)Sb2viii—Eu4—Cdviii47.500 (11)
Sb1ii—Eu1—Eu1xix116.120 (11)Sb1—Eu4—Cdviii134.792 (9)
Sb1iii—Eu1—Eu1xix116.120 (11)Sb1xv—Eu4—Cdviii45.207 (9)
Sb3iv—Eu1—Eu1xix55.150 (8)Cdxiv—Eu4—Cdviii180.000 (19)
Sb3v—Eu1—Eu1xix55.150 (8)Sb2xiii—Eu4—Cdxiii47.500 (11)
Sb1vi—Eu1—Eu1xix127.542 (11)Sb2vii—Eu4—Cdxiii132.500 (11)
Cdvi—Eu1—Eu1xix144.340 (11)Sb2xiv—Eu4—Cdxiii100.934 (11)
Oi—Eu1—Cdiii127.77 (7)Sb2viii—Eu4—Cdxiii79.066 (11)
Sb1ii—Eu1—Cdiii143.242 (16)Sb1—Eu4—Cdxiii45.208 (9)
Sb1iii—Eu1—Cdiii85.892 (12)Sb1xv—Eu4—Cdxiii134.793 (9)
Sb3iv—Eu1—Cdiii99.991 (16)Cdxiv—Eu4—Cdxiii73.486 (12)
Sb3v—Eu1—Cdiii46.924 (12)Cdviii—Eu4—Cdxiii106.514 (12)
Sb1vi—Eu1—Cdiii45.530 (10)Sb2xiii—Eu4—Cdvii132.500 (11)
Cdvi—Eu1—Cdiii110.630 (13)Sb2vii—Eu4—Cdvii47.500 (11)
Eu1xix—Eu1—Cdiii97.418 (10)Sb2xiv—Eu4—Cdvii79.066 (11)
Oi—Eu1—Cdii127.77 (7)Sb2viii—Eu4—Cdvii100.934 (11)
Sb1ii—Eu1—Cdii85.892 (13)Sb1—Eu4—Cdvii134.792 (9)
Sb1iii—Eu1—Cdii143.242 (17)Sb1xv—Eu4—Cdvii45.207 (9)
Sb3iv—Eu1—Cdii46.924 (12)Cdxiv—Eu4—Cdvii106.514 (12)
Sb3v—Eu1—Cdii99.991 (17)Cdviii—Eu4—Cdvii73.486 (12)
Sb1vi—Eu1—Cdii45.530 (10)Cdxiii—Eu4—Cdvii180.000 (19)
Cdvi—Eu1—Cdii110.630 (13)Sb2xiii—Eu4—Eu3xxiv127.751 (9)
Eu1xix—Eu1—Cdii97.418 (10)Sb2vii—Eu4—Eu3xxiv52.249 (9)
Cdiii—Eu1—Cdii74.719 (14)Sb2xiv—Eu4—Eu3xxiv127.751 (9)
Oi—Eu1—Eu2iv37.31 (4)Sb2viii—Eu4—Eu3xxiv52.249 (9)
Sb1ii—Eu1—Eu2iv55.018 (11)Sb1—Eu4—Eu3xxiv115.157 (11)
Sb1iii—Eu1—Eu2iv104.009 (15)Sb1xv—Eu4—Eu3xxiv64.843 (11)
Sb3iv—Eu1—Eu2iv67.923 (14)Cdxiv—Eu4—Eu3xxiv130.170 (8)
Sb3v—Eu1—Eu2iv115.104 (14)Cdviii—Eu4—Eu3xxiv49.830 (8)
Sb1vi—Eu1—Eu2iv145.294 (6)Cdxiii—Eu4—Eu3xxiv130.170 (8)
Cdvi—Eu1—Eu2iv88.522 (13)Cdvii—Eu4—Eu3xxiv49.830 (8)
Eu1xix—Eu1—Eu2iv62.674 (7)Sb2xiii—Eu4—Eu3xxv52.249 (9)
Cdiii—Eu1—Eu2iv160.009 (14)Sb2vii—Eu4—Eu3xxv127.751 (9)
Cdii—Eu1—Eu2iv104.580 (11)Sb2xiv—Eu4—Eu3xxv52.249 (9)
Oi—Eu1—Eu2v37.31 (4)Sb2viii—Eu4—Eu3xxv127.751 (9)
Sb1ii—Eu1—Eu2v104.009 (15)Sb1—Eu4—Eu3xxv64.843 (11)
Sb1iii—Eu1—Eu2v55.018 (11)Sb1xv—Eu4—Eu3xxv115.157 (11)
Sb3iv—Eu1—Eu2v115.104 (13)Cdxiv—Eu4—Eu3xxv49.830 (8)
Sb3v—Eu1—Eu2v67.923 (14)Cdviii—Eu4—Eu3xxv130.170 (8)
Sb1vi—Eu1—Eu2v145.294 (6)Cdxiii—Eu4—Eu3xxv49.830 (8)
Cdvi—Eu1—Eu2v88.522 (12)Cdvii—Eu4—Eu3xxv130.170 (8)
Eu1xix—Eu1—Eu2v62.674 (6)Eu3xxiv—Eu4—Eu3xxv180.000 (12)
Cdiii—Eu1—Eu2v104.580 (11)Cdxiii—Sb1—Cdxiv111.92 (3)
Cdii—Eu1—Eu2v160.009 (14)Cdxiii—Sb1—Eu1xvi155.15 (2)
Eu2iv—Eu1—Eu2v69.070 (12)Cdxiv—Sb1—Eu1xvi73.476 (13)
Ovii—Eu2—Oviii126.7 (2)Cdxiii—Sb1—Eu1xvii73.476 (13)
Ovii—Eu2—Sb182.09 (3)Cdxiv—Sb1—Eu1xvii155.15 (2)
Oviii—Eu2—Sb182.09 (3)Eu1xvi—Sb1—Eu1xvii91.971 (17)
Ovii—Eu2—Sb1vi82.09 (3)Cdxiii—Sb1—Eu479.416 (15)
Oviii—Eu2—Sb1vi82.09 (3)Cdxiv—Sb1—Eu479.416 (15)
Sb1—Eu2—Sb1vi144.21 (2)Eu1xvi—Sb1—Eu4125.146 (12)
Ovii—Eu2—Sb2viii151.15 (7)Eu1xvii—Sb1—Eu4125.146 (11)
Oviii—Eu2—Sb2viii72.66 (11)Cdxiii—Sb1—Eu1vi77.026 (16)
Sb1—Eu2—Sb2viii79.950 (11)Cdxiv—Sb1—Eu1vi77.026 (16)
Sb1vi—Eu2—Sb2viii124.796 (11)Eu1xvi—Sb1—Eu1vi80.908 (14)
Ovii—Eu2—Sb2xx151.15 (7)Eu1xvii—Sb1—Eu1vi80.908 (14)
Oviii—Eu2—Sb2xx72.66 (11)Eu4—Sb1—Eu1vi137.202 (18)
Sb1—Eu2—Sb2xx124.795 (11)Cdxiii—Sb1—Eu2118.413 (15)
Sb1vi—Eu2—Sb2xx79.951 (11)Cdxiv—Sb1—Eu2118.413 (15)
Sb2viii—Eu2—Sb2xx46.098 (17)Eu1xvi—Sb1—Eu275.300 (13)
Ovii—Eu2—Sb2xxi72.66 (11)Eu1xvii—Sb1—Eu275.300 (13)
Oviii—Eu2—Sb2xxi151.15 (7)Eu4—Sb1—Eu277.364 (14)
Sb1—Eu2—Sb2xxi124.795 (11)Eu1vi—Sb1—Eu2145.435 (19)
Sb1vi—Eu2—Sb2xxi79.951 (11)Sb2vi—Sb2—Cd109.800 (15)
Sb2viii—Eu2—Sb2xxi99.72 (2)Sb2vi—Sb2—Eu4ix133.614 (8)
Sb2xx—Eu2—Sb2xxi82.082 (16)Cd—Sb2—Eu4ix78.379 (13)
Ovii—Eu2—Sb2vii72.66 (11)Sb2vi—Sb2—Eu4x133.614 (8)
Oviii—Eu2—Sb2vii151.15 (7)Cd—Sb2—Eu4x78.379 (13)
Sb1—Eu2—Sb2vii79.950 (11)Eu4ix—Sb2—Eu4x92.637 (15)
Sb1vi—Eu2—Sb2vii124.796 (11)Sb2vi—Sb2—Eu3viii65.699 (9)
Sb2viii—Eu2—Sb2vii82.082 (17)Cd—Sb2—Eu3viii65.122 (14)
Sb2xx—Eu2—Sb2vii99.72 (2)Eu4ix—Sb2—Eu3viii78.764 (8)
Sb2xxi—Eu2—Sb2vii46.098 (17)Eu4x—Sb2—Eu3viii143.452 (18)
Ovii—Eu2—Eu1iv35.58 (8)Sb2vi—Sb2—Eu3vii65.699 (9)
Oviii—Eu2—Eu1iv101.55 (11)Cd—Sb2—Eu3vii65.122 (14)
Sb1—Eu2—Eu1iv103.103 (14)Eu4ix—Sb2—Eu3vii143.452 (18)
Sb1vi—Eu2—Eu1iv49.682 (9)Eu4x—Sb2—Eu3vii78.764 (8)
Sb2viii—Eu2—Eu1iv173.179 (9)Eu3viii—Sb2—Eu3vii87.282 (17)
Sb2xx—Eu2—Eu1iv129.306 (11)Sb2vi—Sb2—Eu2x66.952 (9)
Sb2xxi—Eu2—Eu1iv83.628 (11)Cd—Sb2—Eu2x137.661 (10)
Sb2vii—Eu2—Eu1iv104.387 (9)Eu4ix—Sb2—Eu2x136.289 (17)
Ovii—Eu2—Eu1xvi35.58 (8)Eu4x—Sb2—Eu2x76.887 (8)
Oviii—Eu2—Eu1xvi101.55 (11)Eu3viii—Sb2—Eu2x132.515 (16)
Sb1—Eu2—Eu1xvi49.683 (9)Eu3vii—Sb2—Eu2x76.673 (13)
Sb1vi—Eu2—Eu1xvi103.102 (15)Sb2vi—Sb2—Eu2ix66.952 (8)
Sb2viii—Eu2—Eu1xvi129.306 (11)Cd—Sb2—Eu2ix137.661 (10)
Sb2xx—Eu2—Eu1xvi173.179 (9)Eu4ix—Sb2—Eu2ix76.887 (7)
Sb2xxi—Eu2—Eu1xvi104.387 (10)Eu4x—Sb2—Eu2ix136.289 (17)
Sb2vii—Eu2—Eu1xvi83.628 (11)Eu3viii—Sb2—Eu2ix76.673 (14)
Eu1iv—Eu2—Eu1xvi54.653 (13)Eu3vii—Sb2—Eu2ix132.515 (16)
Ovii—Eu2—Eu1v101.55 (11)Eu2x—Sb2—Eu2ix82.083 (17)
Oviii—Eu2—Eu1v35.58 (8)Cd—Sb3—Cdvi111.30 (3)
Sb1—Eu2—Eu1v103.103 (15)Cd—Sb3—Eu1xvii76.384 (11)
Sb1vi—Eu2—Eu1v49.682 (9)Cdvi—Sb3—Eu1xvii135.084 (7)
Sb2viii—Eu2—Eu1v104.387 (9)Cd—Sb3—Eu1iv135.084 (7)
Sb2xx—Eu2—Eu1v83.628 (11)Cdvi—Sb3—Eu1iv76.384 (11)
Sb2xxi—Eu2—Eu1v129.306 (11)Eu1xvii—Sb3—Eu1iv130.47 (3)
Sb2vii—Eu2—Eu1v173.179 (9)Cd—Sb3—Eu1v135.084 (7)
Eu1iv—Eu2—Eu1v69.069 (12)Cdvi—Sb3—Eu1v76.384 (12)
Eu1xvi—Eu2—Eu1v93.682 (16)Eu1xvii—Sb3—Eu1v69.701 (15)
Ovii—Eu2—Eu1xvii101.55 (11)Eu1iv—Sb3—Eu1v89.770 (15)
Oviii—Eu2—Eu1xvii35.58 (8)Cd—Sb3—Eu1xvi76.384 (11)
Sb1—Eu2—Eu1xvii49.683 (9)Cdvi—Sb3—Eu1xvi135.084 (7)
Sb1vi—Eu2—Eu1xvii103.102 (14)Eu1xvii—Sb3—Eu1xvi89.770 (15)
Sb2viii—Eu2—Eu1xvii83.628 (11)Eu1iv—Sb3—Eu1xvi69.701 (15)
Sb2xx—Eu2—Eu1xvii104.387 (9)Eu1v—Sb3—Eu1xvi130.47 (3)
Sb2xxi—Eu2—Eu1xvii173.179 (9)Cd—Sb3—Eu3vii66.237 (13)
Sb2vii—Eu2—Eu1xvii129.306 (11)Cdvi—Sb3—Eu3vii66.236 (13)
Eu1iv—Eu2—Eu1xvii93.682 (16)Eu1xvii—Sb3—Eu3vii142.479 (13)
Eu1xvi—Eu2—Eu1xvii69.069 (12)Eu1iv—Sb3—Eu3vii78.764 (10)
Eu1v—Eu2—Eu1xvii54.653 (13)Eu1v—Sb3—Eu3vii142.479 (13)
Sb3ix—Eu3—Sb3x88.85 (2)Eu1xvi—Sb3—Eu3vii78.764 (10)
Sb3ix—Eu3—Sb2xi155.259 (10)Cd—Sb3—Eu3viii66.237 (13)
Sb3x—Eu3—Sb2xi86.675 (12)Cdvi—Sb3—Eu3viii66.236 (14)
Sb3ix—Eu3—Sb2x155.259 (10)Eu1xvii—Sb3—Eu3viii78.764 (10)
Sb3x—Eu3—Sb2x86.675 (12)Eu1iv—Sb3—Eu3viii142.479 (13)
Sb2xi—Eu3—Sb2x48.601 (18)Eu1v—Sb3—Eu3viii78.764 (10)
Sb3ix—Eu3—Sb2ix86.675 (12)Eu1xvi—Sb3—Eu3viii142.479 (13)
Sb3x—Eu3—Sb2ix155.259 (10)Eu3vii—Sb3—Eu3viii88.86 (2)
Sb2xi—Eu3—Sb2ix106.94 (2)Sb1xiii—Cd—Sb1xiv111.92 (3)
Sb2x—Eu3—Sb2ix87.283 (17)Sb1xiii—Cd—Sb3111.885 (17)
Sb3ix—Eu3—Sb2xii86.675 (12)Sb1xiv—Cd—Sb3111.885 (17)
Sb3x—Eu3—Sb2xii155.259 (10)Sb1xiii—Cd—Sb2108.095 (17)
Sb2xi—Eu3—Sb2xii87.283 (17)Sb1xiv—Cd—Sb2108.095 (17)
Sb2x—Eu3—Sb2xii106.94 (2)Sb3—Cd—Sb2104.55 (2)
Sb2ix—Eu3—Sb2xii48.601 (18)Sb1xiii—Cd—Eu3vii166.858 (18)
Sb3ix—Eu3—Cdix50.649 (11)Sb1xiv—Cd—Eu3vii80.981 (12)
Sb3x—Eu3—Cdix108.724 (16)Sb3—Cd—Eu3vii63.115 (14)
Sb2xi—Eu3—Cdix152.666 (19)Sb2—Cd—Eu3vii63.735 (14)
Sb2x—Eu3—Cdix108.315 (13)Sb1xiii—Cd—Eu3viii80.981 (12)
Sb2ix—Eu3—Cdix51.142 (13)Sb1xiv—Cd—Eu3viii166.858 (18)
Sb2xii—Eu3—Cdix86.946 (12)Sb3—Cd—Eu3viii63.115 (14)
Sb3ix—Eu3—Cdxi108.724 (17)Sb2—Cd—Eu3viii63.735 (14)
Sb3x—Eu3—Cdxi50.649 (11)Eu3vii—Cd—Eu3viii86.030 (15)
Sb2xi—Eu3—Cdxi51.142 (13)Sb1xiii—Cd—Eu1vi58.674 (13)
Sb2x—Eu3—Cdxi86.946 (12)Sb1xiv—Cd—Eu1vi58.674 (13)
Sb2ix—Eu3—Cdxi152.666 (19)Sb3—Cd—Eu1vi109.99 (2)
Sb2xii—Eu3—Cdxi108.315 (14)Sb2—Cd—Eu1vi145.46 (2)
Cdix—Eu3—Cdxi154.68 (3)Eu3vii—Cd—Eu1vi133.990 (11)
Sb3ix—Eu3—Cdxii50.649 (11)Eu3viii—Cd—Eu1vi133.990 (11)
Sb3x—Eu3—Cdxii108.724 (17)Sb1xiii—Cd—Eu1xvii57.443 (13)
Sb2xi—Eu3—Cdxii108.315 (13)Sb1xiv—Cd—Eu1xvii117.87 (2)
Sb2x—Eu3—Cdxii152.666 (19)Sb3—Cd—Eu1xvii56.693 (13)
Sb2ix—Eu3—Cdxii86.946 (12)Sb2—Cd—Eu1xvii133.962 (13)
Sb2xii—Eu3—Cdxii51.142 (13)Eu3vii—Cd—Eu1xvii119.724 (18)
Cdix—Eu3—Cdxii88.461 (16)Eu3viii—Cd—Eu1xvii70.603 (12)
Cdxi—Eu3—Cdxii86.030 (15)Eu1vi—Cd—Eu1xvii69.370 (13)
Sb3ix—Eu3—Cdx108.724 (16)Sb1xiii—Cd—Eu1xvi117.87 (2)
Sb3x—Eu3—Cdx50.649 (11)Sb1xiv—Cd—Eu1xvi57.443 (13)
Sb2xi—Eu3—Cdx86.946 (12)Sb3—Cd—Eu1xvi56.693 (13)
Sb2x—Eu3—Cdx51.142 (13)Sb2—Cd—Eu1xvi133.962 (13)
Sb2ix—Eu3—Cdx108.315 (13)Eu3vii—Cd—Eu1xvi70.603 (12)
Sb2xii—Eu3—Cdx152.666 (19)Eu3viii—Cd—Eu1xvi119.724 (18)
Cdix—Eu3—Cdx86.030 (15)Eu1vi—Cd—Eu1xvi69.370 (13)
Cdxi—Eu3—Cdx88.461 (16)Eu1xvii—Cd—Eu1xvi74.720 (15)
Cdxii—Eu3—Cdx154.68 (3)Sb1xiii—Cd—Eu4x115.04 (2)
Sb3ix—Eu3—Eu4xxii111.194 (5)Sb1xiv—Cd—Eu4x55.378 (13)
Sb3x—Eu3—Eu4xxii111.194 (5)Sb3—Cd—Eu4x132.546 (13)
Sb2xi—Eu3—Eu4xxii48.986 (9)Sb2—Cd—Eu4x54.120 (12)
Sb2x—Eu3—Eu4xxii93.069 (14)Eu3vii—Cd—Eu4x69.550 (10)
Sb2ix—Eu3—Eu4xxii93.069 (14)Eu3viii—Cd—Eu4x117.827 (18)
Sb2xii—Eu3—Eu4xxii48.986 (8)Eu1vi—Cd—Eu4x99.961 (13)
Cdix—Eu3—Eu4xxii135.440 (10)Eu1xvii—Cd—Eu4x168.941 (17)
Cdxi—Eu3—Eu4xxii60.620 (10)Eu1xvi—Cd—Eu4x104.797 (9)
Cdxii—Eu3—Eu4xxii60.620 (10)Sb1xiii—Cd—Eu4ix55.378 (13)
Cdx—Eu3—Eu4xxii135.440 (10)Sb1xiv—Cd—Eu4ix115.04 (2)
Sb3ix—Eu3—Eu4xxiii111.194 (5)Sb3—Cd—Eu4ix132.546 (13)
Sb3x—Eu3—Eu4xxiii111.194 (5)Sb2—Cd—Eu4ix54.120 (12)
Sb2xi—Eu3—Eu4xxiii93.069 (14)Eu3vii—Cd—Eu4ix117.827 (18)
Sb2x—Eu3—Eu4xxiii48.986 (8)Eu3viii—Cd—Eu4ix69.550 (10)
Sb2ix—Eu3—Eu4xxiii48.986 (8)Eu1vi—Cd—Eu4ix99.961 (13)
Sb2xii—Eu3—Eu4xxiii93.069 (14)Eu1xvii—Cd—Eu4ix104.797 (9)
Cdix—Eu3—Eu4xxiii60.620 (10)Eu1xvi—Cd—Eu4ix168.941 (17)
Cdxi—Eu3—Eu4xxiii135.440 (10)Eu4x—Cd—Eu4ix73.485 (12)
Cdxii—Eu3—Eu4xxiii135.440 (10)Eu1i—O—Eu1xviii97.9 (2)
Cdx—Eu3—Eu4xxiii60.620 (10)Eu1i—O—Eu2ix107.12 (4)
Eu4xxii—Eu3—Eu4xxiii119.173 (14)Eu1xviii—O—Eu2ix107.12 (4)
Sb2xiii—Eu4—Sb2vii180.00 (2)Eu1i—O—Eu2x107.12 (4)
Sb2xiii—Eu4—Sb2xiv92.638 (15)Eu1xviii—O—Eu2x107.12 (4)
Sb2vii—Eu4—Sb2xiv87.362 (15)Eu2ix—O—Eu2x126.7 (2)
Symmetry codes: (i) x, y+1, z+1; (ii) x+1/2, y+1/2, z+1/2; (iii) x1/2, y+1/2, z+1/2; (iv) x+1/2, y+1/2, z+1; (v) x1/2, y+1/2, z+1; (vi) x, y, z+1/2; (vii) x+1/2, y1/2, z; (viii) x1/2, y1/2, z; (ix) x1/2, y+1/2, z; (x) x+1/2, y+1/2, z; (xi) x+1/2, y+1/2, z+1/2; (xii) x1/2, y+1/2, z+1/2; (xiii) x1/2, y+1/2, z; (xiv) x+1/2, y+1/2, z; (xv) x, y, z; (xvi) x+1/2, y+1/2, z1/2; (xvii) x1/2, y+1/2, z1/2; (xviii) x, y+1, z1/2; (xix) x, y, z+3/2; (xx) x1/2, y1/2, z+1/2; (xxi) x+1/2, y1/2, z+1/2; (xxii) x, y+1, z+1/2; (xxiii) x, y+1, z; (xxiv) x, y1, z; (xxv) x, y+1, z.

Experimental details

Crystal data
Chemical formulaEu5Cd2Sb5O
Mr1609.37
Crystal system, space groupOrthorhombic, Cmcm
Temperature (K)120
a, b, c (Å)4.7088 (5), 21.965 (2), 14.5982 (15)
V3)1509.9 (3)
Z4
Radiation typeMo Kα
µ (mm1)31.92
Crystal size (mm)0.06 × 0.05 × 0.04
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.161, 0.279
No. of measured, independent and
observed [I > 2σ(I)] reflections
10204, 1092, 1031
Rint0.043
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.020, 0.044, 1.14
No. of reflections1092
No. of parameters46
Δρmax, Δρmin (e Å3)1.18, 1.16

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), XP in SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors acknowledge financial support from the University of Delaware and the Petroleum Research Fund (ACS–PRF).

References

First citationBruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationPark, S.-M. & Kim, S.-J. (2004). J. Solid State Chem. 177, 3418–3422.  Web of Science CrossRef CAS Google Scholar
First citationPauling, L. (1960). The Nature of the Chemical Bond, 3rd ed. Ithaca, NY: Cornell University Press.  Google Scholar
First citationSaparov, B. & Bobev, S. (2010). Dalton Trans. pp. 11335–11343.  Web of Science CSD CrossRef Google Scholar
First citationSaparov, B., Bobev, S., Ozbay, A. & Nowak, E. R. (2008b). J. Solid State Chem. 181, 2690–2696.  Web of Science CrossRef CAS Google Scholar
First citationSaparov, B., He, H., Zhang, H., Greene, R. & Bobev, S. (2010). Dalton Trans. pp. 1063–1070.  Web of Science CSD CrossRef Google Scholar
First citationSaparov, B., Saito, M. & Bobev, S. (2011). J. Solid State Chem. doi:10.1016/j.jssc.2010.12.015.  Google Scholar
First citationSaparov, B., Xia, S.-Q. & Bobev, S. (2008a). Inorg. Chem. 47, 11237–11244.  Web of Science CrossRef PubMed CAS Google Scholar
First citationShannon, R. D. (1976). Acta Cryst. A32, 751–767.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXia, S.-Q. & Bobev, S. (2007a). J. Am. Chem. Soc. 129, 4049–4057.  Web of Science CrossRef PubMed CAS Google Scholar
First citationXia, S.-Q. & Bobev, S. (2007b). J. Am. Chem. Soc. 129, 10011–10018.  Web of Science CrossRef PubMed CAS Google Scholar
First citationXia, S.-Q. & Bobev, S. (2008a). J. Comput. Chem. 29, 2125–2133.  Web of Science CrossRef PubMed CAS Google Scholar
First citationXia, S.-Q. & Bobev, S. (2008b). Inorg. Chem. 47, 1919–1921.  Web of Science CrossRef PubMed CAS Google Scholar
First citationXia, S.-Q. & Bobev, S. (2010). Acta Cryst. E66, i81.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds