inorganic compounds
Pentaeuropium dicadmium pentaantimonide oxide, Eu5Cd2Sb5O
aDepartment of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
*Correspondence e-mail: sbobev@mail.chem.udel.edu
The title compound, Eu5Cd2Sb5O adopts the Ba5Cd2Sb5F-type structure (Pearson symbol oC52), which contains nine crystallographically unique sites in the all on special positions. One Eu, two Sb, and the Cd atom have m..; two other Eu, the third Sb and the O atom have m2m; the remaining Eu atom has 2/m.. symmetry. Eu atoms fill pentagonal channels built from corner-sharing CdSb4 tetrahedra. The isolated O atom, i.e., an oxide ion O2−, is located in a distorted tetrahedral cavity formed by four Eu cations.
Related literature
For related ternary pnictides, see: Xia & Bobev (2007a,b, 2008a,b); Saparov et al. (2008a,b, 2010, 2011); Park & Kim (2004). For related antimonide fluorides and oxides [A5Cd2Sb5F (A = Sr, Ba, Eu); Ba5Cd2Sb5Ox], see: Saparov & Bobev (2010). For another related bismuthide oxide (Ba2Cd2.13Bi3O), see: Xia & Bobev (2010). For ionic and covalent radii, see: Shannon (1976); Pauling (1960).
Experimental
Crystal data
|
Data collection: SMART (Bruker, 2002); cell SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: XP in SHELXTL; software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536811000274/mg2112sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811000274/mg2112Isup2.hkl
The reagents were handled in an argon-filled
or under vacuum. All metals were with a stated purity higher than 99.9% (metal basis). They were purchased from Alfa, kept in the and were used as received.A mixture of elemental Eu, Cd, Sb, and Pb (flux) in a molar ratio Eu:Cd:Sb:Pb = 2:1:2:10 was loaded in an alumina crucible. To prevent oxidation, the elements were weighed inside the
but the mixture was accidently left in contact with ambient air for ca. 20–30 minutes, prior to sealing it under vacuum inside a silica tube. After that, the reaction mixture was put in a box-furnace and heated to 1273 K at a rate of 200 K h-1, homogenized at this temperature for 24 h, and then slowly cooled to 823 K at a rate of 5 K h-1. After an equilibration step at 823 K for 96 h, the crystals were separated from the Pb flux.This reaction was aimed at obtaining large single-crystals of Eu11Cd6Sb12 (Saparov et al., 2008b), which was indeed the major product. However, alongside the needle crystals of Eu11Cd6Sb12, a small block-shaped crystal was also found. After the X-ray data were collected and the structure was solved, it turned out to be that of Eu5Cd2Sb5O. Other reactions using the same starting materials produced only the intermetallic phase, suggesting that the likely source of oxygen in this particular experiment was an unexpected partial oxidation. Attempts to increase the yield by using Eu2O3 as a deliberate source of oxygen were not successful and yielded multiple phases. Reactions aimed at obtaining the isostructural Eu5Cd2Sb5F (Saparov & Bobev, 2010) were successful – they were performed using CdF2 (Alfa), Eu, Cd, and Sb.
Because the determined unit-cell dimensions and
suggested isomorphism with Ba5Cd2Sb5F (Saparov & Bobev, 2010), the diffraction data were readily refined using this model. The refinements smoothly converged to low conventional residuals and a flat difference Fourier map. The maximum peak and deepest hole were located 0.86 Å from Eu2 and 0.93 Å from O, respectively.We note that when oxygen was excluded from the model, a residual peak of about 15 e- Å-3, located ca. 2.6–2.7 Å from Eu, remained in the difference Fourier map. Unlike the case of Ba2Cd3-δBi3O (Xia & Bobev, 2010), where the residual density lacked the typical oxoanion coordination and was modeled as a partially occupied Cd site, here the tetrahedral coordination by Eu matches very well the bonding requirements of O2-. The distances are reasonable and the oxygen site was fully occupied, as verified by freeing the site occupation factor, which led to an occupancy factor of 1.05 (2). In the final cycles, all atoms were refined as fully occupied.
Data collection: SMART (Bruker, 2002); cell
SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Eu5Cd2Sb5O | F(000) = 2702 |
Mr = 1609.37 | Dx = 7.078 Mg m−3 |
Orthorhombic, Cmcm | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2c 2 | Cell parameters from 1092 reflections |
a = 4.7088 (5) Å | θ = 1.9–28.3° |
b = 21.965 (2) Å | µ = 31.92 mm−1 |
c = 14.5982 (15) Å | T = 120 K |
V = 1509.9 (3) Å3 | Block, black |
Z = 4 | 0.06 × 0.05 × 0.04 mm |
Bruker SMART APEX diffractometer | 1092 independent reflections |
Radiation source: fine-focus sealed tube | 1031 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.043 |
ω scans | θmax = 28.3°, θmin = 1.9° |
Absorption correction: multi-scan (SADABS; Bruker, 2002) | h = −6→6 |
Tmin = 0.161, Tmax = 0.279 | k = −28→28 |
10204 measured reflections | l = −19→19 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.020 | w = 1/[σ2(Fo2) + (0.0174P)2 + 9.1021P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.044 | (Δ/σ)max = 0.001 |
S = 1.14 | Δρmax = 1.18 e Å−3 |
1092 reflections | Δρmin = −1.16 e Å−3 |
46 parameters | Extinction correction: SHELXTL (Bruker, 2002), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.000112 (14) |
Eu5Cd2Sb5O | V = 1509.9 (3) Å3 |
Mr = 1609.37 | Z = 4 |
Orthorhombic, Cmcm | Mo Kα radiation |
a = 4.7088 (5) Å | µ = 31.92 mm−1 |
b = 21.965 (2) Å | T = 120 K |
c = 14.5982 (15) Å | 0.06 × 0.05 × 0.04 mm |
Bruker SMART APEX diffractometer | 1092 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2002) | 1031 reflections with I > 2σ(I) |
Tmin = 0.161, Tmax = 0.279 | Rint = 0.043 |
10204 measured reflections |
R[F2 > 2σ(F2)] = 0.020 | 46 parameters |
wR(F2) = 0.044 | 0 restraints |
S = 1.14 | Δρmax = 1.18 e Å−3 |
1092 reflections | Δρmin = −1.16 e Å−3 |
Experimental. Selected in the glove box, crystals were put in a Paratone N oil and cut to the desired dimensions. Chosen crystal was mounted on a tip of a glass fiber and quickly onto the goniometer. The crystal was kept under a cold nitrogen stream to protect from ambient conditions. Data collection is performed with four batch runs at ϕ = 0.00 ° (600 frames), at ϕ = 90.00 ° (600 frames), at ϕ = 180.00 ° (600 frames), and at ϕ = 270.00 (600 frames). Frame width = 0.30 ° in ω. Data are merged and treated with multi-scan absorption corrections. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Eu1 | 0.0000 | 0.270509 (17) | 0.61940 (3) | 0.01436 (11) | |
Eu2 | 0.0000 | 0.10016 (3) | 0.2500 | 0.02034 (14) | |
Eu3 | 0.0000 | 0.90247 (2) | 0.2500 | 0.01461 (12) | |
Eu4 | 0.0000 | 0.0000 | 0.0000 | 0.01393 (12) | |
Sb1 | 0.0000 | 0.14937 (2) | 0.02068 (3) | 0.01333 (12) | |
Sb2 | 0.0000 | 0.49492 (2) | 0.15383 (3) | 0.01439 (12) | |
Sb3 | 0.0000 | 0.29312 (3) | 0.2500 | 0.01319 (15) | |
Cd | 0.0000 | 0.36803 (3) | 0.08509 (4) | 0.01540 (13) | |
O | 0.0000 | 0.6539 (3) | 0.2500 | 0.0058 (12) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Eu1 | 0.01347 (18) | 0.01609 (19) | 0.01352 (19) | 0.000 | 0.000 | 0.00131 (14) |
Eu2 | 0.0283 (3) | 0.0179 (3) | 0.0148 (3) | 0.000 | 0.000 | 0.000 |
Eu3 | 0.0119 (2) | 0.0152 (3) | 0.0167 (3) | 0.000 | 0.000 | 0.000 |
Eu4 | 0.0145 (3) | 0.0151 (3) | 0.0122 (2) | 0.000 | 0.000 | −0.00009 (19) |
Sb1 | 0.0121 (2) | 0.0142 (2) | 0.0136 (2) | 0.000 | 0.000 | −0.00025 (18) |
Sb2 | 0.0137 (2) | 0.0171 (2) | 0.0123 (2) | 0.000 | 0.000 | 0.00042 (18) |
Sb3 | 0.0123 (3) | 0.0146 (3) | 0.0127 (3) | 0.000 | 0.000 | 0.000 |
Cd | 0.0137 (3) | 0.0186 (3) | 0.0140 (3) | 0.000 | 0.000 | −0.0012 (2) |
O | 0.006 (3) | 0.008 (3) | 0.003 (3) | 0.000 | 0.000 | 0.000 |
Eu1—Oi | 2.528 (4) | Sb1—Eu1xvi | 3.2738 (5) |
Eu1—Sb1ii | 3.2738 (5) | Sb1—Eu1xvii | 3.2738 (5) |
Eu1—Sb1iii | 3.2738 (5) | Sb1—Eu1vi | 3.3559 (7) |
Eu1—Sb3iv | 3.3363 (4) | Sb2—Sb2vi | 2.8078 (10) |
Eu1—Sb3v | 3.3363 (4) | Sb2—Cd | 2.9624 (8) |
Eu1—Sb1vi | 3.3559 (7) | Sb2—Eu4ix | 3.2556 (4) |
Eu2—Ovii | 2.634 (3) | Sb2—Eu4x | 3.2556 (4) |
Eu2—Oviii | 2.634 (3) | Sb2—Eu3viii | 3.4115 (5) |
Eu3—Sb3ix | 3.3634 (7) | Sb2—Eu3vii | 3.4115 (5) |
Eu3—Sb3x | 3.3634 (7) | Sb3—Cd | 2.9160 (7) |
Eu3—Sb2xi | 3.4115 (5) | Sb3—Cdvi | 2.9160 (7) |
Eu3—Sb2x | 3.4115 (5) | Sb3—Eu1xvii | 3.3363 (4) |
Eu3—Sb2ix | 3.4115 (5) | Sb3—Eu1iv | 3.3363 (4) |
Eu3—Sb2xii | 3.4115 (5) | Sb3—Eu1v | 3.3363 (4) |
Eu3—Cdix | 3.4512 (5) | Sb3—Eu1xvi | 3.3363 (4) |
Eu3—Cdxi | 3.4512 (5) | Sb3—Eu3vii | 3.3634 (7) |
Eu3—Cdxii | 3.4512 (5) | Sb3—Eu3viii | 3.3634 (7) |
Eu3—Cdx | 3.4512 (5) | Cd—Sb1xiii | 2.8413 (5) |
Eu4—Sb2xiii | 3.2556 (4) | Cd—Sb1xiv | 2.8413 (5) |
Eu4—Sb2vii | 3.2556 (4) | Cd—Eu3vii | 3.4512 (5) |
Eu4—Sb2xiv | 3.2556 (4) | Cd—Eu3viii | 3.4512 (5) |
Eu4—Sb2viii | 3.2556 (4) | O—Eu1i | 2.528 (4) |
Eu4—Sb1 | 3.2947 (6) | O—Eu1xviii | 2.528 (4) |
Eu4—Sb1xv | 3.2948 (6) | O—Eu2ix | 2.634 (3) |
Sb1—Cdxiii | 2.8413 (5) | O—Eu2x | 2.634 (3) |
Sb1—Cdxiv | 2.8413 (5) | ||
Oi—Eu1—Sb1ii | 88.79 (8) | Sb2xiii—Eu4—Sb2viii | 87.362 (15) |
Oi—Eu1—Sb1iii | 88.79 (8) | Sb2vii—Eu4—Sb2viii | 92.638 (15) |
Sb1ii—Eu1—Sb1iii | 91.972 (17) | Sb2xiv—Eu4—Sb2viii | 180.00 (2) |
Oi—Eu1—Sb3iv | 81.04 (8) | Sb2xiii—Eu4—Sb1 | 91.665 (10) |
Sb1ii—Eu1—Sb3iv | 88.237 (12) | Sb2vii—Eu4—Sb1 | 88.335 (10) |
Sb1iii—Eu1—Sb3iv | 169.821 (18) | Sb2xiv—Eu4—Sb1 | 91.665 (10) |
Oi—Eu1—Sb3v | 81.04 (8) | Sb2viii—Eu4—Sb1 | 88.335 (10) |
Sb1ii—Eu1—Sb3v | 169.821 (18) | Sb2xiii—Eu4—Sb1xv | 88.335 (10) |
Sb1iii—Eu1—Sb3v | 88.237 (12) | Sb2vii—Eu4—Sb1xv | 91.665 (10) |
Sb3iv—Eu1—Sb3v | 89.772 (15) | Sb2xiv—Eu4—Sb1xv | 88.335 (10) |
Oi—Eu1—Sb1vi | 168.60 (11) | Sb2viii—Eu4—Sb1xv | 91.665 (10) |
Sb1ii—Eu1—Sb1vi | 99.089 (14) | Sb1—Eu4—Sb1xv | 180.0 |
Sb1iii—Eu1—Sb1vi | 99.089 (14) | Sb2xiii—Eu4—Cdxiv | 100.934 (11) |
Sb3iv—Eu1—Sb1vi | 90.921 (15) | Sb2vii—Eu4—Cdxiv | 79.066 (11) |
Sb3v—Eu1—Sb1vi | 90.921 (15) | Sb2xiv—Eu4—Cdxiv | 47.500 (11) |
Oi—Eu1—Cdvi | 103.28 (11) | Sb2viii—Eu4—Cdxiv | 132.500 (11) |
Sb1ii—Eu1—Cdvi | 47.849 (9) | Sb1—Eu4—Cdxiv | 45.208 (9) |
Sb1iii—Eu1—Cdvi | 47.849 (9) | Sb1xv—Eu4—Cdxiv | 134.793 (9) |
Sb3iv—Eu1—Cdvi | 135.111 (8) | Sb2xiii—Eu4—Cdviii | 79.066 (11) |
Sb3v—Eu1—Cdvi | 135.111 (7) | Sb2vii—Eu4—Cdviii | 100.934 (11) |
Sb1vi—Eu1—Cdvi | 88.118 (17) | Sb2xiv—Eu4—Cdviii | 132.500 (11) |
Oi—Eu1—Eu1xix | 41.06 (11) | Sb2viii—Eu4—Cdviii | 47.500 (11) |
Sb1ii—Eu1—Eu1xix | 116.120 (11) | Sb1—Eu4—Cdviii | 134.792 (9) |
Sb1iii—Eu1—Eu1xix | 116.120 (11) | Sb1xv—Eu4—Cdviii | 45.207 (9) |
Sb3iv—Eu1—Eu1xix | 55.150 (8) | Cdxiv—Eu4—Cdviii | 180.000 (19) |
Sb3v—Eu1—Eu1xix | 55.150 (8) | Sb2xiii—Eu4—Cdxiii | 47.500 (11) |
Sb1vi—Eu1—Eu1xix | 127.542 (11) | Sb2vii—Eu4—Cdxiii | 132.500 (11) |
Cdvi—Eu1—Eu1xix | 144.340 (11) | Sb2xiv—Eu4—Cdxiii | 100.934 (11) |
Oi—Eu1—Cdiii | 127.77 (7) | Sb2viii—Eu4—Cdxiii | 79.066 (11) |
Sb1ii—Eu1—Cdiii | 143.242 (16) | Sb1—Eu4—Cdxiii | 45.208 (9) |
Sb1iii—Eu1—Cdiii | 85.892 (12) | Sb1xv—Eu4—Cdxiii | 134.793 (9) |
Sb3iv—Eu1—Cdiii | 99.991 (16) | Cdxiv—Eu4—Cdxiii | 73.486 (12) |
Sb3v—Eu1—Cdiii | 46.924 (12) | Cdviii—Eu4—Cdxiii | 106.514 (12) |
Sb1vi—Eu1—Cdiii | 45.530 (10) | Sb2xiii—Eu4—Cdvii | 132.500 (11) |
Cdvi—Eu1—Cdiii | 110.630 (13) | Sb2vii—Eu4—Cdvii | 47.500 (11) |
Eu1xix—Eu1—Cdiii | 97.418 (10) | Sb2xiv—Eu4—Cdvii | 79.066 (11) |
Oi—Eu1—Cdii | 127.77 (7) | Sb2viii—Eu4—Cdvii | 100.934 (11) |
Sb1ii—Eu1—Cdii | 85.892 (13) | Sb1—Eu4—Cdvii | 134.792 (9) |
Sb1iii—Eu1—Cdii | 143.242 (17) | Sb1xv—Eu4—Cdvii | 45.207 (9) |
Sb3iv—Eu1—Cdii | 46.924 (12) | Cdxiv—Eu4—Cdvii | 106.514 (12) |
Sb3v—Eu1—Cdii | 99.991 (17) | Cdviii—Eu4—Cdvii | 73.486 (12) |
Sb1vi—Eu1—Cdii | 45.530 (10) | Cdxiii—Eu4—Cdvii | 180.000 (19) |
Cdvi—Eu1—Cdii | 110.630 (13) | Sb2xiii—Eu4—Eu3xxiv | 127.751 (9) |
Eu1xix—Eu1—Cdii | 97.418 (10) | Sb2vii—Eu4—Eu3xxiv | 52.249 (9) |
Cdiii—Eu1—Cdii | 74.719 (14) | Sb2xiv—Eu4—Eu3xxiv | 127.751 (9) |
Oi—Eu1—Eu2iv | 37.31 (4) | Sb2viii—Eu4—Eu3xxiv | 52.249 (9) |
Sb1ii—Eu1—Eu2iv | 55.018 (11) | Sb1—Eu4—Eu3xxiv | 115.157 (11) |
Sb1iii—Eu1—Eu2iv | 104.009 (15) | Sb1xv—Eu4—Eu3xxiv | 64.843 (11) |
Sb3iv—Eu1—Eu2iv | 67.923 (14) | Cdxiv—Eu4—Eu3xxiv | 130.170 (8) |
Sb3v—Eu1—Eu2iv | 115.104 (14) | Cdviii—Eu4—Eu3xxiv | 49.830 (8) |
Sb1vi—Eu1—Eu2iv | 145.294 (6) | Cdxiii—Eu4—Eu3xxiv | 130.170 (8) |
Cdvi—Eu1—Eu2iv | 88.522 (13) | Cdvii—Eu4—Eu3xxiv | 49.830 (8) |
Eu1xix—Eu1—Eu2iv | 62.674 (7) | Sb2xiii—Eu4—Eu3xxv | 52.249 (9) |
Cdiii—Eu1—Eu2iv | 160.009 (14) | Sb2vii—Eu4—Eu3xxv | 127.751 (9) |
Cdii—Eu1—Eu2iv | 104.580 (11) | Sb2xiv—Eu4—Eu3xxv | 52.249 (9) |
Oi—Eu1—Eu2v | 37.31 (4) | Sb2viii—Eu4—Eu3xxv | 127.751 (9) |
Sb1ii—Eu1—Eu2v | 104.009 (15) | Sb1—Eu4—Eu3xxv | 64.843 (11) |
Sb1iii—Eu1—Eu2v | 55.018 (11) | Sb1xv—Eu4—Eu3xxv | 115.157 (11) |
Sb3iv—Eu1—Eu2v | 115.104 (13) | Cdxiv—Eu4—Eu3xxv | 49.830 (8) |
Sb3v—Eu1—Eu2v | 67.923 (14) | Cdviii—Eu4—Eu3xxv | 130.170 (8) |
Sb1vi—Eu1—Eu2v | 145.294 (6) | Cdxiii—Eu4—Eu3xxv | 49.830 (8) |
Cdvi—Eu1—Eu2v | 88.522 (12) | Cdvii—Eu4—Eu3xxv | 130.170 (8) |
Eu1xix—Eu1—Eu2v | 62.674 (6) | Eu3xxiv—Eu4—Eu3xxv | 180.000 (12) |
Cdiii—Eu1—Eu2v | 104.580 (11) | Cdxiii—Sb1—Cdxiv | 111.92 (3) |
Cdii—Eu1—Eu2v | 160.009 (14) | Cdxiii—Sb1—Eu1xvi | 155.15 (2) |
Eu2iv—Eu1—Eu2v | 69.070 (12) | Cdxiv—Sb1—Eu1xvi | 73.476 (13) |
Ovii—Eu2—Oviii | 126.7 (2) | Cdxiii—Sb1—Eu1xvii | 73.476 (13) |
Ovii—Eu2—Sb1 | 82.09 (3) | Cdxiv—Sb1—Eu1xvii | 155.15 (2) |
Oviii—Eu2—Sb1 | 82.09 (3) | Eu1xvi—Sb1—Eu1xvii | 91.971 (17) |
Ovii—Eu2—Sb1vi | 82.09 (3) | Cdxiii—Sb1—Eu4 | 79.416 (15) |
Oviii—Eu2—Sb1vi | 82.09 (3) | Cdxiv—Sb1—Eu4 | 79.416 (15) |
Sb1—Eu2—Sb1vi | 144.21 (2) | Eu1xvi—Sb1—Eu4 | 125.146 (12) |
Ovii—Eu2—Sb2viii | 151.15 (7) | Eu1xvii—Sb1—Eu4 | 125.146 (11) |
Oviii—Eu2—Sb2viii | 72.66 (11) | Cdxiii—Sb1—Eu1vi | 77.026 (16) |
Sb1—Eu2—Sb2viii | 79.950 (11) | Cdxiv—Sb1—Eu1vi | 77.026 (16) |
Sb1vi—Eu2—Sb2viii | 124.796 (11) | Eu1xvi—Sb1—Eu1vi | 80.908 (14) |
Ovii—Eu2—Sb2xx | 151.15 (7) | Eu1xvii—Sb1—Eu1vi | 80.908 (14) |
Oviii—Eu2—Sb2xx | 72.66 (11) | Eu4—Sb1—Eu1vi | 137.202 (18) |
Sb1—Eu2—Sb2xx | 124.795 (11) | Cdxiii—Sb1—Eu2 | 118.413 (15) |
Sb1vi—Eu2—Sb2xx | 79.951 (11) | Cdxiv—Sb1—Eu2 | 118.413 (15) |
Sb2viii—Eu2—Sb2xx | 46.098 (17) | Eu1xvi—Sb1—Eu2 | 75.300 (13) |
Ovii—Eu2—Sb2xxi | 72.66 (11) | Eu1xvii—Sb1—Eu2 | 75.300 (13) |
Oviii—Eu2—Sb2xxi | 151.15 (7) | Eu4—Sb1—Eu2 | 77.364 (14) |
Sb1—Eu2—Sb2xxi | 124.795 (11) | Eu1vi—Sb1—Eu2 | 145.435 (19) |
Sb1vi—Eu2—Sb2xxi | 79.951 (11) | Sb2vi—Sb2—Cd | 109.800 (15) |
Sb2viii—Eu2—Sb2xxi | 99.72 (2) | Sb2vi—Sb2—Eu4ix | 133.614 (8) |
Sb2xx—Eu2—Sb2xxi | 82.082 (16) | Cd—Sb2—Eu4ix | 78.379 (13) |
Ovii—Eu2—Sb2vii | 72.66 (11) | Sb2vi—Sb2—Eu4x | 133.614 (8) |
Oviii—Eu2—Sb2vii | 151.15 (7) | Cd—Sb2—Eu4x | 78.379 (13) |
Sb1—Eu2—Sb2vii | 79.950 (11) | Eu4ix—Sb2—Eu4x | 92.637 (15) |
Sb1vi—Eu2—Sb2vii | 124.796 (11) | Sb2vi—Sb2—Eu3viii | 65.699 (9) |
Sb2viii—Eu2—Sb2vii | 82.082 (17) | Cd—Sb2—Eu3viii | 65.122 (14) |
Sb2xx—Eu2—Sb2vii | 99.72 (2) | Eu4ix—Sb2—Eu3viii | 78.764 (8) |
Sb2xxi—Eu2—Sb2vii | 46.098 (17) | Eu4x—Sb2—Eu3viii | 143.452 (18) |
Ovii—Eu2—Eu1iv | 35.58 (8) | Sb2vi—Sb2—Eu3vii | 65.699 (9) |
Oviii—Eu2—Eu1iv | 101.55 (11) | Cd—Sb2—Eu3vii | 65.122 (14) |
Sb1—Eu2—Eu1iv | 103.103 (14) | Eu4ix—Sb2—Eu3vii | 143.452 (18) |
Sb1vi—Eu2—Eu1iv | 49.682 (9) | Eu4x—Sb2—Eu3vii | 78.764 (8) |
Sb2viii—Eu2—Eu1iv | 173.179 (9) | Eu3viii—Sb2—Eu3vii | 87.282 (17) |
Sb2xx—Eu2—Eu1iv | 129.306 (11) | Sb2vi—Sb2—Eu2x | 66.952 (9) |
Sb2xxi—Eu2—Eu1iv | 83.628 (11) | Cd—Sb2—Eu2x | 137.661 (10) |
Sb2vii—Eu2—Eu1iv | 104.387 (9) | Eu4ix—Sb2—Eu2x | 136.289 (17) |
Ovii—Eu2—Eu1xvi | 35.58 (8) | Eu4x—Sb2—Eu2x | 76.887 (8) |
Oviii—Eu2—Eu1xvi | 101.55 (11) | Eu3viii—Sb2—Eu2x | 132.515 (16) |
Sb1—Eu2—Eu1xvi | 49.683 (9) | Eu3vii—Sb2—Eu2x | 76.673 (13) |
Sb1vi—Eu2—Eu1xvi | 103.102 (15) | Sb2vi—Sb2—Eu2ix | 66.952 (8) |
Sb2viii—Eu2—Eu1xvi | 129.306 (11) | Cd—Sb2—Eu2ix | 137.661 (10) |
Sb2xx—Eu2—Eu1xvi | 173.179 (9) | Eu4ix—Sb2—Eu2ix | 76.887 (7) |
Sb2xxi—Eu2—Eu1xvi | 104.387 (10) | Eu4x—Sb2—Eu2ix | 136.289 (17) |
Sb2vii—Eu2—Eu1xvi | 83.628 (11) | Eu3viii—Sb2—Eu2ix | 76.673 (14) |
Eu1iv—Eu2—Eu1xvi | 54.653 (13) | Eu3vii—Sb2—Eu2ix | 132.515 (16) |
Ovii—Eu2—Eu1v | 101.55 (11) | Eu2x—Sb2—Eu2ix | 82.083 (17) |
Oviii—Eu2—Eu1v | 35.58 (8) | Cd—Sb3—Cdvi | 111.30 (3) |
Sb1—Eu2—Eu1v | 103.103 (15) | Cd—Sb3—Eu1xvii | 76.384 (11) |
Sb1vi—Eu2—Eu1v | 49.682 (9) | Cdvi—Sb3—Eu1xvii | 135.084 (7) |
Sb2viii—Eu2—Eu1v | 104.387 (9) | Cd—Sb3—Eu1iv | 135.084 (7) |
Sb2xx—Eu2—Eu1v | 83.628 (11) | Cdvi—Sb3—Eu1iv | 76.384 (11) |
Sb2xxi—Eu2—Eu1v | 129.306 (11) | Eu1xvii—Sb3—Eu1iv | 130.47 (3) |
Sb2vii—Eu2—Eu1v | 173.179 (9) | Cd—Sb3—Eu1v | 135.084 (7) |
Eu1iv—Eu2—Eu1v | 69.069 (12) | Cdvi—Sb3—Eu1v | 76.384 (12) |
Eu1xvi—Eu2—Eu1v | 93.682 (16) | Eu1xvii—Sb3—Eu1v | 69.701 (15) |
Ovii—Eu2—Eu1xvii | 101.55 (11) | Eu1iv—Sb3—Eu1v | 89.770 (15) |
Oviii—Eu2—Eu1xvii | 35.58 (8) | Cd—Sb3—Eu1xvi | 76.384 (11) |
Sb1—Eu2—Eu1xvii | 49.683 (9) | Cdvi—Sb3—Eu1xvi | 135.084 (7) |
Sb1vi—Eu2—Eu1xvii | 103.102 (14) | Eu1xvii—Sb3—Eu1xvi | 89.770 (15) |
Sb2viii—Eu2—Eu1xvii | 83.628 (11) | Eu1iv—Sb3—Eu1xvi | 69.701 (15) |
Sb2xx—Eu2—Eu1xvii | 104.387 (9) | Eu1v—Sb3—Eu1xvi | 130.47 (3) |
Sb2xxi—Eu2—Eu1xvii | 173.179 (9) | Cd—Sb3—Eu3vii | 66.237 (13) |
Sb2vii—Eu2—Eu1xvii | 129.306 (11) | Cdvi—Sb3—Eu3vii | 66.236 (13) |
Eu1iv—Eu2—Eu1xvii | 93.682 (16) | Eu1xvii—Sb3—Eu3vii | 142.479 (13) |
Eu1xvi—Eu2—Eu1xvii | 69.069 (12) | Eu1iv—Sb3—Eu3vii | 78.764 (10) |
Eu1v—Eu2—Eu1xvii | 54.653 (13) | Eu1v—Sb3—Eu3vii | 142.479 (13) |
Sb3ix—Eu3—Sb3x | 88.85 (2) | Eu1xvi—Sb3—Eu3vii | 78.764 (10) |
Sb3ix—Eu3—Sb2xi | 155.259 (10) | Cd—Sb3—Eu3viii | 66.237 (13) |
Sb3x—Eu3—Sb2xi | 86.675 (12) | Cdvi—Sb3—Eu3viii | 66.236 (14) |
Sb3ix—Eu3—Sb2x | 155.259 (10) | Eu1xvii—Sb3—Eu3viii | 78.764 (10) |
Sb3x—Eu3—Sb2x | 86.675 (12) | Eu1iv—Sb3—Eu3viii | 142.479 (13) |
Sb2xi—Eu3—Sb2x | 48.601 (18) | Eu1v—Sb3—Eu3viii | 78.764 (10) |
Sb3ix—Eu3—Sb2ix | 86.675 (12) | Eu1xvi—Sb3—Eu3viii | 142.479 (13) |
Sb3x—Eu3—Sb2ix | 155.259 (10) | Eu3vii—Sb3—Eu3viii | 88.86 (2) |
Sb2xi—Eu3—Sb2ix | 106.94 (2) | Sb1xiii—Cd—Sb1xiv | 111.92 (3) |
Sb2x—Eu3—Sb2ix | 87.283 (17) | Sb1xiii—Cd—Sb3 | 111.885 (17) |
Sb3ix—Eu3—Sb2xii | 86.675 (12) | Sb1xiv—Cd—Sb3 | 111.885 (17) |
Sb3x—Eu3—Sb2xii | 155.259 (10) | Sb1xiii—Cd—Sb2 | 108.095 (17) |
Sb2xi—Eu3—Sb2xii | 87.283 (17) | Sb1xiv—Cd—Sb2 | 108.095 (17) |
Sb2x—Eu3—Sb2xii | 106.94 (2) | Sb3—Cd—Sb2 | 104.55 (2) |
Sb2ix—Eu3—Sb2xii | 48.601 (18) | Sb1xiii—Cd—Eu3vii | 166.858 (18) |
Sb3ix—Eu3—Cdix | 50.649 (11) | Sb1xiv—Cd—Eu3vii | 80.981 (12) |
Sb3x—Eu3—Cdix | 108.724 (16) | Sb3—Cd—Eu3vii | 63.115 (14) |
Sb2xi—Eu3—Cdix | 152.666 (19) | Sb2—Cd—Eu3vii | 63.735 (14) |
Sb2x—Eu3—Cdix | 108.315 (13) | Sb1xiii—Cd—Eu3viii | 80.981 (12) |
Sb2ix—Eu3—Cdix | 51.142 (13) | Sb1xiv—Cd—Eu3viii | 166.858 (18) |
Sb2xii—Eu3—Cdix | 86.946 (12) | Sb3—Cd—Eu3viii | 63.115 (14) |
Sb3ix—Eu3—Cdxi | 108.724 (17) | Sb2—Cd—Eu3viii | 63.735 (14) |
Sb3x—Eu3—Cdxi | 50.649 (11) | Eu3vii—Cd—Eu3viii | 86.030 (15) |
Sb2xi—Eu3—Cdxi | 51.142 (13) | Sb1xiii—Cd—Eu1vi | 58.674 (13) |
Sb2x—Eu3—Cdxi | 86.946 (12) | Sb1xiv—Cd—Eu1vi | 58.674 (13) |
Sb2ix—Eu3—Cdxi | 152.666 (19) | Sb3—Cd—Eu1vi | 109.99 (2) |
Sb2xii—Eu3—Cdxi | 108.315 (14) | Sb2—Cd—Eu1vi | 145.46 (2) |
Cdix—Eu3—Cdxi | 154.68 (3) | Eu3vii—Cd—Eu1vi | 133.990 (11) |
Sb3ix—Eu3—Cdxii | 50.649 (11) | Eu3viii—Cd—Eu1vi | 133.990 (11) |
Sb3x—Eu3—Cdxii | 108.724 (17) | Sb1xiii—Cd—Eu1xvii | 57.443 (13) |
Sb2xi—Eu3—Cdxii | 108.315 (13) | Sb1xiv—Cd—Eu1xvii | 117.87 (2) |
Sb2x—Eu3—Cdxii | 152.666 (19) | Sb3—Cd—Eu1xvii | 56.693 (13) |
Sb2ix—Eu3—Cdxii | 86.946 (12) | Sb2—Cd—Eu1xvii | 133.962 (13) |
Sb2xii—Eu3—Cdxii | 51.142 (13) | Eu3vii—Cd—Eu1xvii | 119.724 (18) |
Cdix—Eu3—Cdxii | 88.461 (16) | Eu3viii—Cd—Eu1xvii | 70.603 (12) |
Cdxi—Eu3—Cdxii | 86.030 (15) | Eu1vi—Cd—Eu1xvii | 69.370 (13) |
Sb3ix—Eu3—Cdx | 108.724 (16) | Sb1xiii—Cd—Eu1xvi | 117.87 (2) |
Sb3x—Eu3—Cdx | 50.649 (11) | Sb1xiv—Cd—Eu1xvi | 57.443 (13) |
Sb2xi—Eu3—Cdx | 86.946 (12) | Sb3—Cd—Eu1xvi | 56.693 (13) |
Sb2x—Eu3—Cdx | 51.142 (13) | Sb2—Cd—Eu1xvi | 133.962 (13) |
Sb2ix—Eu3—Cdx | 108.315 (13) | Eu3vii—Cd—Eu1xvi | 70.603 (12) |
Sb2xii—Eu3—Cdx | 152.666 (19) | Eu3viii—Cd—Eu1xvi | 119.724 (18) |
Cdix—Eu3—Cdx | 86.030 (15) | Eu1vi—Cd—Eu1xvi | 69.370 (13) |
Cdxi—Eu3—Cdx | 88.461 (16) | Eu1xvii—Cd—Eu1xvi | 74.720 (15) |
Cdxii—Eu3—Cdx | 154.68 (3) | Sb1xiii—Cd—Eu4x | 115.04 (2) |
Sb3ix—Eu3—Eu4xxii | 111.194 (5) | Sb1xiv—Cd—Eu4x | 55.378 (13) |
Sb3x—Eu3—Eu4xxii | 111.194 (5) | Sb3—Cd—Eu4x | 132.546 (13) |
Sb2xi—Eu3—Eu4xxii | 48.986 (9) | Sb2—Cd—Eu4x | 54.120 (12) |
Sb2x—Eu3—Eu4xxii | 93.069 (14) | Eu3vii—Cd—Eu4x | 69.550 (10) |
Sb2ix—Eu3—Eu4xxii | 93.069 (14) | Eu3viii—Cd—Eu4x | 117.827 (18) |
Sb2xii—Eu3—Eu4xxii | 48.986 (8) | Eu1vi—Cd—Eu4x | 99.961 (13) |
Cdix—Eu3—Eu4xxii | 135.440 (10) | Eu1xvii—Cd—Eu4x | 168.941 (17) |
Cdxi—Eu3—Eu4xxii | 60.620 (10) | Eu1xvi—Cd—Eu4x | 104.797 (9) |
Cdxii—Eu3—Eu4xxii | 60.620 (10) | Sb1xiii—Cd—Eu4ix | 55.378 (13) |
Cdx—Eu3—Eu4xxii | 135.440 (10) | Sb1xiv—Cd—Eu4ix | 115.04 (2) |
Sb3ix—Eu3—Eu4xxiii | 111.194 (5) | Sb3—Cd—Eu4ix | 132.546 (13) |
Sb3x—Eu3—Eu4xxiii | 111.194 (5) | Sb2—Cd—Eu4ix | 54.120 (12) |
Sb2xi—Eu3—Eu4xxiii | 93.069 (14) | Eu3vii—Cd—Eu4ix | 117.827 (18) |
Sb2x—Eu3—Eu4xxiii | 48.986 (8) | Eu3viii—Cd—Eu4ix | 69.550 (10) |
Sb2ix—Eu3—Eu4xxiii | 48.986 (8) | Eu1vi—Cd—Eu4ix | 99.961 (13) |
Sb2xii—Eu3—Eu4xxiii | 93.069 (14) | Eu1xvii—Cd—Eu4ix | 104.797 (9) |
Cdix—Eu3—Eu4xxiii | 60.620 (10) | Eu1xvi—Cd—Eu4ix | 168.941 (17) |
Cdxi—Eu3—Eu4xxiii | 135.440 (10) | Eu4x—Cd—Eu4ix | 73.485 (12) |
Cdxii—Eu3—Eu4xxiii | 135.440 (10) | Eu1i—O—Eu1xviii | 97.9 (2) |
Cdx—Eu3—Eu4xxiii | 60.620 (10) | Eu1i—O—Eu2ix | 107.12 (4) |
Eu4xxii—Eu3—Eu4xxiii | 119.173 (14) | Eu1xviii—O—Eu2ix | 107.12 (4) |
Sb2xiii—Eu4—Sb2vii | 180.00 (2) | Eu1i—O—Eu2x | 107.12 (4) |
Sb2xiii—Eu4—Sb2xiv | 92.638 (15) | Eu1xviii—O—Eu2x | 107.12 (4) |
Sb2vii—Eu4—Sb2xiv | 87.362 (15) | Eu2ix—O—Eu2x | 126.7 (2) |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x+1/2, −y+1/2, z+1/2; (iii) −x−1/2, −y+1/2, z+1/2; (iv) −x+1/2, −y+1/2, −z+1; (v) −x−1/2, −y+1/2, −z+1; (vi) x, y, −z+1/2; (vii) x+1/2, y−1/2, z; (viii) x−1/2, y−1/2, z; (ix) x−1/2, y+1/2, z; (x) x+1/2, y+1/2, z; (xi) x+1/2, y+1/2, −z+1/2; (xii) x−1/2, y+1/2, −z+1/2; (xiii) −x−1/2, −y+1/2, −z; (xiv) −x+1/2, −y+1/2, −z; (xv) −x, −y, −z; (xvi) −x+1/2, −y+1/2, z−1/2; (xvii) −x−1/2, −y+1/2, z−1/2; (xviii) −x, −y+1, z−1/2; (xix) x, y, −z+3/2; (xx) x−1/2, y−1/2, −z+1/2; (xxi) x+1/2, y−1/2, −z+1/2; (xxii) −x, −y+1, z+1/2; (xxiii) x, y+1, z; (xxiv) x, y−1, z; (xxv) −x, −y+1, −z. |
Experimental details
Crystal data | |
Chemical formula | Eu5Cd2Sb5O |
Mr | 1609.37 |
Crystal system, space group | Orthorhombic, Cmcm |
Temperature (K) | 120 |
a, b, c (Å) | 4.7088 (5), 21.965 (2), 14.5982 (15) |
V (Å3) | 1509.9 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 31.92 |
Crystal size (mm) | 0.06 × 0.05 × 0.04 |
Data collection | |
Diffractometer | Bruker SMART APEX diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2002) |
Tmin, Tmax | 0.161, 0.279 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 10204, 1092, 1031 |
Rint | 0.043 |
(sin θ/λ)max (Å−1) | 0.667 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.020, 0.044, 1.14 |
No. of reflections | 1092 |
No. of parameters | 46 |
Δρmax, Δρmin (e Å−3) | 1.18, −1.16 |
Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), XP in SHELXTL (Sheldrick, 2008).
Acknowledgements
The authors acknowledge financial support from the University of Delaware and the Petroleum Research Fund (ACS–PRF).
References
Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Park, S.-M. & Kim, S.-J. (2004). J. Solid State Chem. 177, 3418–3422. Web of Science CrossRef CAS Google Scholar
Pauling, L. (1960). The Nature of the Chemical Bond, 3rd ed. Ithaca, NY: Cornell University Press. Google Scholar
Saparov, B. & Bobev, S. (2010). Dalton Trans. pp. 11335–11343. Web of Science CSD CrossRef Google Scholar
Saparov, B., Bobev, S., Ozbay, A. & Nowak, E. R. (2008b). J. Solid State Chem. 181, 2690–2696. Web of Science CrossRef CAS Google Scholar
Saparov, B., He, H., Zhang, H., Greene, R. & Bobev, S. (2010). Dalton Trans. pp. 1063–1070. Web of Science CSD CrossRef Google Scholar
Saparov, B., Saito, M. & Bobev, S. (2011). J. Solid State Chem. doi:10.1016/j.jssc.2010.12.015. Google Scholar
Saparov, B., Xia, S.-Q. & Bobev, S. (2008a). Inorg. Chem. 47, 11237–11244. Web of Science CrossRef PubMed CAS Google Scholar
Shannon, R. D. (1976). Acta Cryst. A32, 751–767. CrossRef CAS IUCr Journals Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Xia, S.-Q. & Bobev, S. (2007a). J. Am. Chem. Soc. 129, 4049–4057. Web of Science CrossRef PubMed CAS Google Scholar
Xia, S.-Q. & Bobev, S. (2007b). J. Am. Chem. Soc. 129, 10011–10018. Web of Science CrossRef PubMed CAS Google Scholar
Xia, S.-Q. & Bobev, S. (2008a). J. Comput. Chem. 29, 2125–2133. Web of Science CrossRef PubMed CAS Google Scholar
Xia, S.-Q. & Bobev, S. (2008b). Inorg. Chem. 47, 1919–1921. Web of Science CrossRef PubMed CAS Google Scholar
Xia, S.-Q. & Bobev, S. (2010). Acta Cryst. E66, i81. Web of Science CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The title compound, Eu5Cd2Sb5O, is isostructural to Ba5Cd2Sb5F, recently reported (Saparov & Bobev, 2010). The structure contains one-dimensional [Cd2Sb5]9- polyanions and isolated O2- ions surrounded tetrahedrally by Eu cations (Fig. 1). The polyanions are constructed from two chains of corner-sharing CdSb4 tetrahedra connected through Sb3 atoms and Sb2–Sb2 bonds [2.8078 (10) Å]. Similar strong homoatomic Sb–Sb interactions are found in related polyanionic Zn–Sb and Cd–Sb substructures [Ba3Cd2Sb4 (Saparov et al., 2008a), Sr11Cd6Sb12 (Park & Kim, 2004; Xia & Bobev, 2008a), Eu11Cd6Sb12 and Eu11Cd6Sb12 (Saparov et al., 2008b), Ba2Cd2Sb3 (Saparov et al., 2010)]. The Cd–Sb interactions [2.8413 (5) Å to 2.9624 (8) Å] are comparable to the sum of the covalent radii (Pauling, 1960) and to distances found in other structures based on CdSb4 tetrahedra [Ba3Cd2Sb4 (Saparov et al., 2008a), Ba21Cd4Sb18 (Xia and Bobev, 2008b), Eu11Cd6Sb12 (Saparov et al., 2008b), A2CdSb2 (Xia & Bobev, 2007a; Saparov et al., 2011), Sr9Cd4.49 (1)Sb9 (Xia & Bobev, 2007b)].
Band structure calculations highlight the importance of ionic Ba–F interations near the Fermi level to optimize bonding in Ba5Cd2Sb5F, but exact electron balance is achieved in the corresponding oxide Ba5Cd2Sb5Ox only when x = 0.5 (Saparov & Bobev, 2010). Whereas the fluoride is free of disorder, the oxide exhibits underoccupancy of the oxygen site, causing positional disorder of the next-nearest Ba atoms, as revealed by elongated atomic displacement parameters on the Ba2 site (modeled as a split position) in Ba5Cd2Sb5O0.59 (3). The Ba2 atoms move away from their equilibrium positions towards the empty space that results when the oxygen site is vacant. Thus, it is surprising that the present structure of Eu5Cd2Sb5O contains a fully occupied oxygen site, because the formula would show a one-electron deficiency, viz. (Eu2+)5(Cd2+)2(Sb3-)3(Sb2-)2(O2-). A possible resolution is to propose the occurrence of Eu in both +2 and +3 oxidation states. Because phase-pure samples were unavailable, magnetic measurements could not be performed to verify this proposal. Nevertheless, we note that the Eu1–O distance [2.528 (4) Å] is only 0.4% longer than the Eu1–F distance in Eu5Cd2Sb5F (Saparov & Bobev, 2010); this increase does not scale with the difference between the ionic radii of O2- and F-, the former being nearly 5% bigger than the latter (Shannon, 1976). A similar conclusion can be drawn by comparing the Eu2–O [2.634 (3) Å] and Eu2–F [2.635 (3) Å] distances.