inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Praseodymium(III) sulfate hydroxide, Pr(SO4)(OH)

aZhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, Zhejiang 321004, People's Republic of China
*Correspondence e-mail: jwcheng@zjnu.cn

(Received 22 December 2010; accepted 5 January 2011; online 15 January 2011)

The title compound, Pr(SO4)(OH), obtained under hydro­thermal conditions, consists of PrIII ions coordinated by nine O atoms from six sulfate groups and three hydroxide anions. The bridging mode of the O atoms results in the formation of a three-dimensional framework, stabilized by two O—H⋯O hydrogen-bonding inter­actions.

Related literature

Lanthanide sulfate hydroxides exhibit a variety of architectures, see: Xu et al. (2007[Xu, Y., Ding, S. & Zheng, X. (2007). J. Solid State Chem. 180, 2020-2025.]); Zhang et al. (2004[Zhang, Q., Lu, C., Yang, W., Chen, S. & Yu, Y. (2004). Inorg. Chem. Commun. 7, 889-892.]). For related structures, see: Yang et al. (2005[Yang, Y., Zhu, L.-H., Zeng, M.-H. & Feng, X.-L. (2005). Acta Cryst. E61, i41-i43.]); Ding et al. (2006[Ding, S.-H., Sun, X.-C., Zhu, Y.-L., Chen, Q. & Xu, Y. (2006). Acta Cryst. E62, i269-i271.]); Zhang et al. (2004[Zhang, Q., Lu, C., Yang, W., Chen, S. & Yu, Y. (2004). Inorg. Chem. Commun. 7, 889-892.]); Zhang & Lu (2008[Zhang, T. & Lu, J. (2008). Acta Cryst. E64, i49.]).

Experimental

Crystal data
  • Pr(SO4)(OH)

  • Mr = 253.98

  • Monoclinic, P 21 /n

  • a = 4.4891 (18) Å

  • b = 12.484 (5) Å

  • c = 6.894 (3) Å

  • β = 106.310 (7)°

  • V = 370.8 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 13.59 mm−1

  • T = 293 K

  • 0.20 × 0.10 × 0.10 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.213, Tmax = 0.257

  • 2849 measured reflections

  • 840 independent reflections

  • 813 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.080

  • S = 1.09

  • 840 reflections

  • 65 parameters

  • H-atom parameters constrained

  • Δρmax = 1.73 e Å−3

  • Δρmin = −2.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5A⋯O3i 0.85 2.20 2.630 (7) 111
O5—H5A⋯O2ii 0.85 2.31 3.082 (7) 152
Symmetry codes: (i) -x, -y+2, -z; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Lanthanide sulfate hydroxides exhibit a variety of architectures (Xu et al., 2007; Zhang et al., 2004). We report here the compound Pr(SO4)(OH), which is isostructural to Ln(SO4)(OH) (Ln = La, Ce, Eu, Nd) (Zhang et al., 2004; Yang et al., 2005; Ding et al., 2006; Zhang et al., 2008). The PrIII ion is coordinated in a distorted tricapped trigonal prismatic geometry by the oxygen atoms from six sulfate groups and three hydroxide anions (Fig. 1). All oxygen atoms of the sulfate groups take part in the coordination. The S atom makes four S–O–La linkages through two 2-coordinated oxygen atoms [S–O–La] and two 3-coordinated oxygen atoms [S–(µ3-O)–La2]. The oxygen atoms of the hydroxide groups are four-coordinate, [HO—µ3-La3], linking three different Pr ions. The bridging mode of the oxygen atoms results in a three-dimensional framework, with the H atom of hydroxide anions forming weak O—H···O hydrogen bonds with two O atoms of sulfate groups (Fig. 2).

Related literature top

Lanthanide sulfate hydroxides exhibit a variety of architectures, see: Xu et al. (2007); Zhang et al. (2004). For related structures, see: Yang et al. (2005); Ding et al. (2006); Zhang et al. (2004, 2008).

Experimental top

A mixture of Pr(NO3)3.6H2O (0.25 mmol, 0.1088 g), MnSO4.H2O (0.2 mmol, 0.0338 g), and H2O (15 mL) was sealed in a 25-mL Teflon-lined stainless steel reactor and heated at 443 K for 72 h, and then cooled to room temperature over 3 days. Light-green prismatic crystals were obtained (yield: 32% based on Pr(NO3)3.6H2O).

Refinement top

The oxygen-bound H-atoms were located in the difference Fourier map and refined with the O—H distance restrained to 0.85 Å [Uiso(H) = 1.2Ueq(O)].

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Coordination of Pr in Pr(SO4)(OH). Displacement ellipsoids are drawn at the 30% probability level. [Symmetry codes: (i) x-1/2, -y+3/2, z+1/2; (ii) -x+1, -y+2, -z+1; (iii) x-1, y, z; (iv) -x, -y+2, -z+1; (v) -x+1, -y+2, -z; (vi) -x, -y+2, -z; (vii) x, y, z+1.]
[Figure 2] Fig. 2. Three-dimensional network in Pr(SO4)(OH).
Praseodymium(III) sulfate hydroxide top
Crystal data top
Pr(SO4)(OH)F(000) = 464
Mr = 253.98Dx = 4.550 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1066 reflections
a = 4.4891 (18) Åθ = 3.3–27.4°
b = 12.484 (5) ŵ = 13.59 mm1
c = 6.894 (3) ÅT = 293 K
β = 106.310 (7)°Prism, light green
V = 370.8 (3) Å30.20 × 0.10 × 0.10 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
840 independent reflections
Radiation source: fine-focus sealed tube813 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
ω scansθmax = 27.4°, θmin = 3.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 55
Tmin = 0.213, Tmax = 0.257k = 1416
2849 measured reflectionsl = 88
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.080 w = 1/[σ2(Fo2) + (0.0348P)2 + 1.2539P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
840 reflectionsΔρmax = 1.73 e Å3
65 parametersΔρmin = 2.15 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0303 (17)
Crystal data top
Pr(SO4)(OH)V = 370.8 (3) Å3
Mr = 253.98Z = 4
Monoclinic, P21/nMo Kα radiation
a = 4.4891 (18) ŵ = 13.59 mm1
b = 12.484 (5) ÅT = 293 K
c = 6.894 (3) Å0.20 × 0.10 × 0.10 mm
β = 106.310 (7)°
Data collection top
Bruker APEXII CCD
diffractometer
840 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
813 reflections with I > 2σ(I)
Tmin = 0.213, Tmax = 0.257Rint = 0.053
2849 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.080H-atom parameters constrained
S = 1.09Δρmax = 1.73 e Å3
840 reflectionsΔρmin = 2.15 e Å3
65 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pr0.14215 (8)0.93511 (2)0.30120 (5)0.0103 (2)
S0.4863 (3)0.85448 (11)0.1115 (2)0.0100 (3)
O10.3690 (11)0.8345 (4)0.0615 (6)0.0156 (9)
O20.5908 (12)0.7551 (4)0.1798 (7)0.0189 (10)
O30.2507 (11)0.9045 (4)0.2785 (7)0.0179 (10)
O40.7557 (12)0.9298 (3)0.0482 (8)0.0137 (10)
O50.3035 (11)1.0859 (4)0.5390 (7)0.0141 (9)
H5A0.14341.11930.54880.021*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pr0.0129 (3)0.0104 (3)0.0083 (3)0.00025 (10)0.00418 (19)0.00100 (9)
S0.0118 (7)0.0098 (7)0.0091 (7)0.0002 (5)0.0041 (6)0.0002 (5)
O10.020 (2)0.020 (2)0.012 (2)0.002 (2)0.0142 (19)0.0010 (17)
O20.027 (2)0.014 (2)0.020 (2)0.001 (2)0.011 (2)0.0016 (17)
O30.017 (2)0.023 (2)0.015 (2)0.005 (2)0.0060 (19)0.0030 (19)
O40.013 (2)0.013 (2)0.016 (2)0.0039 (15)0.005 (2)0.0022 (14)
O50.014 (2)0.017 (2)0.012 (2)0.0037 (18)0.0044 (18)0.0042 (17)
Geometric parameters (Å, º) top
Pr—O2i2.393 (5)S—O11.455 (5)
Pr—O5ii2.436 (5)S—O31.466 (5)
Pr—O52.468 (5)S—O41.497 (5)
Pr—O12.508 (4)O2—Prviii2.393 (5)
Pr—O4iii2.543 (5)O3—Prvi2.643 (5)
Pr—O5iv2.554 (5)O3—Prix2.826 (5)
Pr—O4v2.558 (5)O4—Prx2.543 (5)
Pr—O3vi2.643 (5)O4—Prv2.558 (5)
Pr—O3vii2.826 (5)O5—Prii2.436 (5)
Pr—Priv3.7056 (12)O5—Priv2.554 (5)
Pr—Prii3.9388 (12)O5—H5A0.8500
S—O21.450 (5)
O2i—Pr—O5ii88.30 (16)O5—Pr—Priv43.35 (12)
O2i—Pr—O5137.33 (16)O1—Pr—Priv173.83 (10)
O5ii—Pr—O573.13 (18)O4iii—Pr—Priv115.28 (12)
O2i—Pr—O166.58 (17)O5iv—Pr—Priv41.55 (10)
O5ii—Pr—O172.04 (15)O4v—Pr—Priv112.38 (11)
O5—Pr—O1136.21 (16)O3vi—Pr—Priv49.45 (10)
O2i—Pr—O4iii88.59 (15)O3vii—Pr—Priv45.31 (10)
O5ii—Pr—O4iii139.79 (17)O2i—Pr—Prii116.25 (12)
O5—Pr—O4iii130.10 (14)O5ii—Pr—Prii36.83 (11)
O1—Pr—O4iii70.01 (15)O5—Pr—Prii36.29 (11)
O2i—Pr—O5iv77.01 (17)O1—Pr—Prii105.16 (11)
O5ii—Pr—O5iv128.20 (19)O4iii—Pr—Prii151.15 (10)
O5—Pr—O5iv84.90 (16)O5iv—Pr—Prii109.08 (11)
O1—Pr—O5iv138.17 (15)O4v—Pr—Prii86.32 (11)
O4iii—Pr—O5iv89.84 (16)O3vi—Pr—Prii97.46 (11)
O2i—Pr—O4v136.90 (16)O3vii—Pr—Prii57.99 (11)
O5ii—Pr—O4v91.33 (16)Priv—Pr—Prii71.85 (3)
O5—Pr—O4v82.80 (16)O2—S—O1110.1 (3)
O1—Pr—O4v72.38 (15)O2—S—O3109.7 (3)
O4iii—Pr—O4v64.96 (17)O1—S—O3111.7 (3)
O5iv—Pr—O4v132.35 (15)O2—S—O4108.9 (3)
O2i—Pr—O3vi132.98 (17)O1—S—O4108.5 (3)
O5ii—Pr—O3vi133.47 (15)O3—S—O4107.9 (3)
O5—Pr—O3vi61.84 (16)S—O1—Pr139.7 (3)
O1—Pr—O3vi136.71 (14)S—O2—Prviii155.7 (3)
O4iii—Pr—O3vi72.40 (15)S—O3—Prvi133.7 (3)
O5iv—Pr—O3vi60.84 (15)S—O3—Prix137.8 (3)
O4v—Pr—O3vi72.83 (16)Prvi—O3—Prix85.24 (13)
O2i—Pr—O3vii78.53 (16)S—O4—Prx125.0 (3)
O5ii—Pr—O3vii70.23 (15)S—O4—Prv120.0 (3)
O5—Pr—O3vii59.19 (16)Prx—O4—Prv115.04 (17)
O1—Pr—O3vii128.53 (14)Prii—O5—Pr106.87 (18)
O4iii—Pr—O3vii147.45 (16)Prii—O5—Priv128.20 (19)
O5iv—Pr—O3vii58.29 (15)Pr—O5—Priv95.10 (16)
O4v—Pr—O3vii140.86 (15)Prii—O5—H5A142.8
O3vi—Pr—O3vii94.76 (13)Pr—O5—H5A109.3
O2i—Pr—Priv109.56 (13)Priv—O5—H5A40.0
O5ii—Pr—Priv103.47 (11)
O2—S—O1—Pr179.4 (4)O1—S—O4—Prx33.7 (4)
O3—S—O1—Pr58.5 (5)O3—S—O4—Prx154.9 (3)
O4—S—O1—Pr60.3 (5)O2—S—O4—Prv93.2 (3)
O2i—Pr—O1—S167.8 (5)O1—S—O4—Prv147.0 (3)
O5ii—Pr—O1—S96.1 (4)O3—S—O4—Prv25.8 (4)
O5—Pr—O1—S57.3 (5)O2i—Pr—O5—Prii68.0 (3)
O4iii—Pr—O1—S70.4 (4)O5ii—Pr—O5—Prii0.0
O5iv—Pr—O1—S136.1 (4)O1—Pr—O5—Prii38.5 (3)
O4v—Pr—O1—S1.3 (4)O4iii—Pr—O5—Prii141.99 (18)
O3vi—Pr—O1—S39.2 (5)O5iv—Pr—O5—Prii132.5 (2)
O3vii—Pr—O1—S140.6 (4)O4v—Pr—O5—Prii93.60 (19)
Priv—Pr—O1—S140.0 (7)O3vi—Pr—O5—Prii167.9 (2)
Prii—Pr—O1—S79.7 (4)O3vii—Pr—O5—Prii76.67 (19)
O1—S—O2—Prviii13.5 (8)Priv—Pr—O5—Prii132.5 (2)
O3—S—O2—Prviii109.8 (7)O2i—Pr—O5—Priv64.5 (3)
O4—S—O2—Prviii132.3 (7)O5ii—Pr—O5—Priv132.5 (2)
O2—S—O3—Prvi168.4 (4)O1—Pr—O5—Priv171.07 (15)
O1—S—O3—Prvi46.0 (5)O4iii—Pr—O5—Priv85.5 (2)
O4—S—O3—Prvi73.1 (4)O5iv—Pr—O5—Priv0.0
O2—S—O3—Prix39.4 (5)O4v—Pr—O5—Priv133.87 (16)
O1—S—O3—Prix161.8 (4)O3vi—Pr—O5—Priv59.53 (16)
O4—S—O3—Prix79.1 (5)O3vii—Pr—O5—Priv55.86 (15)
O2—S—O4—Prx86.1 (4)Prii—Pr—O5—Priv132.5 (2)
Symmetry codes: (i) x1/2, y+3/2, z+1/2; (ii) x+1, y+2, z+1; (iii) x1, y, z; (iv) x, y+2, z+1; (v) x+1, y+2, z; (vi) x, y+2, z; (vii) x, y, z+1; (viii) x+1/2, y+3/2, z1/2; (ix) x, y, z1; (x) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O3vi0.852.202.630 (7)111
O5—H5A···O2xi0.852.313.082 (7)152
Symmetry codes: (vi) x, y+2, z; (xi) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaPr(SO4)(OH)
Mr253.98
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)4.4891 (18), 12.484 (5), 6.894 (3)
β (°) 106.310 (7)
V3)370.8 (3)
Z4
Radiation typeMo Kα
µ (mm1)13.59
Crystal size (mm)0.20 × 0.10 × 0.10
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.213, 0.257
No. of measured, independent and
observed [I > 2σ(I)] reflections
2849, 840, 813
Rint0.053
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.080, 1.09
No. of reflections840
No. of parameters65
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.73, 2.15

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O3i0.852.202.630 (7)111
O5—H5A···O2ii0.852.313.082 (7)152
Symmetry codes: (i) x, y+2, z; (ii) x+1/2, y+1/2, z+1/2.
 

References

First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDing, S.-H., Sun, X.-C., Zhu, Y.-L., Chen, Q. & Xu, Y. (2006). Acta Cryst. E62, i269–i271.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, Y., Ding, S. & Zheng, X. (2007). J. Solid State Chem. 180, 2020–2025.  Web of Science CrossRef CAS Google Scholar
First citationYang, Y., Zhu, L.-H., Zeng, M.-H. & Feng, X.-L. (2005). Acta Cryst. E61, i41–i43.  Web of Science CrossRef IUCr Journals Google Scholar
First citationZhang, T. & Lu, J. (2008). Acta Cryst. E64, i49.  Web of Science CrossRef IUCr Journals Google Scholar
First citationZhang, Q., Lu, C., Yang, W., Chen, S. & Yu, Y. (2004). Inorg. Chem. Commun. 7, 889–892.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds