inorganic compounds
Praseodymium(III) sulfate hydroxide, Pr(SO_{4})(OH)
^{a}Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, Zhejiang 321004, People's Republic of China
^{*}Correspondence email: jwcheng@zjnu.cn
The title compound, Pr(SO_{4})(OH), obtained under hydrothermal conditions, consists of Pr^{III} ions coordinated by nine O atoms from six sulfate groups and three hydroxide anions. The bridging mode of the O atoms results in the formation of a threedimensional framework, stabilized by two O—H⋯O hydrogenbonding interactions.
Related literature
Lanthanide sulfate hydroxides exhibit a variety of architectures, see: Xu et al. (2007); Zhang et al. (2004). For related structures, see: Yang et al. (2005); Ding et al. (2006); Zhang et al. (2004); Zhang & Lu (2008).
Experimental
Crystal data

Refinement

Data collection: APEX2 (Bruker, 2006); cell SAINT (Bruker, 2006); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536811000298/mg2113sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811000298/mg2113Isup2.hkl
A mixture of Pr(NO_{3})_{3}.6H_{2}O (0.25 mmol, 0.1088 g), MnSO_{4}.H_{2}O (0.2 mmol, 0.0338 g), and H_{2}O (15 mL) was sealed in a 25mL Teflonlined stainless steel reactor and heated at 443 K for 72 h, and then cooled to room temperature over 3 days. Lightgreen prismatic crystals were obtained (yield: 32% based on Pr(NO_{3})_{3}.6H_{2}O).
The oxygenbound Hatoms were located in the difference Fourier map and refined with the O—H distance restrained to 0.85 Å [U_{iso}(H) = 1.2U_{eq}(O)].
Data collection: APEX2 (Bruker, 2006); cell
SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Pr(SO_{4})(OH)  F(000) = 464 
M_{r} = 253.98  D_{x} = 4.550 Mg m^{−}^{3} 
Monoclinic, P2_{1}/n  Mo Kα radiation, λ = 0.71073 Å 
Hall symbol: P 2yn  Cell parameters from 1066 reflections 
a = 4.4891 (18) Å  θ = 3.3–27.4° 
b = 12.484 (5) Å  µ = 13.59 mm^{−}^{1} 
c = 6.894 (3) Å  T = 293 K 
β = 106.310 (7)°  Prism, light green 
V = 370.8 (3) Å^{3}  0.20 × 0.10 × 0.10 mm 
Z = 4 
Bruker APEXII CCD diffractometer  840 independent reflections 
Radiation source: finefocus sealed tube  813 reflections with I > 2σ(I) 
Graphite monochromator  R_{int} = 0.053 
ω scans  θ_{max} = 27.4°, θ_{min} = 3.3° 
Absorption correction: multiscan (SADABS; Sheldrick, 1996)  h = −5→5 
T_{min} = 0.213, T_{max} = 0.257  k = −14→16 
2849 measured reflections  l = −8→8 
Refinement on F^{2}  Secondary atom site location: difference Fourier map 
Leastsquares matrix: full  Hydrogen site location: inferred from neighbouring sites 
R[F^{2} > 2σ(F^{2})] = 0.033  Hatom parameters constrained 
wR(F^{2}) = 0.080  w = 1/[σ^{2}(F_{o}^{2}) + (0.0348P)^{2} + 1.2539P] where P = (F_{o}^{2} + 2F_{c}^{2})/3 
S = 1.09  (Δ/σ)_{max} = 0.001 
840 reflections  Δρ_{max} = 1.73 e Å^{−}^{3} 
65 parameters  Δρ_{min} = −2.15 e Å^{−}^{3} 
0 restraints  Extinction correction: SHELXL97 (Sheldrick, 2008), Fc^{*}=kFc[1+0.001xFc^{2}λ^{3}/sin(2θ)]^{1/4} 
Primary atom site location: structureinvariant direct methods  Extinction coefficient: 0.0303 (17) 
Pr(SO_{4})(OH)  V = 370.8 (3) Å^{3} 
M_{r} = 253.98  Z = 4 
Monoclinic, P2_{1}/n  Mo Kα radiation 
a = 4.4891 (18) Å  µ = 13.59 mm^{−}^{1} 
b = 12.484 (5) Å  T = 293 K 
c = 6.894 (3) Å  0.20 × 0.10 × 0.10 mm 
β = 106.310 (7)° 
Bruker APEXII CCD diffractometer  840 independent reflections 
Absorption correction: multiscan (SADABS; Sheldrick, 1996)  813 reflections with I > 2σ(I) 
T_{min} = 0.213, T_{max} = 0.257  R_{int} = 0.053 
2849 measured reflections 
R[F^{2} > 2σ(F^{2})] = 0.033  0 restraints 
wR(F^{2}) = 0.080  Hatom parameters constrained 
S = 1.09  Δρ_{max} = 1.73 e Å^{−}^{3} 
840 reflections  Δρ_{min} = −2.15 e Å^{−}^{3} 
65 parameters 
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. 
Refinement. Refinement of F^{2} against ALL reflections. The weighted Rfactor wR and goodness of fit S are based on F^{2}, conventional Rfactors R are based on F, with F set to zero for negative F^{2}. The threshold expression of F^{2} > σ(F^{2}) is used only for calculating Rfactors(gt) etc. and is not relevant to the choice of reflections for refinement. Rfactors based on F^{2} are statistically about twice as large as those based on F, and R factors based on ALL data will be even larger. 
x  y  z  U_{iso}*/U_{eq}  
Pr  0.14215 (8)  0.93511 (2)  0.30120 (5)  0.0103 (2)  
S  0.4863 (3)  0.85448 (11)  −0.1115 (2)  0.0100 (3)  
O1  0.3690 (11)  0.8345 (4)  0.0615 (6)  0.0156 (9)  
O2  0.5908 (12)  0.7551 (4)  −0.1798 (7)  0.0189 (10)  
O3  0.2507 (11)  0.9045 (4)  −0.2785 (7)  0.0179 (10)  
O4  0.7557 (12)  0.9298 (3)  −0.0482 (8)  0.0137 (10)  
O5  0.3035 (11)  1.0859 (4)  0.5390 (7)  0.0141 (9)  
H5A  0.1434  1.1193  0.5488  0.021* 
U^{11}  U^{22}  U^{33}  U^{12}  U^{13}  U^{23}  
Pr  0.0129 (3)  0.0104 (3)  0.0083 (3)  0.00025 (10)  0.00418 (19)  −0.00100 (9) 
S  0.0118 (7)  0.0098 (7)  0.0091 (7)  −0.0002 (5)  0.0041 (6)  0.0002 (5) 
O1  0.020 (2)  0.020 (2)  0.012 (2)  0.002 (2)  0.0142 (19)  0.0010 (17) 
O2  0.027 (2)  0.014 (2)  0.020 (2)  0.001 (2)  0.011 (2)  −0.0016 (17) 
O3  0.017 (2)  0.023 (2)  0.015 (2)  0.005 (2)  0.0060 (19)  0.0030 (19) 
O4  0.013 (2)  0.013 (2)  0.016 (2)  −0.0039 (15)  0.005 (2)  −0.0022 (14) 
O5  0.014 (2)  0.017 (2)  0.012 (2)  0.0037 (18)  0.0044 (18)  −0.0042 (17) 
Pr—O2^{i}  2.393 (5)  S—O1  1.455 (5) 
Pr—O5^{ii}  2.436 (5)  S—O3  1.466 (5) 
Pr—O5  2.468 (5)  S—O4  1.497 (5) 
Pr—O1  2.508 (4)  O2—Pr^{viii}  2.393 (5) 
Pr—O4^{iii}  2.543 (5)  O3—Pr^{vi}  2.643 (5) 
Pr—O5^{iv}  2.554 (5)  O3—Pr^{ix}  2.826 (5) 
Pr—O4^{v}  2.558 (5)  O4—Pr^{x}  2.543 (5) 
Pr—O3^{vi}  2.643 (5)  O4—Pr^{v}  2.558 (5) 
Pr—O3^{vii}  2.826 (5)  O5—Pr^{ii}  2.436 (5) 
Pr—Pr^{iv}  3.7056 (12)  O5—Pr^{iv}  2.554 (5) 
Pr—Pr^{ii}  3.9388 (12)  O5—H5A  0.8500 
S—O2  1.450 (5)  
O2^{i}—Pr—O5^{ii}  88.30 (16)  O5—Pr—Pr^{iv}  43.35 (12) 
O2^{i}—Pr—O5  137.33 (16)  O1—Pr—Pr^{iv}  173.83 (10) 
O5^{ii}—Pr—O5  73.13 (18)  O4^{iii}—Pr—Pr^{iv}  115.28 (12) 
O2^{i}—Pr—O1  66.58 (17)  O5^{iv}—Pr—Pr^{iv}  41.55 (10) 
O5^{ii}—Pr—O1  72.04 (15)  O4^{v}—Pr—Pr^{iv}  112.38 (11) 
O5—Pr—O1  136.21 (16)  O3^{vi}—Pr—Pr^{iv}  49.45 (10) 
O2^{i}—Pr—O4^{iii}  88.59 (15)  O3^{vii}—Pr—Pr^{iv}  45.31 (10) 
O5^{ii}—Pr—O4^{iii}  139.79 (17)  O2^{i}—Pr—Pr^{ii}  116.25 (12) 
O5—Pr—O4^{iii}  130.10 (14)  O5^{ii}—Pr—Pr^{ii}  36.83 (11) 
O1—Pr—O4^{iii}  70.01 (15)  O5—Pr—Pr^{ii}  36.29 (11) 
O2^{i}—Pr—O5^{iv}  77.01 (17)  O1—Pr—Pr^{ii}  105.16 (11) 
O5^{ii}—Pr—O5^{iv}  128.20 (19)  O4^{iii}—Pr—Pr^{ii}  151.15 (10) 
O5—Pr—O5^{iv}  84.90 (16)  O5^{iv}—Pr—Pr^{ii}  109.08 (11) 
O1—Pr—O5^{iv}  138.17 (15)  O4^{v}—Pr—Pr^{ii}  86.32 (11) 
O4^{iii}—Pr—O5^{iv}  89.84 (16)  O3^{vi}—Pr—Pr^{ii}  97.46 (11) 
O2^{i}—Pr—O4^{v}  136.90 (16)  O3^{vii}—Pr—Pr^{ii}  57.99 (11) 
O5^{ii}—Pr—O4^{v}  91.33 (16)  Pr^{iv}—Pr—Pr^{ii}  71.85 (3) 
O5—Pr—O4^{v}  82.80 (16)  O2—S—O1  110.1 (3) 
O1—Pr—O4^{v}  72.38 (15)  O2—S—O3  109.7 (3) 
O4^{iii}—Pr—O4^{v}  64.96 (17)  O1—S—O3  111.7 (3) 
O5^{iv}—Pr—O4^{v}  132.35 (15)  O2—S—O4  108.9 (3) 
O2^{i}—Pr—O3^{vi}  132.98 (17)  O1—S—O4  108.5 (3) 
O5^{ii}—Pr—O3^{vi}  133.47 (15)  O3—S—O4  107.9 (3) 
O5—Pr—O3^{vi}  61.84 (16)  S—O1—Pr  139.7 (3) 
O1—Pr—O3^{vi}  136.71 (14)  S—O2—Pr^{viii}  155.7 (3) 
O4^{iii}—Pr—O3^{vi}  72.40 (15)  S—O3—Pr^{vi}  133.7 (3) 
O5^{iv}—Pr—O3^{vi}  60.84 (15)  S—O3—Pr^{ix}  137.8 (3) 
O4^{v}—Pr—O3^{vi}  72.83 (16)  Pr^{vi}—O3—Pr^{ix}  85.24 (13) 
O2^{i}—Pr—O3^{vii}  78.53 (16)  S—O4—Pr^{x}  125.0 (3) 
O5^{ii}—Pr—O3^{vii}  70.23 (15)  S—O4—Pr^{v}  120.0 (3) 
O5—Pr—O3^{vii}  59.19 (16)  Pr^{x}—O4—Pr^{v}  115.04 (17) 
O1—Pr—O3^{vii}  128.53 (14)  Pr^{ii}—O5—Pr  106.87 (18) 
O4^{iii}—Pr—O3^{vii}  147.45 (16)  Pr^{ii}—O5—Pr^{iv}  128.20 (19) 
O5^{iv}—Pr—O3^{vii}  58.29 (15)  Pr—O5—Pr^{iv}  95.10 (16) 
O4^{v}—Pr—O3^{vii}  140.86 (15)  Pr^{ii}—O5—H5A  142.8 
O3^{vi}—Pr—O3^{vii}  94.76 (13)  Pr—O5—H5A  109.3 
O2^{i}—Pr—Pr^{iv}  109.56 (13)  Pr^{iv}—O5—H5A  40.0 
O5^{ii}—Pr—Pr^{iv}  103.47 (11)  
O2—S—O1—Pr  179.4 (4)  O1—S—O4—Pr^{x}  33.7 (4) 
O3—S—O1—Pr  −58.5 (5)  O3—S—O4—Pr^{x}  154.9 (3) 
O4—S—O1—Pr  60.3 (5)  O2—S—O4—Pr^{v}  93.2 (3) 
O2^{i}—Pr—O1—S  167.8 (5)  O1—S—O4—Pr^{v}  −147.0 (3) 
O5^{ii}—Pr—O1—S  −96.1 (4)  O3—S—O4—Pr^{v}  −25.8 (4) 
O5—Pr—O1—S  −57.3 (5)  O2^{i}—Pr—O5—Pr^{ii}  68.0 (3) 
O4^{iii}—Pr—O1—S  70.4 (4)  O5^{ii}—Pr—O5—Pr^{ii}  0.0 
O5^{iv}—Pr—O1—S  136.1 (4)  O1—Pr—O5—Pr^{ii}  −38.5 (3) 
O4^{v}—Pr—O1—S  1.3 (4)  O4^{iii}—Pr—O5—Pr^{ii}  −141.99 (18) 
O3^{vi}—Pr—O1—S  39.2 (5)  O5^{iv}—Pr—O5—Pr^{ii}  132.5 (2) 
O3^{vii}—Pr—O1—S  −140.6 (4)  O4^{v}—Pr—O5—Pr^{ii}  −93.60 (19) 
Pr^{iv}—Pr—O1—S  −140.0 (7)  O3^{vi}—Pr—O5—Pr^{ii}  −167.9 (2) 
Pr^{ii}—Pr—O1—S  −79.7 (4)  O3^{vii}—Pr—O5—Pr^{ii}  76.67 (19) 
O1—S—O2—Pr^{viii}  13.5 (8)  Pr^{iv}—Pr—O5—Pr^{ii}  132.5 (2) 
O3—S—O2—Pr^{viii}  −109.8 (7)  O2^{i}—Pr—O5—Pr^{iv}  −64.5 (3) 
O4—S—O2—Pr^{viii}  132.3 (7)  O5^{ii}—Pr—O5—Pr^{iv}  −132.5 (2) 
O2—S—O3—Pr^{vi}  168.4 (4)  O1—Pr—O5—Pr^{iv}  −171.07 (15) 
O1—S—O3—Pr^{vi}  46.0 (5)  O4^{iii}—Pr—O5—Pr^{iv}  85.5 (2) 
O4—S—O3—Pr^{vi}  −73.1 (4)  O5^{iv}—Pr—O5—Pr^{iv}  0.0 
O2—S—O3—Pr^{ix}  −39.4 (5)  O4^{v}—Pr—O5—Pr^{iv}  133.87 (16) 
O1—S—O3—Pr^{ix}  −161.8 (4)  O3^{vi}—Pr—O5—Pr^{iv}  59.53 (16) 
O4—S—O3—Pr^{ix}  79.1 (5)  O3^{vii}—Pr—O5—Pr^{iv}  −55.86 (15) 
O2—S—O4—Pr^{x}  −86.1 (4)  Pr^{ii}—Pr—O5—Pr^{iv}  −132.5 (2) 
Symmetry codes: (i) x−1/2, −y+3/2, z+1/2; (ii) −x+1, −y+2, −z+1; (iii) x−1, y, z; (iv) −x, −y+2, −z+1; (v) −x+1, −y+2, −z; (vi) −x, −y+2, −z; (vii) x, y, z+1; (viii) x+1/2, −y+3/2, z−1/2; (ix) x, y, z−1; (x) x+1, y, z. 
D—H···A  D—H  H···A  D···A  D—H···A 
O5—H5A···O3^{vi}  0.85  2.20  2.630 (7)  111 
O5—H5A···O2^{xi}  0.85  2.31  3.082 (7)  152 
Symmetry codes: (vi) −x, −y+2, −z; (xi) −x+1/2, y+1/2, −z+1/2. 
Experimental details
Crystal data  
Chemical formula  Pr(SO_{4})(OH) 
M_{r}  253.98 
Crystal system, space group  Monoclinic, P2_{1}/n 
Temperature (K)  293 
a, b, c (Å)  4.4891 (18), 12.484 (5), 6.894 (3) 
β (°)  106.310 (7) 
V (Å^{3})  370.8 (3) 
Z  4 
Radiation type  Mo Kα 
µ (mm^{−}^{1})  13.59 
Crystal size (mm)  0.20 × 0.10 × 0.10 
Data collection  
Diffractometer  Bruker APEXII CCD diffractometer 
Absorption correction  Multiscan (SADABS; Sheldrick, 1996) 
T_{min}, T_{max}  0.213, 0.257 
No. of measured, independent and observed [I > 2σ(I)] reflections  2849, 840, 813 
R_{int}  0.053 
(sin θ/λ)_{max} (Å^{−}^{1})  0.648 
Refinement  
R[F^{2} > 2σ(F^{2})], wR(F^{2}), S  0.033, 0.080, 1.09 
No. of reflections  840 
No. of parameters  65 
Hatom treatment  Hatom parameters constrained 
Δρ_{max}, Δρ_{min} (e Å^{−}^{3})  1.73, −2.15 
Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A  D—H  H···A  D···A  D—H···A 
O5—H5A···O3^{i}  0.85  2.20  2.630 (7)  111 
O5—H5A···O2^{ii}  0.85  2.31  3.082 (7)  152 
Symmetry codes: (i) −x, −y+2, −z; (ii) −x+1/2, y+1/2, −z+1/2. 
References
Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Ding, S.H., Sun, X.C., Zhu, Y.L., Chen, Q. & Xu, Y. (2006). Acta Cryst. E62, i269–i271. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Xu, Y., Ding, S. & Zheng, X. (2007). J. Solid State Chem. 180, 2020–2025. Web of Science CrossRef CAS Google Scholar
Yang, Y., Zhu, L.H., Zeng, M.H. & Feng, X.L. (2005). Acta Cryst. E61, i41–i43. Web of Science CrossRef IUCr Journals Google Scholar
Zhang, T. & Lu, J. (2008). Acta Cryst. E64, i49. Web of Science CrossRef IUCr Journals Google Scholar
Zhang, Q., Lu, C., Yang, W., Chen, S. & Yu, Y. (2004). Inorg. Chem. Commun. 7, 889–892. Web of Science CrossRef CAS Google Scholar
This is an openaccess article distributed under the terms of the Creative Commons Attribution (CCBY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Lanthanide sulfate hydroxides exhibit a variety of architectures (Xu et al., 2007; Zhang et al., 2004). We report here the compound Pr(SO_{4})(OH), which is isostructural to Ln(SO_{4})(OH) (Ln = La, Ce, Eu, Nd) (Zhang et al., 2004; Yang et al., 2005; Ding et al., 2006; Zhang et al., 2008). The Pr^{III} ion is coordinated in a distorted tricapped trigonal prismatic geometry by the oxygen atoms from six sulfate groups and three hydroxide anions (Fig. 1). All oxygen atoms of the sulfate groups take part in the coordination. The S atom makes four S–O–La linkages through two 2coordinated oxygen atoms [S–O–La] and two 3coordinated oxygen atoms [S–(µ_{3}O)–La_{2}]. The oxygen atoms of the hydroxide groups are fourcoordinate, [HO—µ_{3}La_{3}], linking three different Pr ions. The bridging mode of the oxygen atoms results in a threedimensional framework, with the H atom of hydroxide anions forming weak O—H···O hydrogen bonds with two O atoms of sulfate groups (Fig. 2).