organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 1-formamido-4-oxo-2,6-di­phenyl­cyclo­hexa­ne­carboxyl­ate

aDepartment of Chemistry, Yanbian University, Yanji 133002, People's Republic of China, and bDepartment of Chemistry, Northeast Normal University, Changchun 130024, People's Republic of China
*Correspondence e-mail: xuxx677@nenu.edu.cn

(Received 21 December 2010; accepted 7 January 2011; online 15 January 2011)

In the title compound, C22H23NO4, the central six-membered ring is in a twist-boat conformation, the two aryl groups are in equatorial positions and the dihedral angle between the two aromatic rings is 75.98 (12)°.

Related literature

For the synthesis, see: Tan et al. (2009[Tan, J., Xu, X., Zhang, L., Li, Y. & Liu, Q. (2009). Angew. Chem. Int. Ed. 48, 2868-2872.]); Zhang et al. (2010[Zhang, D. W., Xu, X. X. & &Liu, Q. (2010). Synlett. 6, 917-920.]). For related structures, see: Rowland & Gill (1988[Rowland, A. T. & Gill, B. C. (1988). J. Org. Chem. 53, 434-437.]); Rowland et al. (1998[Rowland, A. T., Filla, S. A., Coutlangus, M. L., Winemiller, M. D., Chamberlin, M. J., Czulada, G. & Johnson, S. D. (1998). J. Org. Chem. 63, 4359-4365.]); Aleman et al. (2009[Aleman, C., Jiménez, A. I., Cativiela, C., Nussinov, R. & Casanovas, J. (2009). J. Org. Chem. 74, 7834-7843.]). Cyclic constrained analogues of phenyl­alanine (Phe) are of particular inter­est in the construction of peptide analogues with controlled folds in the backbone because they play an important role in both restricting the χ1 torsion angle and in peptide receptor recognition processes, see: Cativiela & Díaz-de-Villegas (1998[Cativiela, C. & Díaz-de-Villegas, M. D. (1998). Tetrahedron Asymmetry, 9, 3517-3599.], 2000[Cativiela, C. & Díaz-de-Villegas, M. D. (2000). Tetrahedron Asymmetry, 11, 645-732.], 2007[Cativiela, C. & Díaz-de-Villegas, M. D. (2007). Tetrahedron Asymmetry, 18, 569-623.]); Cativiela & Ordóñez (2009[Cativiela, C. & Ordóñez, M. (2009). Tetrahedron Asymmetry, 20, 1-63.]); Lasa & Cativiela (2006[Lasa, M. & Cativiela, C. (2006). Synlett, pp. 2517-2533.]).

[Scheme 1]

Experimental

Crystal data
  • C22H23NO4

  • Mr = 365.41

  • Monoclinic, P 21 /n

  • a = 11.3240 (12) Å

  • b = 13.5100 (15) Å

  • c = 12.5870 (14) Å

  • β = 99.149 (2)°

  • V = 1901.2 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.21 × 0.16 × 0.14 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.982, Tmax = 0.988

  • 11361 measured reflections

  • 4439 independent reflections

  • 3120 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.116

  • S = 1.02

  • 4439 reflections

  • 244 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The cyclic constrained analogues of phenylalanine (Phe) are of particular interest in the construction of peptide analogues with controlled fold in the backbone, because they play an important role in both restricting torsional angle χ1 and peptide receptor recognition processes (Cativiela et al. 1998; Cativiela et al. 2000. Cativiela et al. 2007; Cativiela et al. 2009; Lasa et al. 2006). The crystal structure of title compound, a phenyl substituted highly constrained cyclohexane analogue of Phe, is reported in this paper.

In the crystal structure the central six-membered ring is in a twist conformation which can presumably traced back due to steric hindrance of the ethoxyl carbonyl, the amide and the two aryl groups (Fig. 1). The two aryl groups are located in equatorial positions and the dihedral angle between two aromatic rings amount to 75.98 (12)°.

Related literature top

For the synthesis, see: Tan et al. (2009); Zhang et al. (2010). For related structures, see: Rowland & Gill (1988); Rowland et al. (1998); Aleman et al. (2009). Cyclic constrained analogues of phenylalanine (Phe) are of particular interest in the construction of peptide analogues with controlled folds in the backbone because they play an important role in both restricting the χ1 torsion angle and in peptide receptor recognition processes, see: Cativiela & Díaz-de- Villegas (2007); Cativiela & Díaz-de-Villegas (1998, 2000); Cativiela & Ordóñez (2009); Lasa & Cativiela (2006).

Experimental top

To a mixture of (1E,4E)-1,5-bis(4-chlorophenyl)penta-1,4-dien-3-one (303 mg, 1.0 mmol) and ethyl isocyanoacetate (0.132 ml, 1.2 mmol) in DMF (5 ml) was added 1,8-diazabicyclo [5.4.0]undec-7-ene (DBU) (0.015 ml, 0.1 mmol) in one portion at room temperature. The reaction mixture was stirre at room temperature, and the reaction mixture was monitored by TLC. After the substrate (1E,4E)-1,5-bis(4-chlorophenyl)penta-1,4-dien-3-one was consumed, the resulting mixture was poured into ice-water (30 ml) under stirring. The precipitate was cfiltered off, washed with water (3 × 10 ml), and dried in vacuo to afford the crude product ethyl 2,6-bis(4-chlorophenyl)-1-isocyano-4-oxocyclohexanecarboxylate, which was purified by flash chromatography (silica gel, petroleum ether: diethyl ether = 3: 1, V/V) to give ethyl 2,6-bis(4-chlorophenyl)-1-isocyano-4-oxocyclohexanecarboxylate (387 mg, 93%). Colorless single crystals of the title compound were obtained by slow evaporation of the sovent from an ethanol solution at room temperature.

Refinement top

The N-bound H atom was located in a difference map, fixed at this position and refined as riding with Uiso(H) = 1.2Ueq(N). The remaining hydrogen atoms were placed in ideal positions (C—H = 0.93–0.98 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C). The methyl groups were allowed to rotate, but not to tip.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXL97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the molecular structure of the title compound with labeling and displacement ellipsoids drawn at the 30% probability level.
Ethyl 1-formamido-4-oxo-2,6-diphenylcyclohexanecarboxylate top
Crystal data top
C22H23NO4F(000) = 776
Mr = 365.41Dx = 1.277 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71069 Å
a = 11.3240 (12) ÅCell parameters from 132 reflections
b = 13.5100 (15) Åθ = 1.3–26.0°
c = 12.5870 (14) ŵ = 0.09 mm1
β = 99.149 (2)°T = 293 K
V = 1901.2 (4) Å3Block, colorless
Z = 40.21 × 0.16 × 0.14 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4439 independent reflections
Radiation source: fine-focus sealed tube3120 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ω scansθmax = 28.3°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1514
Tmin = 0.982, Tmax = 0.988k = 1617
11361 measured reflectionsl = 1416
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0534P)2 + 0.306P]
where P = (Fo2 + 2Fc2)/3
4439 reflections(Δ/σ)max < 0.001
244 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C22H23NO4V = 1901.2 (4) Å3
Mr = 365.41Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.3240 (12) ŵ = 0.09 mm1
b = 13.5100 (15) ÅT = 293 K
c = 12.5870 (14) Å0.21 × 0.16 × 0.14 mm
β = 99.149 (2)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4439 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3120 reflections with I > 2σ(I)
Tmin = 0.982, Tmax = 0.988Rint = 0.021
11361 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.116H-atom parameters constrained
S = 1.02Δρmax = 0.22 e Å3
4439 reflectionsΔρmin = 0.19 e Å3
244 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O21.03050 (10)0.14890 (8)0.47576 (8)0.0541 (3)
O10.94334 (8)0.26361 (7)0.36180 (7)0.0426 (2)
C190.98394 (11)0.17327 (10)0.38744 (10)0.0364 (3)
N11.01302 (10)0.00919 (8)0.33120 (9)0.0401 (3)
C80.95919 (11)0.10312 (9)0.29070 (10)0.0339 (3)
C10.75462 (12)0.08726 (11)0.35380 (11)0.0416 (3)
O40.95020 (11)0.09967 (8)0.19437 (10)0.0637 (3)
O30.76178 (11)0.15572 (10)0.01954 (9)0.0699 (4)
C70.81977 (11)0.09052 (10)0.25754 (10)0.0366 (3)
H70.80830.02510.22390.044*
C100.94777 (13)0.11160 (11)0.08583 (11)0.0443 (3)
H10A0.98700.13680.02830.053*
H10B0.94970.03990.08320.053*
C131.14993 (12)0.13184 (11)0.20876 (11)0.0408 (3)
C91.01555 (12)0.14705 (10)0.19429 (10)0.0378 (3)
H91.00310.21880.19610.045*
C120.76820 (13)0.16456 (11)0.17030 (11)0.0448 (3)
H12A0.68190.15790.15540.054*
H12B0.78700.23150.19550.054*
C200.94851 (15)0.33379 (11)0.45037 (13)0.0534 (4)
H20A1.03080.35160.47730.064*
H20B0.91370.30500.50880.064*
C110.81977 (13)0.14617 (11)0.06898 (11)0.0456 (3)
C181.20075 (13)0.04802 (12)0.17129 (12)0.0510 (4)
H181.15180.00000.13420.061*
C141.22578 (14)0.20301 (12)0.26263 (12)0.0496 (4)
H141.19360.26010.28780.060*
C20.70022 (14)0.16996 (13)0.38990 (13)0.0550 (4)
H20.70060.22950.35280.066*
C60.74950 (14)0.00068 (14)0.40968 (14)0.0563 (4)
H60.78370.05760.38610.068*
C221.00363 (14)0.07956 (11)0.28331 (14)0.0500 (4)
H221.04240.13180.32250.060*
C151.34882 (15)0.18981 (14)0.27916 (14)0.0610 (5)
H151.39850.23800.31520.073*
C171.32359 (15)0.03502 (15)0.18842 (14)0.0621 (5)
H171.35640.02180.16330.075*
C161.39736 (15)0.10596 (16)0.24257 (14)0.0648 (5)
H161.47980.09700.25420.078*
C30.64542 (17)0.16480 (18)0.48052 (17)0.0773 (6)
H30.61050.22120.50440.093*
C50.69387 (18)0.00491 (19)0.50051 (17)0.0799 (6)
H50.69190.06420.53780.096*
C210.87950 (17)0.42237 (12)0.40695 (16)0.0659 (5)
H21A0.88030.47060.46310.099*
H21B0.79840.40360.38030.099*
H21C0.91510.45020.34940.099*
C40.64203 (19)0.0781 (2)0.53508 (17)0.0882 (7)
H40.60460.07530.59570.106*
H1N1.05240.01280.39390.106*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0651 (7)0.0600 (7)0.0331 (5)0.0161 (5)0.0045 (5)0.0018 (5)
O10.0489 (6)0.0382 (5)0.0375 (5)0.0043 (4)0.0026 (4)0.0064 (4)
C190.0337 (6)0.0409 (7)0.0339 (7)0.0032 (5)0.0027 (5)0.0003 (5)
N10.0411 (6)0.0377 (6)0.0415 (6)0.0070 (5)0.0065 (5)0.0038 (5)
C80.0345 (6)0.0335 (6)0.0333 (7)0.0026 (5)0.0039 (5)0.0012 (5)
C10.0298 (6)0.0528 (8)0.0411 (8)0.0000 (6)0.0021 (5)0.0003 (6)
O40.0742 (8)0.0462 (6)0.0687 (8)0.0036 (5)0.0055 (6)0.0131 (6)
O30.0697 (8)0.0954 (9)0.0387 (6)0.0093 (7)0.0093 (5)0.0077 (6)
C70.0346 (7)0.0372 (7)0.0367 (7)0.0003 (5)0.0015 (5)0.0011 (5)
C100.0484 (8)0.0517 (8)0.0321 (7)0.0063 (6)0.0044 (6)0.0016 (6)
C130.0413 (7)0.0501 (8)0.0318 (7)0.0082 (6)0.0078 (5)0.0002 (6)
C90.0419 (7)0.0388 (7)0.0323 (7)0.0032 (6)0.0052 (5)0.0006 (5)
C120.0406 (7)0.0484 (8)0.0424 (8)0.0039 (6)0.0030 (6)0.0016 (6)
C200.0587 (9)0.0488 (9)0.0482 (9)0.0065 (7)0.0051 (7)0.0169 (7)
C110.0518 (8)0.0444 (8)0.0374 (8)0.0036 (6)0.0032 (6)0.0040 (6)
C180.0436 (8)0.0646 (10)0.0463 (8)0.0092 (7)0.0120 (7)0.0124 (7)
C140.0524 (9)0.0514 (9)0.0445 (8)0.0142 (7)0.0065 (7)0.0011 (7)
C20.0445 (8)0.0649 (10)0.0566 (10)0.0045 (7)0.0109 (7)0.0073 (8)
C60.0443 (8)0.0663 (10)0.0599 (10)0.0038 (7)0.0127 (7)0.0158 (8)
C220.0538 (9)0.0384 (8)0.0602 (10)0.0095 (6)0.0166 (8)0.0050 (7)
C150.0517 (9)0.0753 (12)0.0542 (10)0.0266 (9)0.0026 (8)0.0007 (9)
C170.0460 (9)0.0851 (13)0.0588 (10)0.0002 (8)0.0195 (8)0.0123 (9)
C160.0389 (8)0.0963 (14)0.0615 (11)0.0126 (9)0.0150 (8)0.0043 (10)
C30.0604 (11)0.1077 (17)0.0673 (12)0.0159 (11)0.0212 (9)0.0169 (12)
C50.0580 (11)0.1129 (17)0.0710 (13)0.0032 (11)0.0172 (10)0.0370 (12)
C210.0682 (11)0.0490 (10)0.0774 (12)0.0083 (8)0.0022 (9)0.0117 (8)
C40.0616 (12)0.148 (2)0.0601 (12)0.0153 (13)0.0267 (10)0.0114 (14)
Geometric parameters (Å, º) top
O2—C191.1983 (15)C12—H12B0.9700
O1—C191.3258 (16)C20—C211.485 (2)
O1—C201.4575 (16)C20—H20A0.9700
C19—C81.5333 (18)C20—H20B0.9700
N1—C221.3386 (19)C18—C171.384 (2)
N1—C81.4639 (16)C18—H180.9300
N1—H1N0.8440C14—C151.387 (2)
C8—C91.5744 (18)C14—H140.9300
C8—C71.5768 (17)C2—C31.384 (3)
C1—C61.387 (2)C2—H20.9300
C1—C21.387 (2)C6—C51.391 (3)
C1—C71.5161 (19)C6—H60.9300
O4—C221.2157 (19)C22—H220.9300
O3—C111.2070 (17)C15—C161.370 (3)
C7—C121.5308 (18)C15—H150.9300
C7—H70.9800C17—C161.378 (2)
C10—C111.505 (2)C17—H170.9300
C10—C91.5326 (18)C16—H160.9300
C10—H10A0.9700C3—C41.361 (3)
C10—H10B0.9700C3—H30.9300
C13—C181.386 (2)C5—C41.369 (3)
C13—C141.392 (2)C5—H50.9300
C13—C91.5176 (19)C21—H21A0.9600
C9—H90.9800C21—H21B0.9600
C12—C111.505 (2)C21—H21C0.9600
C12—H12A0.9700C4—H40.9300
C19—O1—C20116.26 (10)O1—C20—H20B110.4
O2—C19—O1124.27 (12)C21—C20—H20B110.4
O2—C19—C8124.39 (12)H20A—C20—H20B108.6
O1—C19—C8111.30 (10)O3—C11—C12122.48 (14)
C22—N1—C8128.38 (12)O3—C11—C10122.25 (14)
C22—N1—H1N117.8C12—C11—C10115.24 (12)
C8—N1—H1N113.8C17—C18—C13120.78 (15)
N1—C8—C19104.24 (10)C17—C18—H18119.6
N1—C8—C9113.44 (11)C13—C18—H18119.6
C19—C8—C9109.50 (10)C15—C14—C13120.78 (16)
N1—C8—C7110.03 (10)C15—C14—H14119.6
C19—C8—C7109.02 (10)C13—C14—H14119.6
C9—C8—C7110.37 (10)C3—C2—C1120.67 (18)
C6—C1—C2117.88 (15)C3—C2—H2119.7
C6—C1—C7119.68 (13)C1—C2—H2119.7
C2—C1—C7122.44 (13)C1—C6—C5120.85 (18)
C1—C7—C12114.43 (11)C1—C6—H6119.6
C1—C7—C8112.68 (10)C5—C6—H6119.6
C12—C7—C8111.78 (11)O4—C22—N1127.38 (14)
C1—C7—H7105.7O4—C22—H22116.3
C12—C7—H7105.7N1—C22—H22116.3
C8—C7—H7105.7C16—C15—C14120.19 (15)
C11—C10—C9111.29 (12)C16—C15—H15119.9
C11—C10—H10A109.4C14—C15—H15119.9
C9—C10—H10A109.4C16—C17—C18120.25 (17)
C11—C10—H10B109.4C16—C17—H17119.9
C9—C10—H10B109.4C18—C17—H17119.9
H10A—C10—H10B108.0C15—C16—C17119.80 (16)
C18—C13—C14118.20 (14)C15—C16—H16120.1
C18—C13—C9122.16 (12)C17—C16—H16120.1
C14—C13—C9119.63 (13)C4—C3—C2120.76 (19)
C13—C9—C10114.53 (11)C4—C3—H3119.6
C13—C9—C8112.22 (11)C2—C3—H3119.6
C10—C9—C8111.21 (11)C4—C5—C6120.05 (19)
C13—C9—H9106.1C4—C5—H5120.0
C10—C9—H9106.1C6—C5—H5120.0
C8—C9—H9106.1C20—C21—H21A109.5
C11—C12—C7110.16 (12)C20—C21—H21B109.5
C11—C12—H12A109.6H21A—C21—H21B109.5
C7—C12—H12A109.6C20—C21—H21C109.5
C11—C12—H12B109.6H21A—C21—H21C109.5
C7—C12—H12B109.6H21B—C21—H21C109.5
H12A—C12—H12B108.1C3—C4—C5119.78 (19)
O1—C20—C21106.74 (12)C3—C4—H4120.1
O1—C20—H20A110.4C5—C4—H4120.1
C21—C20—H20A110.4
C20—O1—C19—O25.0 (2)C7—C8—C9—C13162.62 (11)
C20—O1—C19—C8172.73 (12)N1—C8—C9—C1091.15 (13)
C22—N1—C8—C19170.75 (13)C19—C8—C9—C10152.88 (11)
C22—N1—C8—C970.21 (17)C7—C8—C9—C1032.86 (15)
C22—N1—C8—C753.98 (18)C1—C7—C12—C11167.17 (11)
O2—C19—C8—N14.36 (18)C8—C7—C12—C1163.22 (14)
O1—C19—C8—N1177.89 (10)C19—O1—C20—C21169.98 (13)
O2—C19—C8—C9126.04 (14)C7—C12—C11—O3143.48 (15)
O1—C19—C8—C956.21 (14)C7—C12—C11—C1034.51 (16)
O2—C19—C8—C7113.11 (14)C9—C10—C11—O3155.50 (14)
O1—C19—C8—C764.64 (14)C9—C10—C11—C1226.50 (17)
C6—C1—C7—C12148.86 (13)C14—C13—C18—C170.9 (2)
C2—C1—C7—C1231.95 (18)C9—C13—C18—C17178.16 (15)
C6—C1—C7—C881.98 (16)C18—C13—C14—C150.6 (2)
C2—C1—C7—C897.21 (15)C9—C13—C14—C15178.47 (14)
N1—C8—C7—C176.19 (13)C6—C1—C2—C31.6 (2)
C19—C8—C7—C137.55 (14)C7—C1—C2—C3177.59 (14)
C9—C8—C7—C1157.86 (11)C2—C1—C6—C51.5 (2)
N1—C8—C7—C12153.29 (11)C7—C1—C6—C5177.76 (15)
C19—C8—C7—C1292.97 (13)C8—N1—C22—O42.0 (3)
C9—C8—C7—C1227.35 (14)C13—C14—C15—C160.1 (2)
C18—C13—C9—C1038.46 (19)C13—C18—C17—C160.5 (3)
C14—C13—C9—C10142.52 (14)C14—C15—C16—C170.5 (3)
C18—C13—C9—C889.57 (16)C18—C17—C16—C150.3 (3)
C14—C13—C9—C889.45 (15)C1—C2—C3—C41.1 (3)
C11—C10—C9—C13169.26 (12)C1—C6—C5—C40.8 (3)
C11—C10—C9—C862.20 (15)C2—C3—C4—C50.4 (3)
N1—C8—C9—C1338.62 (15)C6—C5—C4—C30.2 (3)
C19—C8—C9—C1377.35 (13)

Experimental details

Crystal data
Chemical formulaC22H23NO4
Mr365.41
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)11.3240 (12), 13.5100 (15), 12.5870 (14)
β (°) 99.149 (2)
V3)1901.2 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.21 × 0.16 × 0.14
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.982, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
11361, 4439, 3120
Rint0.021
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.116, 1.02
No. of reflections4439
No. of parameters244
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.19

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

Financial support of this research by the NNSFC (20872015), the Science Foundation for Young Teachers of NENU (20090404) and the Young Scientific Research Foundation of Jilin Province (20090149) is gratefully acknowledged.

References

First citationAleman, C., Jiménez, A. I., Cativiela, C., Nussinov, R. & Casanovas, J. (2009). J. Org. Chem. 74, 7834–7843.  Web of Science PubMed CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCativiela, C. & Díaz-de-Villegas, M. D. (1998). Tetrahedron Asymmetry, 9, 3517–3599.  Web of Science CrossRef CAS Google Scholar
First citationCativiela, C. & Díaz-de-Villegas, M. D. (2000). Tetrahedron Asymmetry, 11, 645–732.  Web of Science CrossRef CAS Google Scholar
First citationCativiela, C. & Díaz-de-Villegas, M. D. (2007). Tetrahedron Asymmetry, 18, 569–623.  Web of Science CrossRef CAS Google Scholar
First citationCativiela, C. & Ordóñez, M. (2009). Tetrahedron Asymmetry, 20, 1–63.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLasa, M. & Cativiela, C. (2006). Synlett, pp. 2517–2533.  Google Scholar
First citationRowland, A. T., Filla, S. A., Coutlangus, M. L., Winemiller, M. D., Chamberlin, M. J., Czulada, G. & Johnson, S. D. (1998). J. Org. Chem. 63, 4359–4365.  Web of Science CSD CrossRef CAS Google Scholar
First citationRowland, A. T. & Gill, B. C. (1988). J. Org. Chem. 53, 434–437.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTan, J., Xu, X., Zhang, L., Li, Y. & Liu, Q. (2009). Angew. Chem. Int. Ed. 48, 2868–2872.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, D. W., Xu, X. X. & &Liu, Q. (2010). Synlett. 6, 917–920.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds