organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-[4-(4-Chloro­but­­oxy)-2-hy­dr­oxy­phen­yl]ethanone

aCollege of Life Sciences, Northwest A&F University, Yangling Shaanxi 712100, People's Republic of China
*Correspondence e-mail: weigehong@yahoo.com.cn

(Received 25 December 2010; accepted 14 January 2011; online 22 January 2011)

In the title compound, C12H15ClO3, the eth­oxy group is nearly coplanar with the benzene ring, making a dihedral angle of 9.03 (4)°, and is involved in an intra­molecular O—H⋯O hydrogen bond to the neighbouring hy­droxy group.

Related literature

For the synthesis of the title comppund, see: Dermer (1934[Dermer, O. C. (1934). Chem. Rev. 14, 385-430.]). For related structures, see: Schlemper (1986[Schlemper, E. O. (1986). Acta Cryst. C42, 755-757.]).

[Scheme 1]

Experimental

Crystal data
  • C12H15ClO3

  • Mr = 242.69

  • Triclinic, [P \overline 1]

  • a = 5.2750 (4) Å

  • b = 9.8941 (10) Å

  • c = 11.6529 (12) Å

  • α = 99.735 (2)°

  • β = 98.242 (1)°

  • γ = 92.248 (1)°

  • V = 591.97 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 298 K

  • 0.49 × 0.40 × 0.24 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.862, Tmax = 0.929

  • 3097 measured reflections

  • 2068 independent reflections

  • 1517 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.108

  • S = 1.06

  • 2068 reflections

  • 147 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1 0.82 1.82 2.539 (2) 146

Data collection: SMART (Bruker, 1996[Bruker (1996). SMART and SAINT. Bruker ASX Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1996[Bruker (1996). SMART and SAINT. Bruker ASX Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The crystal structure of the title compound was determined as a part of a project on the synthesis of new acetophenone derivatives. To clearly identify the product a single crystal X-ray analysis was performed.

In the crystal structure of the title compound the dihedral angle between the benzene ring C3—C8 and the ethoxy group is (O3, C9 and C10) amount to 9.03 (4)°. The carbonyl oxygen atom is involved in intramolecular O—H···O hydrogen bonding to the neighbored hydroxy group

Related literature top

For the synthesis of the title comppund, see: Dermer (1934). For related structures, see: Schlemper (1986).

Experimental top

2, 4-Dihydroxyacetonephenone (5 mmol), potassium carbonate (6 mmol), 1-bromo-4-chlorobutane (5 mmol) and 50 ml acetone were mixed in a 100 ml flask. After 2.5 h stirring at 329 K the crude product was filtered off. Single crystals suitable for X-ray analysis were obtained by slow evaporation of the solvent from a solution of the title compound in n-hexane/ethyl acetate/methanol (3:3:1, V/V)at room temperature.

Refinement top

The H atoms were positioned with idealized geometry (O-H H atoms allowed to rotate but no to tip) with C—H distance in the range of 0.93–0.97 Å and O—H distance of 0.82 Å, and refined as riding, with Uiso(H)= 1.2–1.5Ueq(C,O).

Computing details top

Data collection: SMART (Bruker, 1996); cell refinement: SAINT (Bruker, 1996); data reduction: SAINT (Bruker, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Crystal structure of the title compound with labeling and displacement ellipsoids drawn at the 30% probability level.
1-[4-(4-Chlorobutoxy)-2-hydroxyphenyl]ethanone top
Crystal data top
C12H15ClO3F(000) = 256
Mr = 242.69Dx = 1.362 Mg m3
Triclinic, P1Melting point = 317–318 K
a = 5.2750 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.8941 (10) ÅCell parameters from 1252 reflections
c = 11.6529 (12) Åθ = 2.5–27.5°
α = 99.735 (2)°µ = 0.31 mm1
β = 98.242 (1)°T = 298 K
γ = 92.248 (1)°Triclinic, colourless
V = 591.97 (10) Å30.49 × 0.40 × 0.24 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
2068 independent reflections
Radiation source: fine-focus sealed tube1517 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ϕ and ω scansθmax = 25.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 65
Tmin = 0.862, Tmax = 0.929k = 119
3097 measured reflectionsl = 1313
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.108 w = 1/[σ2(Fo2) + (0.0463P)2 + 0.1542P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
2068 reflectionsΔρmax = 0.20 e Å3
147 parametersΔρmin = 0.21 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.294 (14)
Crystal data top
C12H15ClO3γ = 92.248 (1)°
Mr = 242.69V = 591.97 (10) Å3
Triclinic, P1Z = 2
a = 5.2750 (4) ÅMo Kα radiation
b = 9.8941 (10) ŵ = 0.31 mm1
c = 11.6529 (12) ÅT = 298 K
α = 99.735 (2)°0.49 × 0.40 × 0.24 mm
β = 98.242 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2068 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1517 reflections with I > 2σ(I)
Tmin = 0.862, Tmax = 0.929Rint = 0.019
3097 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.108H-atom parameters constrained
S = 1.06Δρmax = 0.20 e Å3
2068 reflectionsΔρmin = 0.21 e Å3
147 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.69127 (14)0.39709 (8)0.91715 (5)0.0668 (3)
O10.6516 (3)0.02779 (17)0.10226 (14)0.0545 (5)
O20.2483 (3)0.06891 (15)0.23591 (14)0.0513 (5)
H20.38210.08960.18970.077*
O30.2113 (3)0.32392 (15)0.48072 (12)0.0444 (4)
C10.7899 (4)0.1907 (3)0.0771 (2)0.0508 (6)
H1A0.92340.13670.02170.076*
H1B0.69550.24800.03700.076*
H1C0.86470.24730.13710.076*
C20.6130 (4)0.0977 (2)0.13236 (17)0.0385 (5)
C30.3944 (4)0.1550 (2)0.22183 (17)0.0338 (5)
C40.2210 (4)0.0684 (2)0.27035 (17)0.0349 (5)
C50.0135 (4)0.1209 (2)0.35608 (18)0.0379 (5)
H50.10120.06230.38660.045*
C60.0206 (4)0.2611 (2)0.39548 (17)0.0357 (5)
C70.1489 (4)0.3496 (2)0.34910 (18)0.0407 (5)
H70.12540.44390.37610.049*
C80.3499 (4)0.2967 (2)0.26358 (18)0.0390 (5)
H80.46060.35660.23210.047*
C90.3983 (4)0.2437 (2)0.53460 (18)0.0400 (5)
H9A0.50550.20400.47830.048*
H9B0.31500.17000.56360.048*
C100.5562 (4)0.3405 (2)0.63445 (19)0.0433 (6)
H10A0.44540.37800.68990.052*
H10B0.62850.41630.60390.052*
C110.7719 (4)0.2729 (2)0.69890 (18)0.0440 (6)
H11A0.70300.18800.71700.053*
H11B0.89760.24950.64690.053*
C120.9052 (4)0.3603 (3)0.8113 (2)0.0517 (6)
H12A0.97370.44590.79410.062*
H12B1.04790.31280.84430.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0704 (5)0.0785 (5)0.0487 (4)0.0060 (4)0.0128 (3)0.0000 (3)
O10.0550 (10)0.0450 (10)0.0549 (10)0.0085 (8)0.0092 (8)0.0018 (8)
O20.0548 (10)0.0345 (9)0.0583 (10)0.0009 (7)0.0059 (8)0.0026 (7)
O30.0404 (9)0.0406 (9)0.0452 (9)0.0034 (7)0.0114 (7)0.0026 (7)
C10.0449 (14)0.0580 (16)0.0450 (13)0.0012 (11)0.0079 (11)0.0097 (11)
C20.0355 (12)0.0454 (14)0.0339 (11)0.0028 (10)0.0052 (9)0.0068 (10)
C30.0321 (11)0.0373 (12)0.0317 (10)0.0002 (9)0.0054 (9)0.0048 (9)
C40.0366 (12)0.0329 (12)0.0346 (11)0.0012 (9)0.0068 (9)0.0031 (9)
C50.0367 (12)0.0390 (13)0.0382 (11)0.0078 (9)0.0028 (9)0.0086 (9)
C60.0321 (11)0.0416 (13)0.0326 (10)0.0005 (9)0.0027 (9)0.0062 (9)
C70.0428 (13)0.0336 (12)0.0426 (12)0.0037 (9)0.0018 (10)0.0042 (10)
C80.0379 (12)0.0394 (13)0.0384 (11)0.0065 (9)0.0019 (9)0.0087 (9)
C90.0368 (12)0.0439 (13)0.0390 (12)0.0068 (10)0.0033 (9)0.0074 (10)
C100.0390 (12)0.0444 (13)0.0434 (12)0.0035 (10)0.0021 (10)0.0057 (10)
C110.0360 (12)0.0546 (15)0.0408 (12)0.0086 (10)0.0033 (10)0.0079 (11)
C120.0396 (13)0.0678 (17)0.0460 (13)0.0051 (11)0.0020 (11)0.0123 (12)
Geometric parameters (Å, º) top
Cl1—C121.791 (2)C6—C71.393 (3)
O1—C21.232 (2)C7—C81.367 (3)
O2—C41.346 (2)C7—H70.9300
O2—H20.8200C8—H80.9300
O3—C61.357 (2)C9—C101.499 (3)
O3—C91.431 (2)C9—H9A0.9700
C1—C21.493 (3)C9—H9B0.9700
C1—H1A0.9600C10—C111.513 (3)
C1—H1B0.9600C10—H10A0.9700
C1—H1C0.9600C10—H10B0.9700
C2—C31.464 (3)C11—C121.504 (3)
C3—C41.402 (3)C11—H11A0.9700
C3—C81.403 (3)C11—H11B0.9700
C4—C51.390 (3)C12—H12A0.9700
C5—C61.382 (3)C12—H12B0.9700
C5—H50.9300
C4—O2—H2109.5C7—C8—H8119.0
C6—O3—C9119.86 (16)C3—C8—H8119.0
C2—C1—H1A109.5O3—C9—C10106.13 (17)
C2—C1—H1B109.5O3—C9—H9A110.5
H1A—C1—H1B109.5C10—C9—H9A110.5
C2—C1—H1C109.5O3—C9—H9B110.5
H1A—C1—H1C109.5C10—C9—H9B110.5
H1B—C1—H1C109.5H9A—C9—H9B108.7
O1—C2—C3120.04 (19)C9—C10—C11113.12 (18)
O1—C2—C1119.69 (19)C9—C10—H10A109.0
C3—C2—C1120.26 (19)C11—C10—H10A109.0
C4—C3—C8117.24 (18)C9—C10—H10B109.0
C4—C3—C2120.54 (18)C11—C10—H10B109.0
C8—C3—C2122.21 (18)H10A—C10—H10B107.8
O2—C4—C5117.17 (18)C12—C11—C10114.25 (19)
O2—C4—C3121.47 (18)C12—C11—H11A108.7
C5—C4—C3121.36 (19)C10—C11—H11A108.7
C6—C5—C4119.31 (19)C12—C11—H11B108.7
C6—C5—H5120.3C10—C11—H11B108.7
C4—C5—H5120.3H11A—C11—H11B107.6
O3—C6—C5124.69 (18)C11—C12—Cl1111.58 (16)
O3—C6—C7114.72 (18)C11—C12—H12A109.3
C5—C6—C7120.59 (19)Cl1—C12—H12A109.3
C8—C7—C6119.5 (2)C11—C12—H12B109.3
C8—C7—H7120.3Cl1—C12—H12B109.3
C6—C7—H7120.3H12A—C12—H12B108.0
C7—C8—C3122.01 (19)
O1—C2—C3—C42.8 (3)C4—C5—C6—O3178.18 (18)
C1—C2—C3—C4177.19 (19)C4—C5—C6—C70.8 (3)
O1—C2—C3—C8176.56 (19)O3—C6—C7—C8179.25 (18)
C1—C2—C3—C83.5 (3)C5—C6—C7—C80.2 (3)
C8—C3—C4—O2179.90 (18)C6—C7—C8—C31.1 (3)
C2—C3—C4—O20.6 (3)C4—C3—C8—C70.9 (3)
C8—C3—C4—C50.1 (3)C2—C3—C8—C7178.46 (19)
C2—C3—C4—C5179.47 (18)C6—O3—C9—C10172.47 (17)
O2—C4—C5—C6179.10 (18)O3—C9—C10—C11177.85 (18)
C3—C4—C5—C60.9 (3)C9—C10—C11—C12170.21 (19)
C9—O3—C6—C51.4 (3)C10—C11—C12—Cl163.0 (2)
C9—O3—C6—C7179.63 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O10.821.822.539 (2)146

Experimental details

Crystal data
Chemical formulaC12H15ClO3
Mr242.69
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)5.2750 (4), 9.8941 (10), 11.6529 (12)
α, β, γ (°)99.735 (2), 98.242 (1), 92.248 (1)
V3)591.97 (10)
Z2
Radiation typeMo Kα
µ (mm1)0.31
Crystal size (mm)0.49 × 0.40 × 0.24
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.862, 0.929
No. of measured, independent and
observed [I > 2σ(I)] reflections
3097, 2068, 1517
Rint0.019
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.108, 1.06
No. of reflections2068
No. of parameters147
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.21

Computer programs: SMART (Bruker, 1996), SAINT (Bruker, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O10.821.822.539 (2)146
 

Acknowledgements

We would like to acknowledge funding support from the National Natural Science Foundation of China (grant No. 31070444).

References

First citationBruker (1996). SMART and SAINT. Bruker ASX Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDermer, O. C. (1934). Chem. Rev. 14, 385–430.  CrossRef CAS Google Scholar
First citationSchlemper, E. O. (1986). Acta Cryst. C42, 755–757.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds