organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(2,4-Dimeth­­oxy­anilino)-8-meth­­oxy­dibenz[b,e]oxepin-11(6H)-one

aInstitute of Pharmacy, Department of Pharmaceutical Chemistry, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany, and bDepartment of Organic Chemistry, Johannes Gutenberg-University Mainz, Duessbergweg 10-14, 55099 Mainz, Germany
*Correspondence e-mail: stefan.laufer@uni-tuebingen.de

(Received 18 January 2011; accepted 19 January 2011; online 26 January 2011)

In the title compound, C23H21NO5, the two benzene rings of the tricyclic unit are oriented at a dihedral angle of 37.5 (8)°. The 2,4-dimeth­oxy­anilino residue is oriented at a dihedral angle of 60.2 (8)° towards the phen­oxy ring. In the crystal, the central carbonyl O atom accepts two hydrogen bonds from the N—H and C—H groups. A further inter­molecular C—H⋯O inter­action involving one of the meth­oxy O atoms is also observed.

Related literature

For palladium-catalysed amination reactions of aryl halides with anilines, see: Jensen et al. (2004[Jensen, T. A., Liang, X., Tanner, D. & Skjaerbaek, N. (2004). J. Org. Chem. 69, 4936-4947]). For p38 MAP kinase inhibitors based on dibenzo[b,e]oxepin-11(6H)-one, see: Laufer et al. (2006[Laufer, S. A., Ahrens, G. M., Karcher, S. C., Hering, J. S. & Niess, R. (2006). J. Med. Chem. 49, 7912-7915.]).

[Scheme 1]

Experimental

Crystal data
  • C23H21NO5

  • Mr = 391.41

  • Monoclinic, P 21 /c

  • a = 9.3277 (9) Å

  • b = 25.8290 (8) Å

  • c = 7.9519 (6) Å

  • β = 98.914 (3)°

  • V = 1892.7 (2) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.80 mm−1

  • T = 193 K

  • 0.50 × 0.10 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • 3847 measured reflections

  • 3578 independent reflections

  • 3041 reflections with I > 2σ(I)

  • Rint = 0.021

  • 3 standard reflections every 60 min intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.111

  • S = 1.06

  • 3578 reflections

  • 265 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N12—H12⋯O23i 0.87 2.08 2.9403 (18) 168
C4—H4⋯O23i 0.95 2.57 3.3000 (19) 134
C20—H20B⋯O21ii 0.98 2.56 3.496 (3) 160
Symmetry codes: (i) x, y, z-1; (ii) -x+2, -y+1, -z-1.

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: CORINC (Dräger & Gattow, 1971[Dräger, M. & Gattow, G. (1971). Acta Chem. Scand. 25, 761-762.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

Based on dibenzo[b,e]oxepin-11(6H)-one (Laufer et al. 2006) as novel p38 MAP kinase inhibitors, our intent was to synthesize new oxepin derivatives. The title compound was synthesized in the course of an ongoing study to insert hydrophilic residues at position 8. The two phenyl rings of the tricyclid unit are oriented at a dihedral angle of 37.5 (8°). The 2,4-dimethoxyphenylamino residue is oriented at a dihedral angel of 60.2 (8°) towards the phenoxy ring. The crystal stucture is characterized by several hydrogen bonds. The central carboxyl group O(23) forms two hydrogen bonds towards N(12)—H (2.08 Å) and C(4)—H (2.57 Å) and O(21) forms a hydrogen bond towards C(20)—H (2.56 Å) (Tab. 1).

Related literature top

For palladium-catalysed amination reactions of aryl halides with anilines, see: Jensen et al. (2004). For p38 MAP kinase inhibitors based on dibenzo[b,e]oxepin-11(6H)-one, see: Laufer et al. (2006).

Experimental top

The preparation of the title compound was achieved by using a palladium catalyzed amination reaction (Jensen et al. (2004)).

A mixture of 200 mg (0.73 mmol) 3-chloro-9-methoxy-dibenzo[b,e]oxepin-11(6H)-one, 120 mg (0.78 mmol) 2–4-dimethoxyaniline, 1.10 g (3.37 mmol) Cs2CO3, 45 mg (0.10 mmol) 2-(dicyclohexylphosphino)-2`-4`-6`-triisopropylbiphenyl and 20 mg (0.09 mmol) Pd(OAc)2 in 2 ml absolute tert-butanol and 10 ml absolute 2.4-dioxane was stirred for 1 h at 284 K under an argon atmosphere. The mixture was then filtered and evaporated under pressure. The residue was purified by column chromatography (SiO2, n-hexane / ethyl acetate 1 + 1). Crystals of the title compound were obtained by slow evaporation of the solvent from a solution of the title compound in diethylether / n-hexane.

1H NMR (200 MHz, DMSO) δ in p.p.m. 3.75 (s, 3 H), 3.77 (s, 3 H), 3.84 (s, 3 H), 5.10 (s, 2 H), 6.11 (d, J=2.27 Hz, 1 H), 6.52 (m, 2 H), 6.66 (m, 1 H), 7.07 (m, 3 H), 7.82 (d, J=7.96 Hz, 1 H), 7.95 (d, J=8.97 Hz, 1 H), 8.17 (s, 1 H)

13C NMR (50 MHz, DMSO) δ in p.p.m. 55.7, 55.9, 55.9, 73.4, 100.0, 101.0, 105.1, 109.6, 113.2, 114.6, 116.2, 121.7, 126.7, 132.0, 132.9, 133.6, 138.9, 153.8, 154.9, 158.2, 162.6, 163.1, 185.4

Refinement top

Hydrogen atoms attached to carbons were placed at calculated positions with C—H = 0.95 Å (aromatic) or 0.98–0.99 Å (sp3 C-atom). The position of the N—H H atom was taken from the difference map. All H atoms were refined in the riding-model approximation with isotropic displacement parameters (set at 1.2–1.5 times of the Ueq of the parent atom).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: CORINC (Dräger & Gattow, 1971); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Crystal structure of the title compound with labelling and displacement ellipsoids are drawn at the 50% probability level.
6-[(2,4-dimethoxyphenyl)amino]-13-methoxy-9-oxatricyclo[9.4.0.03,8]pentadeca- 1(11),3(8),4,6,12,14-hexaen-2-one top
Crystal data top
C23H21NO5F(000) = 824
Mr = 391.41Dx = 1.374 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 9.3277 (9) Åθ = 61–68°
b = 25.8290 (8) ŵ = 0.80 mm1
c = 7.9519 (6) ÅT = 193 K
β = 98.914 (3)°Needle, yellow
V = 1892.7 (2) Å30.50 × 0.10 × 0.10 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.021
Radiation source: rotating anodeθmax = 69.9°, θmin = 3.4°
Graphite monochromatorh = 1111
ω/2θ scansk = 031
3847 measured reflectionsl = 09
3578 independent reflections3 standard reflections every 60 min
3041 reflections with I > 2σ(I) intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0517P)2 + 0.6681P]
where P = (Fo2 + 2Fc2)/3
3578 reflections(Δ/σ)max < 0.001
265 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C23H21NO5V = 1892.7 (2) Å3
Mr = 391.41Z = 4
Monoclinic, P21/cCu Kα radiation
a = 9.3277 (9) ŵ = 0.80 mm1
b = 25.8290 (8) ÅT = 193 K
c = 7.9519 (6) Å0.50 × 0.10 × 0.10 mm
β = 98.914 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.021
3847 measured reflections3 standard reflections every 60 min
3578 independent reflections intensity decay: 1%
3041 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.111H-atom parameters constrained
S = 1.06Δρmax = 0.19 e Å3
3578 reflectionsΔρmin = 0.25 e Å3
265 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.02652 (18)0.28134 (6)0.3263 (2)0.0231 (3)
H10.01530.25420.25450.028*
C1A0.16914 (17)0.29698 (6)0.32152 (19)0.0203 (3)
C20.25880 (19)0.26887 (6)0.2104 (2)0.0239 (4)
H2A0.34810.25560.28070.029*
H2B0.20350.23890.15670.029*
O30.29732 (12)0.30244 (5)0.08016 (13)0.0249 (3)
C3A0.41536 (17)0.33353 (6)0.1250 (2)0.0196 (3)
C40.48724 (17)0.34554 (6)0.0096 (2)0.0211 (3)
H40.45030.33280.11990.025*
C50.61280 (17)0.37589 (6)0.01266 (19)0.0206 (3)
C60.66950 (18)0.39254 (6)0.1786 (2)0.0231 (3)
H60.75790.41140.19910.028*
C70.59571 (18)0.38115 (6)0.3098 (2)0.0239 (3)
H70.63470.39310.42050.029*
C7A0.46456 (17)0.35261 (6)0.29013 (19)0.0197 (3)
C80.38732 (18)0.35207 (6)0.43906 (19)0.0220 (3)
C8A0.23163 (18)0.33692 (6)0.42594 (19)0.0212 (3)
C90.14745 (19)0.36140 (7)0.5343 (2)0.0266 (4)
H90.18860.38870.60610.032*
C100.00634 (19)0.34659 (7)0.5384 (2)0.0279 (4)
H100.04980.36420.61040.034*
C110.05416 (18)0.30576 (7)0.4367 (2)0.0241 (4)
N120.67328 (15)0.38860 (6)0.12843 (17)0.0258 (3)
H120.61520.38450.22420.031*
C130.80880 (17)0.41301 (6)0.12979 (19)0.0217 (3)
C140.81422 (17)0.45637 (6)0.2367 (2)0.0220 (3)
C150.94631 (18)0.47876 (6)0.2511 (2)0.0240 (4)
H150.95010.50740.32510.029*
C161.07366 (17)0.45964 (6)0.1579 (2)0.0233 (4)
C171.07033 (18)0.41758 (7)0.0502 (2)0.0260 (4)
H171.15710.40470.01450.031*
C180.93686 (19)0.39460 (7)0.0391 (2)0.0256 (4)
H180.93400.36540.03300.031*
O190.68401 (12)0.47311 (5)0.32059 (16)0.0289 (3)
C200.6874 (2)0.51958 (8)0.4183 (3)0.0404 (5)
H20A0.58800.53030.46310.061*
H20B0.74080.51320.51320.061*
H20C0.73570.54710.34560.061*
O211.19612 (13)0.48548 (5)0.18470 (17)0.0333 (3)
C221.33194 (19)0.46751 (9)0.0997 (3)0.0386 (5)
H22A1.33300.46910.02370.058*
H22B1.40970.48940.13060.058*
H22C1.34690.43170.13330.058*
O230.44763 (14)0.36837 (5)0.57752 (14)0.0338 (3)
O240.19058 (13)0.29162 (5)0.45756 (16)0.0319 (3)
C250.2614 (2)0.25277 (8)0.3469 (3)0.0399 (5)
H25A0.26870.26440.22850.060*
H25B0.35890.24660.37410.060*
H25C0.20520.22060.36190.060*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0268 (8)0.0244 (8)0.0184 (8)0.0034 (7)0.0049 (6)0.0003 (6)
C1A0.0267 (8)0.0212 (8)0.0136 (7)0.0013 (6)0.0051 (6)0.0025 (6)
C20.0306 (9)0.0223 (8)0.0212 (8)0.0073 (7)0.0117 (7)0.0024 (6)
O30.0293 (6)0.0327 (6)0.0140 (5)0.0121 (5)0.0074 (5)0.0038 (5)
C3A0.0211 (8)0.0202 (7)0.0183 (7)0.0006 (6)0.0053 (6)0.0005 (6)
C40.0262 (8)0.0235 (8)0.0141 (7)0.0010 (6)0.0049 (6)0.0008 (6)
C50.0242 (8)0.0209 (8)0.0176 (7)0.0007 (6)0.0060 (6)0.0026 (6)
C60.0239 (8)0.0251 (8)0.0204 (8)0.0050 (6)0.0042 (6)0.0000 (6)
C70.0278 (8)0.0278 (8)0.0154 (7)0.0023 (7)0.0015 (6)0.0013 (6)
C7A0.0231 (8)0.0227 (8)0.0136 (7)0.0014 (6)0.0039 (6)0.0012 (6)
C80.0297 (9)0.0223 (8)0.0140 (7)0.0027 (7)0.0038 (6)0.0010 (6)
C8A0.0281 (8)0.0228 (8)0.0138 (7)0.0014 (7)0.0067 (6)0.0017 (6)
C90.0370 (9)0.0234 (8)0.0211 (8)0.0025 (7)0.0099 (7)0.0032 (7)
C100.0326 (9)0.0279 (9)0.0266 (9)0.0039 (7)0.0148 (7)0.0013 (7)
C110.0245 (8)0.0281 (9)0.0209 (8)0.0026 (7)0.0072 (7)0.0053 (6)
N120.0259 (7)0.0372 (8)0.0147 (7)0.0093 (6)0.0045 (5)0.0017 (6)
C130.0256 (8)0.0255 (8)0.0158 (7)0.0039 (7)0.0086 (6)0.0028 (6)
C140.0234 (8)0.0259 (8)0.0175 (7)0.0004 (6)0.0055 (6)0.0015 (6)
C150.0285 (9)0.0231 (8)0.0213 (8)0.0027 (7)0.0071 (7)0.0017 (6)
C160.0235 (8)0.0255 (8)0.0224 (8)0.0029 (7)0.0079 (7)0.0048 (6)
C170.0254 (8)0.0292 (9)0.0229 (8)0.0020 (7)0.0021 (7)0.0003 (7)
C180.0317 (9)0.0267 (9)0.0192 (8)0.0012 (7)0.0071 (7)0.0036 (7)
O190.0242 (6)0.0307 (7)0.0312 (7)0.0013 (5)0.0026 (5)0.0085 (5)
C200.0358 (10)0.0361 (11)0.0467 (12)0.0000 (8)0.0015 (9)0.0184 (9)
O210.0220 (6)0.0365 (7)0.0416 (7)0.0069 (5)0.0053 (5)0.0051 (6)
C220.0219 (9)0.0518 (12)0.0410 (11)0.0060 (8)0.0010 (8)0.0010 (9)
O230.0369 (7)0.0508 (8)0.0140 (6)0.0133 (6)0.0041 (5)0.0057 (5)
O240.0264 (6)0.0390 (7)0.0327 (7)0.0023 (5)0.0120 (5)0.0003 (6)
C250.0294 (10)0.0460 (12)0.0459 (12)0.0084 (9)0.0108 (9)0.0038 (10)
Geometric parameters (Å, º) top
C1—C111.393 (2)C11—O241.358 (2)
C1—C1A1.396 (2)N12—C131.414 (2)
C1—H10.9500N12—H120.8699
C1A—C8A1.394 (2)C13—C181.381 (2)
C1A—C21.496 (2)C13—C141.412 (2)
C2—O31.4382 (19)C14—O191.362 (2)
C2—H2A0.9900C14—C151.382 (2)
C2—H2B0.9900C15—C161.390 (2)
O3—C3A1.3648 (19)C15—H150.9500
C3A—C41.383 (2)C16—O211.3680 (19)
C3A—C7A1.411 (2)C16—C171.386 (2)
C4—C51.398 (2)C17—C181.394 (2)
C4—H40.9500C17—H170.9500
C5—N121.371 (2)C18—H180.9500
C5—C61.411 (2)O19—C201.433 (2)
C6—C71.368 (2)C20—H20A0.9800
C6—H60.9500C20—H20B0.9800
C7—C7A1.416 (2)C20—H20C0.9800
C7—H70.9500O21—C221.418 (2)
C7A—C81.479 (2)C22—H22A0.9800
C8—O231.2304 (19)C22—H22B0.9800
C8—C8A1.492 (2)C22—H22C0.9800
C8A—C91.403 (2)O24—C251.428 (2)
C9—C101.376 (2)C25—H25A0.9800
C9—H90.9500C25—H25B0.9800
C10—C111.394 (2)C25—H25C0.9800
C10—H100.9500
C11—C1—C1A119.75 (15)O24—C11—C10115.82 (15)
C11—C1—H1120.1C1—C11—C10119.89 (15)
C1A—C1—H1120.1C5—N12—C13126.48 (14)
C8A—C1A—C1120.67 (15)C5—N12—H12114.1
C8A—C1A—C2119.38 (14)C13—N12—H12118.9
C1—C1A—C2119.87 (14)C18—C13—C14118.62 (15)
O3—C2—C1A110.96 (13)C18—C13—N12122.99 (15)
O3—C2—H2A109.4C14—C13—N12118.28 (14)
C1A—C2—H2A109.4O19—C14—C15124.42 (15)
O3—C2—H2B109.4O19—C14—C13115.74 (14)
C1A—C2—H2B109.4C15—C14—C13119.83 (15)
H2A—C2—H2B108.0C14—C15—C16120.43 (15)
C3A—O3—C2116.61 (12)C14—C15—H15119.8
O3—C3A—C4113.44 (14)C16—C15—H15119.8
O3—C3A—C7A125.57 (14)O21—C16—C17125.29 (15)
C4—C3A—C7A120.99 (14)O21—C16—C15114.13 (15)
C3A—C4—C5121.68 (15)C17—C16—C15120.58 (15)
C3A—C4—H4119.2C16—C17—C18118.58 (16)
C5—C4—H4119.2C16—C17—H17120.7
N12—C5—C4118.28 (14)C18—C17—H17120.7
N12—C5—C6123.38 (14)C13—C18—C17121.93 (15)
C4—C5—C6118.33 (14)C13—C18—H18119.0
C7—C6—C5119.20 (15)C17—C18—H18119.0
C7—C6—H6120.4C14—O19—C20116.01 (13)
C5—C6—H6120.4O19—C20—H20A109.5
C6—C7—C7A123.77 (15)O19—C20—H20B109.5
C6—C7—H7118.1H20A—C20—H20B109.5
C7A—C7—H7118.1O19—C20—H20C109.5
C3A—C7A—C7115.82 (14)H20A—C20—H20C109.5
C3A—C7A—C8127.84 (14)H20B—C20—H20C109.5
C7—C7A—C8115.86 (14)C16—O21—C22118.15 (14)
O23—C8—C7A120.10 (15)O21—C22—H22A109.5
O23—C8—C8A117.22 (14)O21—C22—H22B109.5
C7A—C8—C8A122.43 (13)H22A—C22—H22B109.5
C1A—C8A—C9118.50 (15)O21—C22—H22C109.5
C1A—C8A—C8123.26 (14)H22A—C22—H22C109.5
C9—C8A—C8118.04 (14)H22B—C22—H22C109.5
C10—C9—C8A121.18 (16)C11—O24—C25117.80 (14)
C10—C9—H9119.4O24—C25—H25A109.5
C8A—C9—H9119.4O24—C25—H25B109.5
C9—C10—C11119.97 (15)H25A—C25—H25B109.5
C9—C10—H10120.0O24—C25—H25C109.5
C11—C10—H10120.0H25A—C25—H25C109.5
O24—C11—C1124.26 (16)H25B—C25—H25C109.5
C11—C1—C1A—C8A0.2 (2)C7A—C8—C8A—C9146.90 (16)
C11—C1—C1A—C2176.53 (15)C1A—C8A—C9—C100.0 (2)
C8A—C1A—C2—O366.78 (19)C8—C8A—C9—C10174.98 (15)
C1—C1A—C2—O3116.48 (16)C8A—C9—C10—C111.6 (3)
C1A—C2—O3—C3A83.27 (17)C1A—C1—C11—O24176.31 (15)
C2—O3—C3A—C4151.24 (14)C1A—C1—C11—C101.8 (2)
C2—O3—C3A—C7A28.6 (2)C9—C10—C11—O24175.75 (15)
O3—C3A—C4—C5178.36 (14)C9—C10—C11—C12.5 (3)
C7A—C3A—C4—C51.5 (2)C4—C5—N12—C13171.32 (15)
C3A—C4—C5—N12176.34 (15)C6—C5—N12—C139.7 (3)
C3A—C4—C5—C62.7 (2)C5—N12—C13—C1853.5 (2)
N12—C5—C6—C7175.15 (16)C5—N12—C13—C14130.35 (17)
C4—C5—C6—C73.8 (2)C18—C13—C14—O19179.03 (14)
C5—C6—C7—C7A0.9 (3)N12—C13—C14—O194.6 (2)
O3—C3A—C7A—C7175.56 (15)C18—C13—C14—C151.2 (2)
C4—C3A—C7A—C74.3 (2)N12—C13—C14—C15175.09 (14)
O3—C3A—C7A—C812.8 (3)O19—C14—C15—C16178.75 (15)
C4—C3A—C7A—C8167.39 (16)C13—C14—C15—C161.5 (2)
C6—C7—C7A—C3A3.1 (2)C14—C15—C16—O21179.95 (15)
C6—C7—C7A—C8169.56 (16)C14—C15—C16—C170.6 (2)
C3A—C7A—C8—O23176.92 (16)O21—C16—C17—C18178.63 (16)
C7—C7A—C8—O2311.4 (2)C15—C16—C17—C180.7 (2)
C3A—C7A—C8—C8A9.0 (3)C14—C13—C18—C170.0 (2)
C7—C7A—C8—C8A162.71 (15)N12—C13—C18—C17176.18 (15)
C1—C1A—C8A—C90.7 (2)C16—C17—C18—C131.0 (3)
C2—C1A—C8A—C9177.46 (15)C15—C14—O19—C205.2 (2)
C1—C1A—C8A—C8173.99 (15)C13—C14—O19—C20175.09 (16)
C2—C1A—C8A—C82.7 (2)C17—C16—O21—C221.6 (3)
O23—C8—C8A—C1A147.38 (16)C15—C16—O21—C22177.76 (16)
C7A—C8—C8A—C1A38.3 (2)C1—C11—O24—C256.7 (2)
O23—C8—C8A—C927.4 (2)C10—C11—O24—C25175.15 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N12—H12···O23i0.872.082.9403 (18)168
C4—H4···O23i0.952.573.3000 (19)134
C20—H20B···O21ii0.982.563.496 (3)160
Symmetry codes: (i) x, y, z1; (ii) x+2, y+1, z1.

Experimental details

Crystal data
Chemical formulaC23H21NO5
Mr391.41
Crystal system, space groupMonoclinic, P21/c
Temperature (K)193
a, b, c (Å)9.3277 (9), 25.8290 (8), 7.9519 (6)
β (°) 98.914 (3)
V3)1892.7 (2)
Z4
Radiation typeCu Kα
µ (mm1)0.80
Crystal size (mm)0.50 × 0.10 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3847, 3578, 3041
Rint0.021
(sin θ/λ)max1)0.609
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.111, 1.06
No. of reflections3578
No. of parameters265
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.25

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), CORINC (Dräger & Gattow, 1971), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N12—H12···O23i0.872.082.9403 (18)168
C4—H4···O23i0.952.573.3000 (19)134
C20—H20B···O21ii0.982.563.496 (3)160
Symmetry codes: (i) x, y, z1; (ii) x+2, y+1, z1.
 

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDräger, M. & Gattow, G. (1971). Acta Chem. Scand. 25, 761–762.  Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationJensen, T. A., Liang, X., Tanner, D. & Skjaerbaek, N. (2004). J. Org. Chem. 69, 4936–4947  Web of Science CrossRef PubMed CAS Google Scholar
First citationLaufer, S. A., Ahrens, G. M., Karcher, S. C., Hering, J. S. & Niess, R. (2006). J. Med. Chem. 49, 7912–7915.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds