organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-{2-[(3,4-Di­chloro­phen­yl)(meth­yl)amino]-4-methyl-1,3-thia­zol-5-yl}-N-(3-methyl­phen­yl)pyrimidin-2-amine

aNantong Center for Disease Control and Prevention, Nantong 226007, People's Republic of China, bZhejiang Pharmaceutical College, Ningbo 315100, People's Republic of China, and cCollege of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310032, People's Republic of China

(Received 29 November 2010; accepted 21 December 2010; online 8 January 2011)

In the title compound, C22H19Cl2N5S, the thia­zole and pyrimidine rings are almost co-planar, making a dihedral angle of 6.48 (7)°. In the crystal, intermolecular N—H⋯N hydrogen bonds link pairs of molecules into centrosymmetric dimers..

Related literature

For general background to the biological activity of thia­zole derivatives, see: Narayana et al. (2004[Narayana, B., Raj, K. K. V., Ashalatha, B. V., Kumari, N. S. & Sarojini, B. K. (2004). Eur. J. Med. Chem. 39, 867-872.]). For the synthesis of the title compound, see: Bredereck et al. (1964[Bredereck, H., Effenberger, F. & Botsch, H. (1964). Chem. Ber. 97, 3397-3406.]).

[Scheme 1]

Experimental

Crystal data
  • C22H19Cl2N5S

  • Mr = 456.38

  • Triclinic, [P \overline 1]

  • a = 7.9679 (15) Å

  • b = 9.4042 (19) Å

  • c = 14.166 (3) Å

  • α = 85.421 (6)°

  • β = 76.727 (5)°

  • γ = 86.002 (6)°

  • V = 1028.4 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.44 mm−1

  • T = 103 K

  • 0.53 × 0.50 × 0.40 mm

Data collection
  • Rigaku AFC10/Saturn724+ diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2008)[Rigaku/MSC (2008). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.] Tmin = 0.801, Tmax = 0.844

  • 9828 measured reflections

  • 4626 independent reflections

  • 3906 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.091

  • S = 1.05

  • 4626 reflections

  • 275 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N5—H5N⋯N3i 0.88 2.20 3.078 (2) 177
Symmetry code: (i) -x+1, -y+2, -z+1.

Data collection: CrystalClear (Rigaku/MSC, 2008[Rigaku/MSC (2008). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Thiazole derivatives are found to be associated with various biological activities (Narayana et al., 2004). In order to further study the structure-activity relationship (SAR) of the thiazolyl-pyrimidine derivatives, we introduced arylamino group into 2-position of thiazole ring of thiazolyl-pyrimidine according to the general pyrimidine condensation method of Bredereck (Bredereck et al., 1964). But, it was found that the obtained compound was not desired compound that confirmed by 1H NMR, MS. So, the structure of (I) was further determined using single-crystal X-ray diffraction.

The molecular structure of (I) is illustrated in Fig. 1. The thiazole ring (S1/C7/N2/C8/C9) and the pyrimidine ring (C10/C11/C12/N3/C13/N4) are almost planar, with a dihedral angle of 6.48 (7)°. The aniline rings (C1/C2/C3/C4/C5/C6/N1) and (C14/C15/C16/C17/C18/C19/N5) make dihedral angles of 73.76 (8) Å and 14.16 (7) Å with the thiazole ring, respectively. In the thiazole ring, the bond lengths S1—C7 [1.739 (15) Å], S1—C9 [1.749 (15) Å] and N2—C8 [1.377 (19) Å] correspond to typical single bond, and the C7—N2 [1.310 (2) Å], C8—C9 [1.372 (2) Å] belong to typical for double bonds. The crystal structure is stabilized by intermolecular weak N—H···N interactions (Fig. 2). Furthermore, every two molecules containing two N—H···N hydrogen bondings consists a dimer as octagon.

Related literature top

For general background to the biological activity of thiazole derivatives, see: Narayana et al. (2004). For the synthesis of the title compound, see: Bredereck et al. (1964).

Experimental top

A mixture of

3-dimethylamino-1-{2-[(3,4-Dichloro-phenyl)-methyl-amino]-4-methyl-thiazol-5-yl}-propenone (1.85 g, 5 mmol) and NaOH (0.2 g, 5 mmol) in 2-methoxylethanol (40 ml) was treated with N-m-tolyl-guanidine carbonate (1.58 g, 7.5 mmol). The reaction mixture was heated at 383 K under N2 for 21 h. After concentration, the residue was filtered and washed liberally with ethanol and water. Recrystallization from THF affored the title compound as dark-brown crystals, 0.34 g, m.p.472–473 K, yield 15.0%. Since the crystal product was not found to be suitable for X-ray diffraction studies, a few crystals were dissolved in 2-butanone, which was allowed to evaporate slowly to give yellow crystals of (I) suitable for X-ray diffraction studies. 1H NMR(CDCl3, TMS, 400 MHz, δp.p.m.): 8.30 (d, 1H, J =5.2 Hz, py—H), 7.61 (s, 1H, Ar—H), 7.57 (d, 1H, J = 2.8 Hz, Ar—H), 7.51 (d, 1H, J = 8.8 Hz, Ar—H), 7.33 (dd, 1H, J1= 2.4 Hz, J2 = 2.4 Hz, Ar—H), 7.23–7.15 (m, 2H, Ar—H), 7.04 (s, 1H, Ar—H), 6.84 (d, 1H, J = 5.6 Hz, py—H), 3.54 (s, 3H, CH3), 2.59 (s, 3H, CH3), 2.27 (s, 3H, CH3). EIMS m/z (%): 455 (M+, 100), 440 (9), 295 (11), 256 (12), 222 (13), 213 (9), 185 (10),171 (8), 129 (19), 111 (9), 97 (16), 85 (19), 73 (41), 65 (8), 57 (48).

Refinement top

All H atoms were placed in calculated positions (C—H 0.95–0.98 Å, N—H 0.87–0.89 Å) and refined as riding with Uiso(H) = 1.2–1.22Ueq of the parent atom.

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2008); cell refinement: CrystalClear (Rigaku/MSC, 2008); data reduction: CrystalClear (Rigaku/MSC, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The structure of (I), shown with 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing of the molecules down a axis. Dashed lines denote intermolecular N—H···N hydrogen bonds.
4-{2-[(3,4-Dichlorophenyl)(methyl)amino]-4-methyl-1,3-thiazol-5-yl}- N-(3-methylphenyl)pyrimidin-2-amine top
Crystal data top
C22H19Cl2N5SZ = 2
Mr = 456.38F(000) = 472
Triclinic, P1Dx = 1.474 Mg m3
Hall symbol: -P 1Melting point = 473–472 K
a = 7.9679 (15) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.4042 (19) ÅCell parameters from 3163 reflections
c = 14.166 (3) Åθ = 3.3–27.5°
α = 85.421 (6)°µ = 0.44 mm1
β = 76.727 (5)°T = 103 K
γ = 86.002 (6)°Block, yellow
V = 1028.4 (3) Å30.53 × 0.50 × 0.40 mm
Data collection top
Rigaku AFC10/Saturn724+
diffractometer
4626 independent reflections
Radiation source: fine-focus sealed tube3906 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
Detector resolution: 28.5714 pixels mm-1θmax = 27.5°, θmin = 3.3°
phi and ω scansh = 1010
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2008)
k = 1212
Tmin = 0.801, Tmax = 0.844l = 1618
9828 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0486P)2 + 0.1912P]
where P = (Fo2 + 2Fc2)/3
4626 reflections(Δ/σ)max = 0.002
275 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C22H19Cl2N5Sγ = 86.002 (6)°
Mr = 456.38V = 1028.4 (3) Å3
Triclinic, P1Z = 2
a = 7.9679 (15) ÅMo Kα radiation
b = 9.4042 (19) ŵ = 0.44 mm1
c = 14.166 (3) ÅT = 103 K
α = 85.421 (6)°0.53 × 0.50 × 0.40 mm
β = 76.727 (5)°
Data collection top
Rigaku AFC10/Saturn724+
diffractometer
4626 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2008)
3906 reflections with I > 2σ(I)
Tmin = 0.801, Tmax = 0.844Rint = 0.021
9828 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.091H-atom parameters constrained
S = 1.05Δρmax = 0.37 e Å3
4626 reflectionsΔρmin = 0.25 e Å3
275 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.65348 (6)0.39036 (4)1.06940 (3)0.02494 (11)
Cl21.02033 (6)0.23777 (5)0.99130 (3)0.03270 (13)
S10.46927 (5)0.38651 (4)0.73411 (3)0.01502 (10)
N10.42851 (17)0.12266 (14)0.82588 (10)0.0177 (3)
N20.24614 (17)0.20416 (14)0.72255 (10)0.0174 (3)
N30.40431 (17)0.83042 (14)0.50231 (10)0.0166 (3)
N40.46548 (16)0.64873 (13)0.62050 (9)0.0152 (3)
C10.5466 (2)0.24613 (16)0.93887 (11)0.0167 (3)
H10.43700.29360.96100.020*
C20.6847 (2)0.27394 (16)0.97755 (11)0.0172 (3)
C30.8457 (2)0.20465 (18)0.94480 (12)0.0199 (3)
C40.8656 (2)0.1063 (2)0.87532 (13)0.0260 (4)
H40.97490.05810.85350.031*
C50.7274 (2)0.07723 (19)0.83720 (12)0.0227 (4)
H50.74150.00830.79010.027*
C60.5687 (2)0.14890 (16)0.86789 (11)0.0158 (3)
C70.37223 (19)0.22404 (16)0.76455 (11)0.0150 (3)
C80.2218 (2)0.32085 (16)0.66094 (11)0.0161 (3)
C90.3305 (2)0.42957 (16)0.65541 (11)0.0153 (3)
C100.3515 (2)0.56427 (16)0.59808 (11)0.0144 (3)
C110.2660 (2)0.60746 (16)0.52437 (11)0.0173 (3)
H110.19060.54730.50520.021*
C120.2970 (2)0.74247 (17)0.48071 (12)0.0180 (3)
H120.23720.77500.43160.022*
C130.4895 (2)0.77493 (16)0.57055 (11)0.0150 (3)
C140.7437 (2)0.82794 (16)0.63641 (11)0.0155 (3)
C150.8818 (2)0.91812 (16)0.61470 (11)0.0162 (3)
H150.88250.99580.56750.019*
C161.0172 (2)0.89571 (16)0.66104 (12)0.0180 (3)
H161.10840.95950.64680.022*
C171.0204 (2)0.78011 (17)0.72849 (12)0.0176 (3)
H171.11440.76420.75950.021*
C180.8856 (2)0.68802 (17)0.75029 (11)0.0173 (3)
C190.7475 (2)0.71314 (16)0.70470 (11)0.0179 (3)
H190.65460.65100.72050.021*
C200.3733 (2)0.02305 (17)0.82886 (13)0.0224 (4)
H20A0.25550.02910.86860.027*
H20B0.45150.08950.85730.027*
H20C0.37590.04820.76270.027*
C210.0762 (2)0.31764 (18)0.61070 (13)0.0248 (4)
H21A0.00860.40890.61660.030*
H21B0.00200.23990.64080.030*
H21C0.12290.30200.54180.030*
C220.8862 (2)0.56045 (18)0.82177 (13)0.0243 (4)
H22A0.80180.57870.88230.029*
H22B1.00150.54370.83520.029*
H22C0.85580.47610.79420.029*
N50.61031 (17)0.86089 (14)0.58696 (10)0.0185 (3)
H5N0.60340.94980.56300.032 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0352 (2)0.0191 (2)0.0227 (2)0.00067 (16)0.00980 (17)0.00635 (15)
Cl20.0238 (2)0.0468 (3)0.0331 (3)0.00328 (19)0.01516 (19)0.0099 (2)
S10.01644 (19)0.01321 (18)0.0177 (2)0.00395 (13)0.00857 (15)0.00174 (14)
N10.0186 (7)0.0134 (6)0.0232 (7)0.0041 (5)0.0095 (6)0.0033 (5)
N20.0165 (7)0.0164 (7)0.0209 (7)0.0034 (5)0.0075 (5)0.0005 (5)
N30.0178 (7)0.0153 (6)0.0177 (7)0.0006 (5)0.0067 (5)0.0004 (5)
N40.0166 (6)0.0143 (6)0.0163 (7)0.0020 (5)0.0068 (5)0.0005 (5)
C10.0175 (8)0.0151 (7)0.0167 (8)0.0007 (6)0.0040 (6)0.0021 (6)
C20.0249 (8)0.0130 (7)0.0140 (8)0.0015 (6)0.0057 (6)0.0016 (6)
C30.0174 (8)0.0255 (8)0.0182 (8)0.0026 (6)0.0070 (6)0.0004 (6)
C40.0165 (8)0.0362 (10)0.0261 (10)0.0036 (7)0.0055 (7)0.0100 (7)
C50.0197 (8)0.0295 (9)0.0201 (9)0.0011 (7)0.0048 (7)0.0095 (7)
C60.0166 (7)0.0159 (7)0.0148 (8)0.0027 (6)0.0048 (6)0.0043 (6)
C70.0149 (7)0.0138 (7)0.0161 (8)0.0026 (6)0.0028 (6)0.0007 (6)
C80.0158 (7)0.0153 (7)0.0186 (8)0.0011 (6)0.0066 (6)0.0016 (6)
C90.0155 (7)0.0155 (7)0.0167 (8)0.0001 (6)0.0073 (6)0.0018 (6)
C100.0160 (7)0.0128 (7)0.0156 (8)0.0001 (5)0.0056 (6)0.0025 (6)
C110.0184 (8)0.0172 (8)0.0187 (8)0.0016 (6)0.0090 (6)0.0019 (6)
C120.0199 (8)0.0181 (8)0.0172 (8)0.0020 (6)0.0078 (6)0.0004 (6)
C130.0169 (7)0.0152 (7)0.0129 (7)0.0004 (6)0.0034 (6)0.0011 (6)
C140.0164 (7)0.0161 (7)0.0145 (8)0.0023 (6)0.0042 (6)0.0019 (6)
C150.0184 (8)0.0136 (7)0.0151 (8)0.0020 (6)0.0008 (6)0.0001 (6)
C160.0145 (7)0.0177 (8)0.0210 (8)0.0034 (6)0.0005 (6)0.0042 (6)
C170.0156 (8)0.0205 (8)0.0180 (8)0.0001 (6)0.0056 (6)0.0050 (6)
C180.0210 (8)0.0169 (7)0.0152 (8)0.0014 (6)0.0062 (6)0.0014 (6)
C190.0208 (8)0.0168 (8)0.0179 (8)0.0068 (6)0.0072 (6)0.0007 (6)
C200.0230 (9)0.0149 (8)0.0304 (10)0.0057 (6)0.0090 (7)0.0055 (7)
C210.0248 (9)0.0227 (9)0.0321 (10)0.0076 (7)0.0168 (7)0.0028 (7)
C220.0303 (9)0.0217 (9)0.0249 (9)0.0067 (7)0.0149 (7)0.0051 (7)
N50.0228 (7)0.0146 (7)0.0203 (7)0.0053 (5)0.0101 (6)0.0051 (5)
Geometric parameters (Å, º) top
Cl1—C21.7304 (17)C11—C121.380 (2)
Cl2—C31.7266 (17)C11—H110.9500
S1—C71.7392 (15)C12—H120.9500
S1—C91.7492 (15)C13—N51.3694 (19)
N1—C71.361 (2)C14—C191.394 (2)
N1—C61.424 (2)C14—C151.399 (2)
N1—C201.4626 (19)C14—N51.407 (2)
N2—C71.310 (2)C15—C161.382 (2)
N2—C81.3778 (19)C15—H150.9500
N3—C121.330 (2)C16—C171.392 (2)
N3—C131.3561 (19)C16—H160.9500
N4—C131.3346 (19)C17—C181.391 (2)
N4—C101.3530 (19)C17—H170.9500
C1—C21.386 (2)C18—C191.396 (2)
C1—C61.386 (2)C18—C221.507 (2)
C1—H10.9500C19—H190.9500
C2—C31.394 (2)C20—H20A0.9800
C3—C41.380 (2)C20—H20B0.9800
C4—C51.384 (2)C20—H20C0.9800
C4—H40.9500C21—H21A0.9800
C5—C61.385 (2)C21—H21B0.9800
C5—H50.9500C21—H21C0.9800
C8—C91.372 (2)C22—H22A0.9800
C8—C211.497 (2)C22—H22B0.9800
C9—C101.447 (2)C22—H22C0.9800
C10—C111.392 (2)N5—H5N0.8800
C7—S1—C988.31 (7)N4—C13—N3126.28 (14)
C7—N1—C6120.09 (13)N4—C13—N5119.49 (14)
C7—N1—C20118.53 (13)N3—C13—N5114.23 (13)
C6—N1—C20119.69 (12)C19—C14—C15118.38 (14)
C7—N2—C8110.18 (13)C19—C14—N5124.83 (14)
C12—N3—C13114.27 (13)C15—C14—N5116.80 (13)
C13—N4—C10117.34 (13)C16—C15—C14120.89 (14)
C2—C1—C6119.86 (15)C16—C15—H15119.6
C2—C1—H1120.1C14—C15—H15119.6
C6—C1—H1120.1C15—C16—C17120.25 (14)
C1—C2—C3120.02 (15)C15—C16—H16119.9
C1—C2—Cl1119.41 (12)C17—C16—H16119.9
C3—C2—Cl1120.53 (13)C18—C17—C16119.82 (15)
C4—C3—C2119.66 (15)C18—C17—H17120.1
C4—C3—Cl2119.29 (13)C16—C17—H17120.1
C2—C3—Cl2121.04 (13)C17—C18—C19119.58 (14)
C3—C4—C5120.44 (16)C17—C18—C22121.23 (15)
C3—C4—H4119.8C19—C18—C22119.20 (14)
C5—C4—H4119.8C14—C19—C18121.06 (14)
C4—C5—C6119.86 (16)C14—C19—H19119.5
C4—C5—H5120.1C18—C19—H19119.5
C6—C5—H5120.1N1—C20—H20A109.5
C5—C6—C1120.11 (15)N1—C20—H20B109.5
C5—C6—N1119.71 (15)H20A—C20—H20B109.5
C1—C6—N1120.18 (14)N1—C20—H20C109.5
N2—C7—N1122.48 (14)H20A—C20—H20C109.5
N2—C7—S1115.90 (11)H20B—C20—H20C109.5
N1—C7—S1121.59 (12)C8—C21—H21A109.5
C9—C8—N2115.95 (14)C8—C21—H21B109.5
C9—C8—C21127.26 (14)H21A—C21—H21B109.5
N2—C8—C21116.74 (13)C8—C21—H21C109.5
C8—C9—C10132.96 (14)H21A—C21—H21C109.5
C8—C9—S1109.62 (11)H21B—C21—H21C109.5
C10—C9—S1117.41 (11)C18—C22—H22A109.5
N4—C10—C11120.73 (14)C18—C22—H22B109.5
N4—C10—C9114.52 (13)H22A—C22—H22B109.5
C11—C10—C9124.75 (14)C18—C22—H22C109.5
C12—C11—C10116.32 (14)H22A—C22—H22C109.5
C12—C11—H11121.8H22B—C22—H22C109.5
C10—C11—H11121.8C13—N5—C14129.52 (13)
N3—C12—C11124.83 (14)C13—N5—H5N115.2
N3—C12—H12117.6C14—N5—H5N115.2
C11—C12—H12117.6
C6—C1—C2—C30.3 (2)C7—S1—C9—C81.59 (12)
C6—C1—C2—Cl1177.54 (11)C7—S1—C9—C10177.37 (13)
C1—C2—C3—C41.4 (2)C13—N4—C10—C111.2 (2)
Cl1—C2—C3—C4176.42 (13)C13—N4—C10—C9179.55 (13)
C1—C2—C3—Cl2179.72 (12)C8—C9—C10—N4174.45 (17)
Cl1—C2—C3—Cl22.50 (19)S1—C9—C10—N46.89 (19)
C2—C3—C4—C50.8 (3)C8—C9—C10—C116.3 (3)
Cl2—C3—C4—C5179.69 (14)S1—C9—C10—C11172.32 (13)
C3—C4—C5—C61.0 (3)N4—C10—C11—C123.6 (2)
C4—C5—C6—C12.1 (2)C9—C10—C11—C12177.22 (15)
C4—C5—C6—N1177.66 (15)C13—N3—C12—C112.2 (2)
C2—C1—C6—C51.5 (2)C10—C11—C12—N31.8 (2)
C2—C1—C6—N1178.28 (13)C10—N4—C13—N33.5 (2)
C7—N1—C6—C5108.63 (18)C10—N4—C13—N5176.52 (14)
C20—N1—C6—C556.3 (2)C12—N3—C13—N45.1 (2)
C7—N1—C6—C171.1 (2)C12—N3—C13—N5174.89 (14)
C20—N1—C6—C1123.93 (16)C19—C14—C15—C161.2 (2)
C8—N2—C7—N1177.07 (14)N5—C14—C15—C16178.77 (14)
C8—N2—C7—S10.87 (18)C14—C15—C16—C171.7 (2)
C6—N1—C7—N2178.64 (14)C15—C16—C17—C180.9 (2)
C20—N1—C7—N213.5 (2)C16—C17—C18—C190.5 (2)
C6—N1—C7—S10.8 (2)C16—C17—C18—C22179.02 (15)
C20—N1—C7—S1164.32 (12)C15—C14—C19—C180.2 (2)
C9—S1—C7—N21.46 (13)N5—C14—C19—C18179.85 (15)
C9—S1—C7—N1176.49 (14)C17—C18—C19—C141.0 (2)
C7—N2—C8—C90.5 (2)C22—C18—C19—C14178.47 (16)
C7—N2—C8—C21177.22 (14)N4—C13—N5—C1414.1 (2)
N2—C8—C9—C10177.21 (16)N3—C13—N5—C14165.88 (15)
C21—C8—C9—C105.4 (3)C19—C14—N5—C1321.4 (3)
N2—C8—C9—S11.52 (18)C15—C14—N5—C13158.68 (16)
C21—C8—C9—S1175.88 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5N···N3i0.882.203.078 (2)177
Symmetry code: (i) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC22H19Cl2N5S
Mr456.38
Crystal system, space groupTriclinic, P1
Temperature (K)103
a, b, c (Å)7.9679 (15), 9.4042 (19), 14.166 (3)
α, β, γ (°)85.421 (6), 76.727 (5), 86.002 (6)
V3)1028.4 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.44
Crystal size (mm)0.53 × 0.50 × 0.40
Data collection
DiffractometerRigaku AFC10/Saturn724+
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2008)
Tmin, Tmax0.801, 0.844
No. of measured, independent and
observed [I > 2σ(I)] reflections
9828, 4626, 3906
Rint0.021
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.091, 1.05
No. of reflections4626
No. of parameters275
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.25

Computer programs: CrystalClear (Rigaku/MSC, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5N···N3i0.882.203.078 (2)177
Symmetry code: (i) x+1, y+2, z+1.
 

Acknowledgements

We are very thankful to the Natural Science Foundation of Ningbo City (grant No. 2009 A610185) for financial support. We are also grateful to the Beijing Institute of Technology for the X-ray diffraction measurements.

References

First citationBredereck, H., Effenberger, F. & Botsch, H. (1964). Chem. Ber. 97, 3397–3406.  CrossRef CAS Web of Science Google Scholar
First citationNarayana, B., Raj, K. K. V., Ashalatha, B. V., Kumari, N. S. & Sarojini, B. K. (2004). Eur. J. Med. Chem. 39, 867–872.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku/MSC (2008). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds