organic compounds
2-(Furan-2-yl)-3-hydroxy-4H-chromen-4-one
In the 13H8O4, the inversely oriented molecules form inversion dimers through pairs of O—H⋯O hydrogen-bonding interactions. An intramolecular O—H⋯O hydrogen bond occurs. In the packing of the molecules, the nearly planar 2-(furan-2-yl)-4H-chromene units [dihedral angle between the chromene and furan rings = 3.8 (1)°] are either parallel or inclined at an angle of 80.7 (1)°.
of the title compound, CRelated literature
For general features of flavonols (derivatives of 3-hydroxy-2-phenyl-4H-chromen-4-one), see: Klymchenko et al. (2003); Sengupta & Kasha (1979). For related structures, see: Etter et al. (1986); Waller et al. (2003). For intermolecular interactions, see: Aakeröy et al. (1992); Novoa et al. (2006). For the synthesis, see: Klymchenko et al. (2003).
Experimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: CrysAlis CCD (Oxford Diffraction, 2003); cell CrysAlis RED (Oxford Diffraction, 2003); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).
Supporting information
10.1107/S1600536810053596/ng5090sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536810053596/ng5090Isup2.hkl
The title compound was obtained by means of the oxidative heterocyclization of 3-(furan-2-yl)-1-(2-hydroxyphenyl)prop-2-en-1-one, synthesized by the condensation of 1-(2-hydroxyphenyl)ethanone with furan-2-carbaldehyde in methanol/50% aqueous NaOH (1/1 v/v), in alkaline methanol/H2O2 (Klymchenko et al., 2003). The product was separated by filtration, and greenish-yellow crystals suitable for X-ray investigations were grown from ethanol (m.p. = 445 – 446 K).
H atoms involved in C–H···O and O–H···O interactions were located on a difference Fourier map and refined isotropically with Uiso(H) = 1.2Ueq(C) and Uiso(H) = 1.5Ueq(O), respectively. H atoms of other C–H bonds were positioned geometrically, with C–H = 0.95 Å, and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C).
Data collection: CrysAlis CCD (Oxford Diffraction, 2003); cell
CrysAlis RED (Oxford Diffraction, 2003); data reduction: CrysAlis RED (Oxford Diffraction, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).C13H8O4 | F(000) = 472 |
Mr = 228.19 | Dx = 1.495 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 1436 reflections |
a = 14.365 (8) Å | θ = 3.4–25.0° |
b = 4.421 (3) Å | µ = 0.11 mm−1 |
c = 17.086 (10) Å | T = 100 K |
β = 110.91 (5)° | Plate, greenish-yellow |
V = 1013.6 (11) Å3 | 0.40 × 0.40 × 0.14 mm |
Z = 4 |
Kuma KM4 CCD κ-geometry diffractometer | 1436 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.030 |
Graphite monochromator | θmax = 25.0°, θmin = 3.4° |
ω scans | h = −17→17 |
7132 measured reflections | k = −4→5 |
1779 independent reflections | l = −20→18 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.037 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.092 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.10 | w = 1/[σ2(Fo2) + (0.0517P)2 + 0.0439P] where P = (Fo2 + 2Fc2)/3 |
1779 reflections | (Δ/σ)max < 0.001 |
158 parameters | Δρmax = 0.21 e Å−3 |
0 restraints | Δρmin = −0.21 e Å−3 |
C13H8O4 | V = 1013.6 (11) Å3 |
Mr = 228.19 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 14.365 (8) Å | µ = 0.11 mm−1 |
b = 4.421 (3) Å | T = 100 K |
c = 17.086 (10) Å | 0.40 × 0.40 × 0.14 mm |
β = 110.91 (5)° |
Kuma KM4 CCD κ-geometry diffractometer | 1436 reflections with I > 2σ(I) |
7132 measured reflections | Rint = 0.030 |
1779 independent reflections |
R[F2 > 2σ(F2)] = 0.037 | 0 restraints |
wR(F2) = 0.092 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.10 | Δρmax = 0.21 e Å−3 |
1779 reflections | Δρmin = −0.21 e Å−3 |
158 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.30889 (8) | 0.5549 (2) | 0.43752 (6) | 0.0209 (3) | |
C2 | 0.27113 (12) | 0.6670 (4) | 0.49500 (9) | 0.0189 (4) | |
C3 | 0.17955 (12) | 0.5867 (4) | 0.49522 (9) | 0.0192 (4) | |
C4 | 0.11644 (12) | 0.3802 (4) | 0.43368 (9) | 0.0200 (4) | |
C5 | 0.10589 (12) | 0.0603 (4) | 0.30910 (9) | 0.0212 (4) | |
H5 | 0.0416 | −0.0076 | 0.3051 | 0.025* | |
C6 | 0.14678 (13) | −0.0412 (4) | 0.25248 (10) | 0.0232 (4) | |
H6 | 0.1102 (13) | −0.177 (4) | 0.2072 (11) | 0.028* | |
C7 | 0.24244 (13) | 0.0564 (4) | 0.25881 (10) | 0.0248 (4) | |
H7 | 0.2707 | −0.0148 | 0.2197 | 0.030* | |
C8 | 0.29541 (13) | 0.2533 (4) | 0.32077 (10) | 0.0229 (4) | |
H8 | 0.3601 | 0.3182 | 0.3250 | 0.027* | |
C9 | 0.15832 (12) | 0.2640 (4) | 0.37305 (9) | 0.0193 (4) | |
C10 | 0.25266 (12) | 0.3566 (4) | 0.37755 (9) | 0.0189 (4) | |
O11 | 0.14832 (9) | 0.7044 (3) | 0.55453 (7) | 0.0266 (3) | |
H11 | 0.0840 (16) | 0.665 (5) | 0.5432 (12) | 0.040* | |
O12 | 0.03228 (8) | 0.3089 (3) | 0.43240 (7) | 0.0277 (3) | |
C13 | 0.33852 (12) | 0.8757 (4) | 0.55296 (9) | 0.0198 (4) | |
O14 | 0.42459 (8) | 0.9419 (3) | 0.53893 (7) | 0.0245 (3) | |
C15 | 0.47607 (12) | 1.1419 (4) | 0.59996 (10) | 0.0264 (4) | |
H15 | 0.5387 | 1.2273 | 0.6053 | 0.032* | |
C16 | 0.42634 (12) | 1.2018 (4) | 0.65152 (10) | 0.0243 (4) | |
H16 | 0.4471 | 1.3323 | 0.6988 | 0.029* | |
C17 | 0.33603 (13) | 1.0302 (4) | 0.62119 (10) | 0.0224 (4) | |
H17 | 0.2820 (13) | 1.024 (4) | 0.6427 (10) | 0.027* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0202 (6) | 0.0231 (6) | 0.0215 (6) | −0.0020 (5) | 0.0099 (5) | −0.0031 (5) |
C2 | 0.0205 (9) | 0.0197 (8) | 0.0168 (8) | 0.0034 (7) | 0.0072 (7) | 0.0038 (7) |
C3 | 0.0188 (9) | 0.0231 (9) | 0.0162 (8) | 0.0023 (7) | 0.0069 (7) | 0.0040 (7) |
C4 | 0.0192 (9) | 0.0211 (9) | 0.0195 (8) | 0.0019 (7) | 0.0068 (7) | 0.0053 (7) |
C5 | 0.0186 (9) | 0.0220 (9) | 0.0212 (8) | 0.0007 (7) | 0.0050 (7) | 0.0036 (7) |
C6 | 0.0256 (10) | 0.0219 (9) | 0.0196 (9) | −0.0008 (7) | 0.0049 (7) | 0.0010 (7) |
C7 | 0.0315 (10) | 0.0231 (9) | 0.0232 (9) | 0.0034 (8) | 0.0141 (8) | 0.0014 (7) |
C8 | 0.0208 (9) | 0.0247 (9) | 0.0257 (9) | −0.0013 (7) | 0.0115 (7) | 0.0014 (7) |
C9 | 0.0198 (9) | 0.0200 (9) | 0.0170 (8) | 0.0020 (7) | 0.0051 (7) | 0.0044 (6) |
C10 | 0.0192 (8) | 0.0180 (9) | 0.0187 (8) | 0.0010 (7) | 0.0055 (7) | 0.0028 (7) |
O11 | 0.0201 (7) | 0.0390 (8) | 0.0226 (6) | −0.0047 (6) | 0.0100 (5) | −0.0072 (5) |
O12 | 0.0202 (7) | 0.0377 (7) | 0.0265 (6) | −0.0055 (5) | 0.0099 (5) | −0.0040 (5) |
C13 | 0.0164 (8) | 0.0223 (9) | 0.0207 (8) | 0.0020 (7) | 0.0066 (7) | 0.0059 (7) |
O14 | 0.0203 (6) | 0.0280 (7) | 0.0265 (6) | −0.0054 (5) | 0.0100 (5) | −0.0047 (5) |
C15 | 0.0201 (9) | 0.0258 (10) | 0.0290 (9) | −0.0055 (7) | 0.0037 (7) | −0.0052 (8) |
C16 | 0.0259 (9) | 0.0228 (9) | 0.0219 (8) | 0.0000 (7) | 0.0056 (7) | −0.0004 (7) |
C17 | 0.0221 (9) | 0.0238 (9) | 0.0211 (8) | 0.0022 (7) | 0.0075 (7) | 0.0021 (7) |
O1—C10 | 1.371 (2) | C7—H7 | 0.9500 |
O1—C2 | 1.3729 (19) | C8—C10 | 1.397 (2) |
C2—C3 | 1.364 (2) | C8—H8 | 0.9500 |
C2—C13 | 1.444 (2) | C9—C10 | 1.391 (2) |
C3—O11 | 1.3503 (19) | O11—H11 | 0.89 (2) |
C3—C4 | 1.443 (2) | C13—C17 | 1.362 (2) |
C4—O12 | 1.2419 (19) | C13—O14 | 1.372 (2) |
C4—C9 | 1.464 (2) | O14—C15 | 1.366 (2) |
C5—C6 | 1.374 (2) | C15—C16 | 1.344 (2) |
C5—C9 | 1.409 (2) | C15—H15 | 0.9500 |
C5—H5 | 0.9500 | C16—C17 | 1.431 (3) |
C6—C7 | 1.407 (2) | C16—H16 | 0.9500 |
C6—H6 | 0.971 (18) | C17—H17 | 0.971 (17) |
C7—C8 | 1.372 (2) | ||
C10—O1—C2 | 119.19 (13) | C10—C8—H8 | 120.6 |
C3—C2—O1 | 122.39 (15) | C10—C9—C5 | 118.13 (15) |
C3—C2—C13 | 125.15 (14) | C10—C9—C4 | 119.72 (15) |
O1—C2—C13 | 112.46 (14) | C5—C9—C4 | 122.15 (15) |
O11—C3—C2 | 118.75 (15) | O1—C10—C9 | 122.13 (14) |
O11—C3—C4 | 120.01 (14) | O1—C10—C8 | 116.11 (14) |
C2—C3—C4 | 121.24 (14) | C9—C10—C8 | 121.76 (15) |
O12—C4—C3 | 121.87 (15) | C3—O11—H11 | 110.9 (13) |
O12—C4—C9 | 122.81 (15) | C17—C13—O14 | 110.06 (15) |
C3—C4—C9 | 115.33 (14) | C17—C13—C2 | 133.72 (16) |
C6—C5—C9 | 120.69 (16) | O14—C13—C2 | 116.21 (14) |
C6—C5—H5 | 119.7 | C15—O14—C13 | 106.30 (13) |
C9—C5—H5 | 119.7 | C16—C15—O14 | 111.01 (15) |
C5—C6—C7 | 119.78 (16) | C16—C15—H15 | 124.5 |
C5—C6—H6 | 121.1 (10) | O14—C15—H15 | 124.5 |
C7—C6—H6 | 119.1 (10) | C15—C16—C17 | 106.47 (15) |
C8—C7—C6 | 120.76 (15) | C15—C16—H16 | 126.8 |
C8—C7—H7 | 119.6 | C17—C16—H16 | 126.8 |
C6—C7—H7 | 119.6 | C13—C17—C16 | 106.17 (16) |
C7—C8—C10 | 118.87 (16) | C13—C17—H17 | 125.5 (10) |
C7—C8—H8 | 120.6 | C16—C17—H17 | 128.4 (10) |
C10—O1—C2—C3 | 0.5 (2) | C2—O1—C10—C9 | −0.2 (2) |
C10—O1—C2—C13 | −179.14 (13) | C2—O1—C10—C8 | 179.56 (13) |
O1—C2—C3—O11 | 179.20 (13) | C5—C9—C10—O1 | 179.80 (14) |
C13—C2—C3—O11 | −1.2 (2) | C4—C9—C10—O1 | 0.1 (2) |
O1—C2—C3—C4 | −0.8 (2) | C5—C9—C10—C8 | 0.1 (2) |
C13—C2—C3—C4 | 178.82 (14) | C4—C9—C10—C8 | −179.59 (14) |
O11—C3—C4—O12 | 1.2 (2) | C7—C8—C10—O1 | −179.42 (14) |
C2—C3—C4—O12 | −178.86 (15) | C7—C8—C10—C9 | 0.3 (2) |
O11—C3—C4—C9 | −179.30 (13) | C3—C2—C13—C17 | 3.7 (3) |
C2—C3—C4—C9 | 0.7 (2) | O1—C2—C13—C17 | −176.67 (16) |
C9—C5—C6—C7 | 0.7 (2) | C3—C2—C13—O14 | −175.90 (14) |
C5—C6—C7—C8 | −0.3 (2) | O1—C2—C13—O14 | 3.73 (19) |
C6—C7—C8—C10 | −0.2 (2) | C17—C13—O14—C15 | −0.06 (17) |
C6—C5—C9—C10 | −0.6 (2) | C2—C13—O14—C15 | 179.64 (13) |
C6—C5—C9—C4 | 179.08 (14) | C13—O14—C15—C16 | 0.35 (18) |
O12—C4—C9—C10 | 179.17 (14) | O14—C15—C16—C17 | −0.49 (19) |
C3—C4—C9—C10 | −0.4 (2) | O14—C13—C17—C16 | −0.23 (18) |
O12—C4—C9—C5 | −0.5 (2) | C2—C13—C17—C16 | −179.85 (17) |
C3—C4—C9—C5 | 179.98 (14) | C15—C16—C17—C13 | 0.44 (19) |
D—H···A | D—H | H···A | D···A | D—H···A |
C6—H6···O12i | 0.97 (2) | 2.53 (2) | 3.352 (3) | 142 (2) |
O11—H11···O12 | 0.89 (2) | 2.37 (2) | 2.776 (3) | 108 (2) |
O11—H11···O12ii | 0.89 (2) | 1.87 (2) | 2.683 (3) | 152 (2) |
C17—H17···O11 | 0.97 (2) | 2.43 (2) | 2.907 (3) | 110 (2) |
Symmetry codes: (i) −x, y−1/2, −z+1/2; (ii) −x, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C13H8O4 |
Mr | 228.19 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 100 |
a, b, c (Å) | 14.365 (8), 4.421 (3), 17.086 (10) |
β (°) | 110.91 (5) |
V (Å3) | 1013.6 (11) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.11 |
Crystal size (mm) | 0.40 × 0.40 × 0.14 |
Data collection | |
Diffractometer | Kuma KM4 CCD κ-geometry diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7132, 1779, 1436 |
Rint | 0.030 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.037, 0.092, 1.10 |
No. of reflections | 1779 |
No. of parameters | 158 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.21, −0.21 |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2003), CrysAlis RED (Oxford Diffraction, 2003), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
C6—H6···O12i | 0.97 (2) | 2.53 (2) | 3.352 (3) | 142 (2) |
O11—H11···O12 | 0.89 (2) | 2.37 (2) | 2.776 (3) | 108 (2) |
O11—H11···O12ii | 0.89 (2) | 1.87 (2) | 2.683 (3) | 152 (2) |
C17—H17···O11 | 0.97 (2) | 2.43 (2) | 2.907 (3) | 110 (2) |
Symmetry codes: (i) −x, y−1/2, −z+1/2; (ii) −x, −y+1, −z+1. |
Acknowledgements
This study was financed by the State Funds for Scientific Research (grant DS/8220–4-0087–9).
References
Aakeröy, C. B., Seddon, K. R. & Leslie, M. (1992). Struct. Chem. 3, 63–65. Google Scholar
Etter, M. C., Urbańczyk-Lipkowska, Z., Baer, S. & Barbara, P. F. (1986). J. Mol. Struct. 144, 155–167. CSD CrossRef CAS Web of Science Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Klymchenko, A. S., Pivovarenko, V. G. & Demchenko, A. P. (2003). Spectrochim. Acta Part A, 59, 787–792. CrossRef Google Scholar
Novoa, J. J., Mota, F. & D'Oria, E. (2006). Hydrogen Bonding – New Insights, edited by S. Grabowski, pp. 193–244. The Netherlands: Springer. Google Scholar
Oxford Diffraction (2003). KM-4-CCD Software. Oxford Diffraction Poland, Wrocław, Poland. Google Scholar
Sengupta, P. K. & Kasha, M. (1979). Chem. Phys. Lett. 68, 382–385. CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Waller, M. P., Hibbs, D. E., Overgaard, J., Hanrahan, J. R. & Hambley, T. W. (2003). Acta Cryst. E59, o767–o768. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The structure of 2-(furan-2-yl)-3-hydroxy-4H-chromen-4-one is presented. This compound, in which Excited State Intramolecular Proton Transfer (ESIPT) takes place (Sengupta & Kasha, 1979), is a good candidate for a fluorescent probe sensitive to the properties of a medium (Klymchenko et al., 2003).
In the title compound (Fig. 1), the bond lengths and angles characterizing the geometry of the 4H-chromen-4-one moiety are similar to those in 2-phenyl-4H-chromen-4-one (Waller et al., 2003) and 3-hydroxy-2-phenyl-4H-chromen-4-one (Etter et al., 1986). The average deviations from planarity of the phenyl, 4H-chromene and 2-(furan-2-yl)-4H-chromene cores are 0.0024 (2), 0.0046 (2) and 0.0298 (2), respectively, which implies that the molecule is practically planar (the dihedral angle between the planes of the 4H-chromene and furanyl fragments is only 3.8 (1)°). Intramolecular O–H···O and C–H···O interactions (Table 1, Figs. 1 and 2) undoubtedly make the molecule more rigid and contribute to its planarity, the former being the one involved in the ESIPT characteristic of flavonols (Sengupta & Kasha, 1979). The mean planes of adjacent 2-(furan-2-yl)-4H-chromene moieties are either parallel (remain at an angle 0.0 (1)°) in the crystal lattice or are inclined at an angle of 80.7 (1)°.
In the crystal structure, the inversely oriented molecules form dimers through a pair of O–H···O (Aakeröy et al., 1992) interactions (Table 1, Fig. 2). Adjacent dimers are linked by C–H···O (Novoa et al., 2006) interactions (Table 1, Fig. 2). The crystal structure is stabilized by these specific interactions, as well as by non-specific dispersive interactions.