organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(Furan-2-yl)-3-hy­dr­oxy-4H-chromen-4-one

aFaculty of Chemistry, University of Gdańsk, J. Sobieskiego 18, 80-952 Gdańsk, Poland, bFaculty of Chemistry, Kyiv Taras Shevchenko National University, Volodymyrska 64, 01033 Kyiv, Ukraine, and cFaculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland

(Received 14 December 2010; accepted 21 December 2010; online 8 January 2011)

In the crystal structure of the title compound, C13H8O4, the inversely oriented mol­ecules form inversion dimers through pairs of O—H⋯O hydrogen-bonding inter­actions. An intramolecular O—H⋯O hydrogen bond occurs. In the packing of the mol­ecules, the nearly planar 2-(furan-2-yl)-4H-chromene units [dihedral angle between the chromene and furan rings = 3.8 (1)°] are either parallel or inclined at an angle of 80.7 (1)°.

Related literature

For general features of flavonols (derivatives of 3-hy­droxy-2-phenyl-4H-chromen-4-one), see: Klymchenko et al. (2003[Klymchenko, A. S., Pivovarenko, V. G. & Demchenko, A. P. (2003). Spectrochim. Acta Part A, 59, 787-792.]); Sengupta & Kasha (1979[Sengupta, P. K. & Kasha, M. (1979). Chem. Phys. Lett. 68, 382-385.]). For related structures, see: Etter et al. (1986[Etter, M. C., Urbańczyk-Lipkowska, Z., Baer, S. & Barbara, P. F. (1986). J. Mol. Struct. 144, 155-167.]); Waller et al. (2003[Waller, M. P., Hibbs, D. E., Overgaard, J., Hanrahan, J. R. & Hambley, T. W. (2003). Acta Cryst. E59, o767-o768.]). For inter­molecular inter­actions, see: Aakeröy et al. (1992[Aakeröy, C. B., Seddon, K. R. & Leslie, M. (1992). Struct. Chem. 3, 63-65.]); Novoa et al. (2006[Novoa, J. J., Mota, F. & D'Oria, E. (2006). Hydrogen Bonding - New Insights, edited by S. Grabowski, pp. 193-244. The Netherlands: Springer.]). For the synthesis, see: Klymchenko et al. (2003[Klymchenko, A. S., Pivovarenko, V. G. & Demchenko, A. P. (2003). Spectrochim. Acta Part A, 59, 787-792.]).

[Scheme 1]

Experimental

Crystal data
  • C13H8O4

  • Mr = 228.19

  • Monoclinic, P 21 /c

  • a = 14.365 (8) Å

  • b = 4.421 (3) Å

  • c = 17.086 (10) Å

  • β = 110.91 (5)°

  • V = 1013.6 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 100 K

  • 0.40 × 0.40 × 0.14 mm

Data collection
  • Kuma KM4 CCD κ-geometry diffractometer

  • 7132 measured reflections

  • 1779 independent reflections

  • 1436 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.092

  • S = 1.10

  • 1779 reflections

  • 158 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O12i 0.97 (2) 2.53 (2) 3.352 (3) 142 (2)
O11—H11⋯O12 0.89 (2) 2.37 (2) 2.776 (3) 108 (2)
O11—H11⋯O12ii 0.89 (2) 1.87 (2) 2.683 (3) 152 (2)
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x, -y+1, -z+1.

Data collection: CrysAlis CCD (Oxford Diffraction, 2003[Oxford Diffraction (2003). KM-4-CCD Software. Oxford Diffraction Poland, Wrocław, Poland.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2003[Oxford Diffraction (2003). KM-4-CCD Software. Oxford Diffraction Poland, Wrocław, Poland.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The structure of 2-(furan-2-yl)-3-hydroxy-4H-chromen-4-one is presented. This compound, in which Excited State Intramolecular Proton Transfer (ESIPT) takes place (Sengupta & Kasha, 1979), is a good candidate for a fluorescent probe sensitive to the properties of a medium (Klymchenko et al., 2003).

In the title compound (Fig. 1), the bond lengths and angles characterizing the geometry of the 4H-chromen-4-one moiety are similar to those in 2-phenyl-4H-chromen-4-one (Waller et al., 2003) and 3-hydroxy-2-phenyl-4H-chromen-4-one (Etter et al., 1986). The average deviations from planarity of the phenyl, 4H-chromene and 2-(furan-2-yl)-4H-chromene cores are 0.0024 (2), 0.0046 (2) and 0.0298 (2), respectively, which implies that the molecule is practically planar (the dihedral angle between the planes of the 4H-chromene and furanyl fragments is only 3.8 (1)°). Intramolecular O–H···O and C–H···O interactions (Table 1, Figs. 1 and 2) undoubtedly make the molecule more rigid and contribute to its planarity, the former being the one involved in the ESIPT characteristic of flavonols (Sengupta & Kasha, 1979). The mean planes of adjacent 2-(furan-2-yl)-4H-chromene moieties are either parallel (remain at an angle 0.0 (1)°) in the crystal lattice or are inclined at an angle of 80.7 (1)°.

In the crystal structure, the inversely oriented molecules form dimers through a pair of O–H···O (Aakeröy et al., 1992) interactions (Table 1, Fig. 2). Adjacent dimers are linked by C–H···O (Novoa et al., 2006) interactions (Table 1, Fig. 2). The crystal structure is stabilized by these specific interactions, as well as by non-specific dispersive interactions.

Related literature top

For general features of flavonols (derivatives of 3-hydroxy-2-phenyl-4H-chromen-4-one), see: Klymchenko et al. (2003); Sengupta & Kasha (1979). For related structures, see: Etter et al. (1986); Waller et al. (2003). For intermolecular interactions, see: Aakeröy et al. (1992); Novoa et al. (2006). For the synthesis, see: Klymchenko et al. (2003).

Experimental top

The title compound was obtained by means of the oxidative heterocyclization of 3-(furan-2-yl)-1-(2-hydroxyphenyl)prop-2-en-1-one, synthesized by the condensation of 1-(2-hydroxyphenyl)ethanone with furan-2-carbaldehyde in methanol/50% aqueous NaOH (1/1 v/v), in alkaline methanol/H2O2 (Klymchenko et al., 2003). The product was separated by filtration, and greenish-yellow crystals suitable for X-ray investigations were grown from ethanol (m.p. = 445 – 446 K).

Refinement top

H atoms involved in C–H···O and O–H···O interactions were located on a difference Fourier map and refined isotropically with Uiso(H) = 1.2Ueq(C) and Uiso(H) = 1.5Ueq(O), respectively. H atoms of other C–H bonds were positioned geometrically, with C–H = 0.95 Å, and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2003); cell refinement: CrysAlis RED (Oxford Diffraction, 2003); data reduction: CrysAlis RED (Oxford Diffraction, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 25% probability level, and H atoms are shown as small spheres of arbitrary radius. The O–H···O and C–H···O hydrogen bonds are represented by dashed lines.
[Figure 2] Fig. 2. The arrangement of the molecules in the crystal structure. The O–H···O and C–H···O interactions are represented by dashed lines. H atoms not involved in interactions have been omitted. [Symmetry codes: (i) –x, y – 1/2, –z + 1/2; (ii) –x, –y + 1, –z + 1.]
2-(Furan-2-yl)-3-hydroxy-4H-chromen-4-one top
Crystal data top
C13H8O4F(000) = 472
Mr = 228.19Dx = 1.495 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1436 reflections
a = 14.365 (8) Åθ = 3.4–25.0°
b = 4.421 (3) ŵ = 0.11 mm1
c = 17.086 (10) ÅT = 100 K
β = 110.91 (5)°Plate, greenish-yellow
V = 1013.6 (11) Å30.40 × 0.40 × 0.14 mm
Z = 4
Data collection top
Kuma KM4 CCD κ-geometry
diffractometer
1436 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.030
Graphite monochromatorθmax = 25.0°, θmin = 3.4°
ω scansh = 1717
7132 measured reflectionsk = 45
1779 independent reflectionsl = 2018
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.0517P)2 + 0.0439P]
where P = (Fo2 + 2Fc2)/3
1779 reflections(Δ/σ)max < 0.001
158 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C13H8O4V = 1013.6 (11) Å3
Mr = 228.19Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.365 (8) ŵ = 0.11 mm1
b = 4.421 (3) ÅT = 100 K
c = 17.086 (10) Å0.40 × 0.40 × 0.14 mm
β = 110.91 (5)°
Data collection top
Kuma KM4 CCD κ-geometry
diffractometer
1436 reflections with I > 2σ(I)
7132 measured reflectionsRint = 0.030
1779 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.21 e Å3
1779 reflectionsΔρmin = 0.21 e Å3
158 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.30889 (8)0.5549 (2)0.43752 (6)0.0209 (3)
C20.27113 (12)0.6670 (4)0.49500 (9)0.0189 (4)
C30.17955 (12)0.5867 (4)0.49522 (9)0.0192 (4)
C40.11644 (12)0.3802 (4)0.43368 (9)0.0200 (4)
C50.10589 (12)0.0603 (4)0.30910 (9)0.0212 (4)
H50.04160.00760.30510.025*
C60.14678 (13)0.0412 (4)0.25248 (10)0.0232 (4)
H60.1102 (13)0.177 (4)0.2072 (11)0.028*
C70.24244 (13)0.0564 (4)0.25881 (10)0.0248 (4)
H70.27070.01480.21970.030*
C80.29541 (13)0.2533 (4)0.32077 (10)0.0229 (4)
H80.36010.31820.32500.027*
C90.15832 (12)0.2640 (4)0.37305 (9)0.0193 (4)
C100.25266 (12)0.3566 (4)0.37755 (9)0.0189 (4)
O110.14832 (9)0.7044 (3)0.55453 (7)0.0266 (3)
H110.0840 (16)0.665 (5)0.5432 (12)0.040*
O120.03228 (8)0.3089 (3)0.43240 (7)0.0277 (3)
C130.33852 (12)0.8757 (4)0.55296 (9)0.0198 (4)
O140.42459 (8)0.9419 (3)0.53893 (7)0.0245 (3)
C150.47607 (12)1.1419 (4)0.59996 (10)0.0264 (4)
H150.53871.22730.60530.032*
C160.42634 (12)1.2018 (4)0.65152 (10)0.0243 (4)
H160.44711.33230.69880.029*
C170.33603 (13)1.0302 (4)0.62119 (10)0.0224 (4)
H170.2820 (13)1.024 (4)0.6427 (10)0.027*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0202 (6)0.0231 (6)0.0215 (6)0.0020 (5)0.0099 (5)0.0031 (5)
C20.0205 (9)0.0197 (8)0.0168 (8)0.0034 (7)0.0072 (7)0.0038 (7)
C30.0188 (9)0.0231 (9)0.0162 (8)0.0023 (7)0.0069 (7)0.0040 (7)
C40.0192 (9)0.0211 (9)0.0195 (8)0.0019 (7)0.0068 (7)0.0053 (7)
C50.0186 (9)0.0220 (9)0.0212 (8)0.0007 (7)0.0050 (7)0.0036 (7)
C60.0256 (10)0.0219 (9)0.0196 (9)0.0008 (7)0.0049 (7)0.0010 (7)
C70.0315 (10)0.0231 (9)0.0232 (9)0.0034 (8)0.0141 (8)0.0014 (7)
C80.0208 (9)0.0247 (9)0.0257 (9)0.0013 (7)0.0115 (7)0.0014 (7)
C90.0198 (9)0.0200 (9)0.0170 (8)0.0020 (7)0.0051 (7)0.0044 (6)
C100.0192 (8)0.0180 (9)0.0187 (8)0.0010 (7)0.0055 (7)0.0028 (7)
O110.0201 (7)0.0390 (8)0.0226 (6)0.0047 (6)0.0100 (5)0.0072 (5)
O120.0202 (7)0.0377 (7)0.0265 (6)0.0055 (5)0.0099 (5)0.0040 (5)
C130.0164 (8)0.0223 (9)0.0207 (8)0.0020 (7)0.0066 (7)0.0059 (7)
O140.0203 (6)0.0280 (7)0.0265 (6)0.0054 (5)0.0100 (5)0.0047 (5)
C150.0201 (9)0.0258 (10)0.0290 (9)0.0055 (7)0.0037 (7)0.0052 (8)
C160.0259 (9)0.0228 (9)0.0219 (8)0.0000 (7)0.0056 (7)0.0004 (7)
C170.0221 (9)0.0238 (9)0.0211 (8)0.0022 (7)0.0075 (7)0.0021 (7)
Geometric parameters (Å, º) top
O1—C101.371 (2)C7—H70.9500
O1—C21.3729 (19)C8—C101.397 (2)
C2—C31.364 (2)C8—H80.9500
C2—C131.444 (2)C9—C101.391 (2)
C3—O111.3503 (19)O11—H110.89 (2)
C3—C41.443 (2)C13—C171.362 (2)
C4—O121.2419 (19)C13—O141.372 (2)
C4—C91.464 (2)O14—C151.366 (2)
C5—C61.374 (2)C15—C161.344 (2)
C5—C91.409 (2)C15—H150.9500
C5—H50.9500C16—C171.431 (3)
C6—C71.407 (2)C16—H160.9500
C6—H60.971 (18)C17—H170.971 (17)
C7—C81.372 (2)
C10—O1—C2119.19 (13)C10—C8—H8120.6
C3—C2—O1122.39 (15)C10—C9—C5118.13 (15)
C3—C2—C13125.15 (14)C10—C9—C4119.72 (15)
O1—C2—C13112.46 (14)C5—C9—C4122.15 (15)
O11—C3—C2118.75 (15)O1—C10—C9122.13 (14)
O11—C3—C4120.01 (14)O1—C10—C8116.11 (14)
C2—C3—C4121.24 (14)C9—C10—C8121.76 (15)
O12—C4—C3121.87 (15)C3—O11—H11110.9 (13)
O12—C4—C9122.81 (15)C17—C13—O14110.06 (15)
C3—C4—C9115.33 (14)C17—C13—C2133.72 (16)
C6—C5—C9120.69 (16)O14—C13—C2116.21 (14)
C6—C5—H5119.7C15—O14—C13106.30 (13)
C9—C5—H5119.7C16—C15—O14111.01 (15)
C5—C6—C7119.78 (16)C16—C15—H15124.5
C5—C6—H6121.1 (10)O14—C15—H15124.5
C7—C6—H6119.1 (10)C15—C16—C17106.47 (15)
C8—C7—C6120.76 (15)C15—C16—H16126.8
C8—C7—H7119.6C17—C16—H16126.8
C6—C7—H7119.6C13—C17—C16106.17 (16)
C7—C8—C10118.87 (16)C13—C17—H17125.5 (10)
C7—C8—H8120.6C16—C17—H17128.4 (10)
C10—O1—C2—C30.5 (2)C2—O1—C10—C90.2 (2)
C10—O1—C2—C13179.14 (13)C2—O1—C10—C8179.56 (13)
O1—C2—C3—O11179.20 (13)C5—C9—C10—O1179.80 (14)
C13—C2—C3—O111.2 (2)C4—C9—C10—O10.1 (2)
O1—C2—C3—C40.8 (2)C5—C9—C10—C80.1 (2)
C13—C2—C3—C4178.82 (14)C4—C9—C10—C8179.59 (14)
O11—C3—C4—O121.2 (2)C7—C8—C10—O1179.42 (14)
C2—C3—C4—O12178.86 (15)C7—C8—C10—C90.3 (2)
O11—C3—C4—C9179.30 (13)C3—C2—C13—C173.7 (3)
C2—C3—C4—C90.7 (2)O1—C2—C13—C17176.67 (16)
C9—C5—C6—C70.7 (2)C3—C2—C13—O14175.90 (14)
C5—C6—C7—C80.3 (2)O1—C2—C13—O143.73 (19)
C6—C7—C8—C100.2 (2)C17—C13—O14—C150.06 (17)
C6—C5—C9—C100.6 (2)C2—C13—O14—C15179.64 (13)
C6—C5—C9—C4179.08 (14)C13—O14—C15—C160.35 (18)
O12—C4—C9—C10179.17 (14)O14—C15—C16—C170.49 (19)
C3—C4—C9—C100.4 (2)O14—C13—C17—C160.23 (18)
O12—C4—C9—C50.5 (2)C2—C13—C17—C16179.85 (17)
C3—C4—C9—C5179.98 (14)C15—C16—C17—C130.44 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O12i0.97 (2)2.53 (2)3.352 (3)142 (2)
O11—H11···O120.89 (2)2.37 (2)2.776 (3)108 (2)
O11—H11···O12ii0.89 (2)1.87 (2)2.683 (3)152 (2)
C17—H17···O110.97 (2)2.43 (2)2.907 (3)110 (2)
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC13H8O4
Mr228.19
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)14.365 (8), 4.421 (3), 17.086 (10)
β (°) 110.91 (5)
V3)1013.6 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.40 × 0.40 × 0.14
Data collection
DiffractometerKuma KM4 CCD κ-geometry
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
7132, 1779, 1436
Rint0.030
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.092, 1.10
No. of reflections1779
No. of parameters158
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.21, 0.21

Computer programs: CrysAlis CCD (Oxford Diffraction, 2003), CrysAlis RED (Oxford Diffraction, 2003), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O12i0.97 (2)2.53 (2)3.352 (3)142 (2)
O11—H11···O120.89 (2)2.37 (2)2.776 (3)108 (2)
O11—H11···O12ii0.89 (2)1.87 (2)2.683 (3)152 (2)
C17—H17···O110.97 (2)2.43 (2)2.907 (3)110 (2)
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y+1, z+1.
 

Acknowledgements

This study was financed by the State Funds for Scientific Research (grant DS/8220–4-0087–9).

References

First citationAakeröy, C. B., Seddon, K. R. & Leslie, M. (1992). Struct. Chem. 3, 63–65.  Google Scholar
First citationEtter, M. C., Urbańczyk-Lipkowska, Z., Baer, S. & Barbara, P. F. (1986). J. Mol. Struct. 144, 155–167.  CSD CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKlymchenko, A. S., Pivovarenko, V. G. & Demchenko, A. P. (2003). Spectrochim. Acta Part A, 59, 787–792.  CrossRef Google Scholar
First citationNovoa, J. J., Mota, F. & D'Oria, E. (2006). Hydrogen Bonding – New Insights, edited by S. Grabowski, pp. 193–244. The Netherlands: Springer.  Google Scholar
First citationOxford Diffraction (2003). KM-4-CCD Software. Oxford Diffraction Poland, Wrocław, Poland.  Google Scholar
First citationSengupta, P. K. & Kasha, M. (1979). Chem. Phys. Lett. 68, 382–385.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWaller, M. P., Hibbs, D. E., Overgaard, J., Hanrahan, J. R. & Hambley, T. W. (2003). Acta Cryst. E59, o767–o768.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds