organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 2| February 2011| Pages o256-o257

11,12-Dihy­dr­oxy-10,6,8,11,13-icetexa­pentan-1-one

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
*Correspondence e-mail: hkfun@usm.my

(Received 19 December 2010; accepted 22 December 2010; online 8 January 2011)

The title compound [systematic name: 14,15-dihy­droxy-7,7-dimethyl-13-(propan-2-yl)tricyclo­[9.4.0.03,8]penta­deca-1(11),3(8),9,12,14-pentaen-4-one], C20H24O3, is a new icetexane diterpenoid which was isolated from the roots of Premna obtusifolia (Verbenaceae). The mol­ecule has three fused rings: a cyclo­hexenone, a central cyclo­heptene and a benzene ring. The cyclo­hexenone ring is in an envelope conformation, whereas the cyclo­heptene ring is in a twisted boat conformation. Intra­molecular O—H⋯O hydrogen bonds generate S(5) and S(8) ring motifs. In the crystal, mol­ecules are linked into dimers through O—H⋯O hydrogen bonds. These dimers are arranged in to sheets parallel to the ac plane. C—H⋯O and weak C—H⋯π inter­actions are also present.

Related literature

For details of hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) and for ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For background to Verbenaceae plants and the bioactivity of icetexane, see: Bunluepuech & Tewtrakul (2009[Bunluepuech, K. & Tewtrakul, S. (2009). Songklanakarin J. Sci. Technol, 31, 289-292.]); Hymavathi et al. (2009[Hymavathi, A., Babu, K. S., Naidu, V. G. M., Krishna, S. R., Diwan, P. V. & Rao, J. M. (2009). Bioorg. Med. Chem. Lett. 19, 5727-5731.]); Simmons & Sarpong (2009[Simmons, A. R. & Sarpong, R. (2009). Nat. Prod. Res. 26, 1197-1217.]). For related structures, see: Asik et al. (2010[Asik, S. I. J., Razak, I. A., Salae, A. W., Chantrapromma, S. & Fun, H.-K. (2010). Acta Cryst. E66, o2899.]); Razak et al. (2010[Razak, I. A., Salae, A. W., Chantrapromma, S., Karalai, C. & Fun, H.-K. (2010). Acta Cryst. E66, o1566-o1567.]). For the stability of the temperature controller used in the data collection, see Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C20H24O3

  • Mr = 312.39

  • Monoclinic, C 2/c

  • a = 25.1090 (9) Å

  • b = 9.4317 (3) Å

  • c = 14.9609 (4) Å

  • β = 108.683 (2)°

  • V = 3356.35 (19) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 100 K

  • 0.60 × 0.32 × 0.28 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.953, Tmax = 0.977

  • 60861 measured reflections

  • 7404 independent reflections

  • 6198 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.125

  • S = 1.03

  • 7404 reflections

  • 304 parameters

  • All H-atom parameters refined

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of C8–C9/C11–C14 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H1O2⋯O1 0.870 (18) 2.088 (18) 2.9479 (8) 169.8 (15)
O2—H1O2⋯O2i 0.870 (18) 2.541 (16) 2.8818 (7) 104.3 (12)
O3—H1O3⋯O2 0.875 (14) 2.208 (16) 2.6955 (7) 114.9 (12)
O3—H1O3⋯O1i 0.875 (14) 2.046 (14) 2.8448 (7) 151.3 (14)
C7—H7A⋯O2ii 0.974 (12) 2.440 (12) 3.2262 (9) 137.5 (10)
C15—H15A⋯O3 1.007 (15) 2.364 (15) 2.8216 (8) 106.6 (10)
C18—H18B⋯O3iii 0.986 (15) 2.585 (15) 3.3467 (10) 134.1 (11)
C19—H19BCg1ii 1.011 (15) 2.798 (16) 3.7130 (10) 150.8 (12)
C20—H20ACg1iv 0.993 (11) 2.847 (12) 3.7506 (8) 151.6 (9)
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (ii) [x, -y, z-{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [x, -y-1, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The extracts of Verbenaceae plants have been found to possess anti-HIV-1 integrase activity (Bunluepuech & Tewtrakul, 2009). Premna obtusifolia (Verbenaceae), a small tree found in the mangrove forests, is one of the Verbenaceae plants. As part of our research on bioactive compounds from medicinal plants, we previouly reported the crystal structures of diterpenoids from the roots of Premna obtusifolia (Verbenaceae) which was collected from Satun province in the southern of Thailand (Asik et al., 2010; Razak et al., 2010). The title icetexane diterpenoid (I), also named as Obtusin N, is a new compound which was isolated from the same plant. The icetexane diterpenoids encompass a variety of bioactive and structurally interesting compounds (Hymavathi et al., 2009; Simmons & Sarpong, 2009). We herein report the crystal structure of (I).

The molecule of (I) has a tricyclic skeleton (Fig. 1). The cyclohexene ring (C1–C5/C10) is in an envelope conformation with the puckering C3 atom having a deviation of 0.3373 (9) Å and puckering parameters Q = 0.4877 (9) Å, θ = 65.14 (19)° and ϕ = 113.04 (11)° (Cremer & Pople, 1975) whereas the central cycloheptene ring (C5–C10/C20) is in twisted-boat conformation with the most puckering atom C20 having deviation of 0.5665 (8) Å and puckering parameter Q = 0.8294 (8) Å. The benzene ring (C8–C9/C11–C14) is slightly twisted with the maximum deviation of -0.0575 (7) and 0.0388 (7) Å for atoms C9 and C11, respectively. The two hydroxy groups are co-planar with the attached benzene ring with r.m.s. deviation of 0.026 (7) Å. The orientation of the propanyl group is described by the torsion angles C14–C13–C15–C16 = 81.62 (9)° and C14–C13–C15–C17 = -42.19 (10)°. Intramolecular O3—H1O3···O2 and O2—H1O2···O1 hydrogen bonds (Table 1) generate S(5) and S(8) ring motifs, respectively (Fig. 1) (Bernstein et al., 1995). The bond distances in (I) are within normal ranges (Allen et al., 1987) and comparable to the related structures (Asik et al., 2010; Razak et al., 2010).

The crystal packing of (I) is stabilized by intermolecular O—H···O hydrogen bonds, C—H···O and C—H···π weak interactions (Fig. 2 and Table 1). The molecules are linked into dimers through O3—H1O3···O1 hydrogen bonds (Table 1 and Fig. 2). These dimers are arranged into sheets parallel to the ac plane. C—H···π weak interactions were presented (Table 1).

Related literature top

For details of hydrogen-bond motifs, see: Bernstein et al. (1995) and for ring conformations, see: Cremer & Pople (1975). For bond-length data, see: Allen et al. (1987). For background to Verbenaceae plants and the bioactivity of icetexane, see: Bunluepuech & Tewtrakul (2009); Hymavathi et al. (2009); Simmons & Sarpong (2009). For related structures, see: Asik et al. (2010); Razak et al. (2010). For the stability of the temperature controller used in the data collection, see Cosier & Glazer (1986).

Experimental top

The air-dried roots of premna obtusifolia (4.5 kg) were extracted with hexane (2 x 20 L) at room temperature. The combined extracts were concentrated under reduced pressure to afford a dark yellow extract (40.0 g) which was subjected to quick column chromatography (QCC) over silica gel using solvents of increasing polarity from n-hexane to EtOAc to afford 7 fractions (F1—F7). Fraction F6 was further purified by quick column chromatography (QCC) using n-hexane-ETOAc (9:1), yielding the title compound (87.3 mg). Yellow needle-shaped single crystals of the title compound suitable for x-ray structure determination were recrystallized from n-hexane after several days.

Refinement top

All H atoms were located in a difference maps and isotropically refined. A rotating group model was used for the methyl groups. The highest residual electron density peak is located at 0.64 Å from C8 and the deepest hole is located at 1.04 Å from C10.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The structure of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme. Intramolecular O—H···O hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. The crystal packing of (I) viewed along the b axis, showing sheets parallel to the ac plane. Hydrogen bonds are shown as dashed lines.
14,15-dihydroxy-7,7-dimethyl-13-(propan-2-yl)tricyclo[9.4.0.03,8]pentadeca- 1(11),3(8),9,12,14-pentaen-4-one top
Crystal data top
C20H24O3F(000) = 1344
Mr = 312.39Dx = 1.236 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 7404 reflections
a = 25.1090 (9) Åθ = 2.3–35.0°
b = 9.4317 (3) ŵ = 0.08 mm1
c = 14.9609 (4) ÅT = 100 K
β = 108.683 (2)°Needle, yellow
V = 3356.35 (19) Å30.60 × 0.32 × 0.28 mm
Z = 8
Data collection top
Bruker APEXII CCD area-detector
diffractometer
7404 independent reflections
Radiation source: sealed tube6198 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ϕ and ω scansθmax = 35.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 3840
Tmin = 0.953, Tmax = 0.977k = 1415
60861 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125All H-atom parameters refined
S = 1.03 w = 1/[σ2(Fo2) + (0.0755P)2 + 1.0087P]
where P = (Fo2 + 2Fc2)/3
7404 reflections(Δ/σ)max = 0.001
304 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C20H24O3V = 3356.35 (19) Å3
Mr = 312.39Z = 8
Monoclinic, C2/cMo Kα radiation
a = 25.1090 (9) ŵ = 0.08 mm1
b = 9.4317 (3) ÅT = 100 K
c = 14.9609 (4) Å0.60 × 0.32 × 0.28 mm
β = 108.683 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
7404 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
6198 reflections with I > 2σ(I)
Tmin = 0.953, Tmax = 0.977Rint = 0.029
60861 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.125All H-atom parameters refined
S = 1.03Δρmax = 0.48 e Å3
7404 reflectionsΔρmin = 0.21 e Å3
304 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.34135 (2)0.18997 (7)0.45441 (4)0.02727 (13)
O20.22121 (2)0.14713 (6)0.42998 (3)0.02042 (11)
H1O20.2573 (7)0.1602 (17)0.4448 (11)0.048 (4)*
O30.11523 (2)0.24175 (6)0.35038 (3)0.01917 (10)
H1O30.1377 (6)0.2421 (15)0.4088 (10)0.041 (4)*
C10.35660 (3)0.18067 (8)0.38355 (5)0.02009 (13)
C20.40308 (3)0.27126 (10)0.37203 (6)0.02604 (15)
H2A0.4322 (6)0.2867 (15)0.4357 (10)0.038 (3)*
H2B0.3867 (6)0.3655 (16)0.3534 (10)0.040 (3)*
C30.42779 (3)0.20818 (9)0.30042 (6)0.02461 (14)
H3A0.4475 (5)0.1170 (14)0.3235 (9)0.031 (3)*
H3B0.4575 (6)0.2728 (14)0.2903 (9)0.035 (3)*
C40.38338 (3)0.17810 (8)0.20403 (5)0.01959 (12)
C50.33387 (3)0.09795 (7)0.21853 (5)0.01718 (11)
C60.29158 (3)0.04077 (8)0.13478 (5)0.02060 (13)
H6A0.3058 (5)0.0138 (14)0.0831 (9)0.030 (3)*
C70.23475 (3)0.03856 (8)0.11708 (5)0.02164 (13)
H7A0.2123 (5)0.0114 (13)0.0533 (8)0.027 (3)*
C80.20317 (3)0.08458 (7)0.17837 (4)0.01703 (11)
C90.22671 (3)0.07722 (7)0.27714 (4)0.01548 (11)
C100.32690 (3)0.08736 (7)0.30526 (4)0.01682 (11)
C110.19897 (3)0.14125 (7)0.33345 (4)0.01495 (11)
C120.14429 (3)0.19365 (7)0.29375 (4)0.01505 (11)
C130.11813 (3)0.19232 (7)0.19542 (4)0.01734 (11)
C140.14864 (3)0.14018 (8)0.13931 (5)0.01940 (12)
H14A0.1327 (5)0.1435 (13)0.0691 (8)0.029 (3)*
C150.05752 (3)0.24151 (8)0.15458 (5)0.02181 (13)
H15A0.0487 (6)0.3020 (16)0.2035 (10)0.043 (4)*
C160.01786 (3)0.11352 (11)0.13660 (7)0.03109 (18)
H16A0.0246 (6)0.0563 (16)0.0858 (10)0.041 (3)*
H16B0.0208 (6)0.1452 (14)0.1209 (10)0.038 (3)*
H16C0.0246 (6)0.0539 (16)0.1939 (10)0.043 (4)*
C170.04657 (4)0.32889 (10)0.06447 (7)0.03084 (17)
H17A0.0749 (7)0.4078 (17)0.0732 (11)0.051 (4)*
H17B0.0075 (6)0.3743 (15)0.0475 (10)0.040 (3)*
H17C0.0477 (6)0.2691 (16)0.0078 (10)0.043 (4)*
C180.41211 (4)0.08869 (9)0.14665 (6)0.02682 (15)
H18A0.3865 (6)0.0729 (15)0.0807 (10)0.036 (3)*
H18B0.4239 (6)0.0029 (16)0.1787 (9)0.039 (3)*
H18C0.4464 (5)0.1393 (14)0.1442 (9)0.034 (3)*
C190.36195 (4)0.31667 (9)0.15095 (7)0.03147 (17)
H19A0.3940 (6)0.3712 (17)0.1398 (11)0.048 (4)*
H19B0.3440 (6)0.3764 (17)0.1896 (10)0.045 (4)*
H19C0.3354 (6)0.2977 (15)0.0893 (10)0.037 (3)*
C200.28082 (3)0.00267 (7)0.31829 (5)0.01867 (12)
H20A0.2799 (5)0.0936 (12)0.2844 (8)0.022 (3)*
H20B0.2880 (4)0.0209 (12)0.3870 (8)0.022 (2)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0226 (2)0.0428 (3)0.0156 (2)0.0040 (2)0.00490 (18)0.0048 (2)
O20.0181 (2)0.0313 (3)0.01191 (19)0.00406 (19)0.00491 (16)0.00394 (17)
O30.0166 (2)0.0264 (2)0.0148 (2)0.00275 (17)0.00536 (16)0.00128 (17)
C10.0154 (3)0.0273 (3)0.0159 (3)0.0042 (2)0.0026 (2)0.0018 (2)
C20.0178 (3)0.0336 (4)0.0254 (3)0.0039 (3)0.0051 (2)0.0100 (3)
C30.0174 (3)0.0287 (4)0.0284 (3)0.0002 (2)0.0082 (2)0.0037 (3)
C40.0206 (3)0.0185 (3)0.0220 (3)0.0002 (2)0.0100 (2)0.0002 (2)
C50.0178 (3)0.0177 (3)0.0167 (2)0.0012 (2)0.0065 (2)0.0009 (2)
C60.0210 (3)0.0246 (3)0.0174 (3)0.0002 (2)0.0078 (2)0.0051 (2)
C70.0210 (3)0.0267 (3)0.0172 (3)0.0002 (2)0.0061 (2)0.0069 (2)
C80.0169 (2)0.0185 (3)0.0154 (2)0.0007 (2)0.0048 (2)0.0037 (2)
C90.0155 (2)0.0155 (2)0.0158 (2)0.00006 (19)0.00547 (19)0.00067 (19)
C100.0154 (2)0.0197 (3)0.0151 (2)0.0027 (2)0.00442 (19)0.0006 (2)
C110.0157 (2)0.0166 (2)0.0127 (2)0.00038 (19)0.00469 (18)0.00190 (19)
C120.0152 (2)0.0160 (2)0.0140 (2)0.00001 (19)0.00473 (19)0.00030 (18)
C130.0156 (2)0.0200 (3)0.0147 (2)0.0005 (2)0.00235 (19)0.0028 (2)
C140.0182 (3)0.0241 (3)0.0143 (2)0.0001 (2)0.0030 (2)0.0046 (2)
C150.0183 (3)0.0285 (3)0.0157 (3)0.0051 (2)0.0013 (2)0.0036 (2)
C160.0164 (3)0.0421 (5)0.0334 (4)0.0012 (3)0.0060 (3)0.0097 (3)
C170.0259 (4)0.0298 (4)0.0305 (4)0.0017 (3)0.0002 (3)0.0083 (3)
C180.0278 (3)0.0259 (3)0.0338 (4)0.0016 (3)0.0198 (3)0.0033 (3)
C190.0345 (4)0.0222 (3)0.0384 (4)0.0030 (3)0.0126 (4)0.0088 (3)
C200.0184 (3)0.0186 (3)0.0201 (3)0.0032 (2)0.0077 (2)0.0038 (2)
Geometric parameters (Å, º) top
O1—C11.2403 (9)C9—C201.5022 (9)
O2—C111.3725 (8)C10—C201.4976 (9)
O2—H1O20.869 (16)C11—C121.3998 (9)
O3—C121.3610 (8)C12—C131.4058 (9)
O3—H1O30.875 (14)C13—C141.3948 (9)
C1—C101.4638 (10)C13—C151.5196 (9)
C1—C21.5003 (11)C14—H14A0.997 (12)
C2—C31.5208 (11)C15—C171.5280 (12)
C2—H2A1.008 (14)C15—C161.5329 (12)
C2—H2B0.982 (15)C15—H15A1.006 (15)
C3—C41.5406 (11)C16—H16A0.989 (14)
C3—H3A0.996 (13)C16—H16B0.969 (14)
C3—H3B1.011 (13)C16—H16C0.993 (15)
C4—C51.5286 (10)C17—H17A1.008 (16)
C4—C191.5345 (11)C17—H17B1.026 (14)
C4—C181.5379 (10)C17—H17C1.026 (15)
C5—C101.3674 (9)C18—H18A1.001 (13)
C5—C61.4615 (10)C18—H18B0.987 (15)
C6—C71.3655 (10)C18—H18C0.996 (13)
C6—H6A0.984 (12)C19—H19A1.013 (15)
C7—C81.4574 (9)C19—H19B1.011 (15)
C7—H7A0.975 (12)C19—H19C0.966 (14)
C8—C91.4065 (9)C20—H20A0.993 (11)
C8—C141.4068 (9)C20—H20B1.000 (11)
C9—C111.3912 (9)
C11—O2—H1O2108.3 (10)O3—C12—C13119.36 (6)
C12—O3—H1O3108.7 (9)C11—C12—C13120.46 (6)
O1—C1—C10120.59 (7)C14—C13—C12118.06 (6)
O1—C1—C2121.49 (7)C14—C13—C15122.54 (6)
C10—C1—C2117.78 (6)C12—C13—C15119.35 (6)
C1—C2—C3111.47 (6)C13—C14—C8122.04 (6)
C1—C2—H2A109.2 (8)C13—C14—H14A120.7 (7)
C3—C2—H2A112.7 (8)C8—C14—H14A117.3 (7)
C1—C2—H2B106.1 (8)C13—C15—C17113.17 (6)
C3—C2—H2B112.5 (8)C13—C15—C16109.93 (6)
H2A—C2—H2B104.4 (11)C17—C15—C16110.29 (6)
C2—C3—C4113.28 (6)C13—C15—H15A107.8 (8)
C2—C3—H3A111.3 (7)C17—C15—H15A108.4 (9)
C4—C3—H3A107.2 (7)C16—C15—H15A107.0 (9)
C2—C3—H3B110.9 (7)C15—C16—H16A107.6 (8)
C4—C3—H3B108.5 (7)C15—C16—H16B110.0 (8)
H3A—C3—H3B105.3 (10)H16A—C16—H16B112.7 (11)
C5—C4—C19109.16 (6)C15—C16—H16C111.9 (8)
C5—C4—C18110.87 (6)H16A—C16—H16C109.3 (12)
C19—C4—C18109.12 (7)H16B—C16—H16C105.3 (11)
C5—C4—C3109.63 (6)C15—C17—H17A111.3 (9)
C19—C4—C3110.87 (7)C15—C17—H17B109.3 (8)
C18—C4—C3107.17 (6)H17A—C17—H17B107.7 (12)
C10—C5—C6120.53 (6)C15—C17—H17C112.8 (8)
C10—C5—C4121.86 (6)H17A—C17—H17C108.0 (12)
C6—C5—C4117.47 (6)H17B—C17—H17C107.6 (11)
C7—C6—C5126.80 (6)C4—C18—H18A111.3 (8)
C7—C6—H6A117.7 (7)C4—C18—H18B109.3 (8)
C5—C6—H6A114.9 (7)H18A—C18—H18B110.3 (11)
C6—C7—C8128.23 (6)C4—C18—H18C108.9 (8)
C6—C7—H7A115.8 (7)H18A—C18—H18C109.0 (10)
C8—C7—H7A115.7 (7)H18B—C18—H18C108.0 (11)
C9—C8—C14118.71 (6)C4—C19—H19A110.6 (9)
C9—C8—C7121.08 (6)C4—C19—H19B109.0 (9)
C14—C8—C7120.20 (6)H19A—C19—H19B109.6 (12)
C11—C9—C8119.44 (6)C4—C19—H19C110.9 (8)
C11—C9—C20122.14 (6)H19A—C19—H19C106.1 (12)
C8—C9—C20118.41 (6)H19B—C19—H19C110.6 (12)
C5—C10—C1121.89 (6)C10—C20—C9107.30 (5)
C5—C10—C20120.26 (6)C10—C20—H20A108.4 (6)
C1—C10—C20116.97 (6)C9—C20—H20A110.8 (6)
O2—C11—C9122.74 (6)C10—C20—H20B109.8 (6)
O2—C11—C12116.45 (5)C9—C20—H20B110.4 (6)
C9—C11—C12120.63 (6)H20A—C20—H20B110.1 (9)
O3—C12—C11120.14 (5)
O1—C1—C2—C3160.07 (7)O1—C1—C10—C204.42 (10)
C10—C1—C2—C324.13 (10)C2—C1—C10—C20179.74 (6)
C1—C2—C3—C454.32 (9)C8—C9—C11—O2175.30 (6)
C2—C3—C4—C548.51 (9)C20—C9—C11—O25.92 (10)
C2—C3—C4—C1972.08 (9)C8—C9—C11—C129.76 (9)
C2—C3—C4—C18168.92 (7)C20—C9—C11—C12169.02 (6)
C19—C4—C5—C10108.14 (8)O2—C11—C12—O32.53 (9)
C18—C4—C5—C10131.62 (7)C9—C11—C12—O3172.71 (6)
C3—C4—C5—C1013.49 (9)O2—C11—C12—C13179.82 (6)
C19—C4—C5—C667.64 (8)C9—C11—C12—C134.93 (10)
C18—C4—C5—C652.61 (8)O3—C12—C13—C14178.92 (6)
C3—C4—C5—C6170.74 (6)C11—C12—C13—C141.26 (10)
C10—C5—C6—C735.04 (12)O3—C12—C13—C151.36 (10)
C4—C5—C6—C7140.79 (8)C11—C12—C13—C15176.30 (6)
C5—C6—C7—C83.68 (14)C12—C13—C14—C82.58 (11)
C6—C7—C8—C929.82 (12)C15—C13—C14—C8174.89 (7)
C6—C7—C8—C14148.89 (8)C9—C8—C14—C132.18 (10)
C14—C8—C9—C118.32 (10)C7—C8—C14—C13176.55 (7)
C7—C8—C9—C11170.41 (6)C14—C13—C15—C1742.19 (10)
C14—C8—C9—C20170.51 (6)C12—C13—C15—C17140.37 (7)
C7—C8—C9—C2010.77 (9)C14—C13—C15—C1681.62 (9)
C6—C5—C10—C1159.14 (6)C12—C13—C15—C1695.82 (8)
C4—C5—C10—C116.50 (10)C5—C10—C20—C975.85 (8)
C6—C5—C10—C209.77 (10)C1—C10—C20—C993.60 (7)
C4—C5—C10—C20174.58 (6)C11—C9—C20—C10106.68 (7)
O1—C1—C10—C5164.85 (7)C8—C9—C20—C1074.52 (7)
C2—C1—C10—C510.99 (10)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of C8–C9/C11–C14 ring.
D—H···AD—HH···AD···AD—H···A
O2—H1O2···O10.870 (18)2.088 (18)2.9479 (8)169.8 (15)
O2—H1O2···O2i0.870 (18)2.541 (16)2.8818 (7)104.3 (12)
O3—H1O3···O20.875 (14)2.208 (16)2.6955 (7)114.9 (12)
O3—H1O3···O1i0.875 (14)2.046 (14)2.8448 (7)151.3 (14)
C7—H7A···O2ii0.974 (12)2.440 (12)3.2262 (9)137.5 (10)
C15—H15A···O31.007 (15)2.364 (15)2.8216 (8)106.6 (10)
C18—H18B···O3iii0.986 (15)2.585 (15)3.3467 (10)134.1 (11)
C19—H19B···Cg1ii1.011 (15)2.798 (16)3.7130 (10)150.8 (12)
C20—H20A···Cg1iv0.993 (11)2.847 (12)3.7506 (8)151.6 (9)
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x, y, z1/2; (iii) x+1/2, y1/2, z+1/2; (iv) x, y1, z1/2.

Experimental details

Crystal data
Chemical formulaC20H24O3
Mr312.39
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)25.1090 (9), 9.4317 (3), 14.9609 (4)
β (°) 108.683 (2)
V3)3356.35 (19)
Z8
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.60 × 0.32 × 0.28
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.953, 0.977
No. of measured, independent and
observed [I > 2σ(I)] reflections
60861, 7404, 6198
Rint0.029
(sin θ/λ)max1)0.807
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.125, 1.03
No. of reflections7404
No. of parameters304
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.48, 0.21

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of C8–C9/C11–C14 ring.
D—H···AD—HH···AD···AD—H···A
O2—H1O2···O10.870 (18)2.088 (18)2.9479 (8)169.8 (15)
O2—H1O2···O2i0.870 (18)2.541 (16)2.8818 (7)104.3 (12)
O3—H1O3···O20.875 (14)2.208 (16)2.6955 (7)114.9 (12)
O3—H1O3···O1i0.875 (14)2.046 (14)2.8448 (7)151.3 (14)
C7—H7A···O2ii0.974 (12)2.440 (12)3.2262 (9)137.5 (10)
C15—H15A···O31.007 (15)2.364 (15)2.8216 (8)106.6 (10)
C18—H18B···O3iii0.986 (15)2.585 (15)3.3467 (10)134.1 (11)
C19—H19B···Cg1ii1.011 (15)2.798 (16)3.7130 (10)150.8 (12)
C20—H20A···Cg1iv0.993 (11)2.847 (12)3.7506 (8)151.6 (9)
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x, y, z1/2; (iii) x+1/2, y1/2, z+1/2; (iv) x, y1, z1/2.
 

Footnotes

Additional correspondence author, e-mail: suchada.c@psu.ac.th. Thomson Reuters ResearcherID: A-5085-2009.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

SC and AWS thank the Prince of Songkla University for financial support. The authors thank Universiti Sains Malaysia for the Research University grant No. 1001/PFIZIK/811151.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAsik, S. I. J., Razak, I. A., Salae, A. W., Chantrapromma, S. & Fun, H.-K. (2010). Acta Cryst. E66, o2899.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBunluepuech, K. & Tewtrakul, S. (2009). Songklanakarin J. Sci. Technol, 31, 289–292.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationHymavathi, A., Babu, K. S., Naidu, V. G. M., Krishna, S. R., Diwan, P. V. & Rao, J. M. (2009). Bioorg. Med. Chem. Lett. 19, 5727–5731.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRazak, I. A., Salae, A. W., Chantrapromma, S., Karalai, C. & Fun, H.-K. (2010). Acta Cryst. E66, o1566–o1567.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSimmons, A. R. & Sarpong, R. (2009). Nat. Prod. Res. 26, 1197–1217.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 2| February 2011| Pages o256-o257
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds