organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

rac-(rel-1R,2R,4S)-Spiro­[bi­cyclo­[2.2.1]heptane-2,3′-indol]-2′-amine

aMolecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg, PO Wits 2050, South Africa
*Correspondence e-mail: andreas.lemmerer@wits.ac.za

(Received 23 December 2010; accepted 7 January 2011; online 15 January 2011)

In the racemic title compound, C14H16N2, the aromatic ring component of the amino­indoline system occupies the endo cavity of the norbornane component. The aromatic ring lies at an angle of 74.12 (5)° to the plane defined by the four C atoms that comprises the rigid part of the boat-shaped six-membered ring of the norbornane unit. Pairs of mol­ecules assemble in the crystal structure, forming centrosymmetric hydrogen-bonded dimers via pairs of N—H⋯N hydrogen bonds through the syn H atom of the amine group.

Related literature

For the synthesis, see: Fleming et al. (1986[Fleming, I., Loreto, M. A., Wallace, I. H. M. & Michael, J. P. (1986). J. Chem. Soc. Perkin Trans. 1, pp. 349-359.]). For related compounds, see: Lemmerer & Michael (2010[Lemmerer, A. & Michael, J. P. (2010). S. Afr. J. Chem. 63, 186-191.]).

[Scheme 1]

Experimental

Crystal data
  • C14H16N2

  • Mr = 212.29

  • Orthorhombic, P b c n

  • a = 19.2145 (14) Å

  • b = 11.3371 (8) Å

  • c = 10.3399 (7) Å

  • V = 2252.4 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 173 K

  • 0.4 × 0.12 × 0.08 mm

Data collection
  • Bruker SMART 1K CCD area-detector diffractometer

  • Absorption correction: integration (XPREP; Bruker, 1999[Bruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.980, Tmax = 0.994

  • 16382 measured reflections

  • 2728 independent reflections

  • 1842 reflections with I > 2σ(I)

  • Rint = 0.078

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.118

  • S = 1.04

  • 2728 reflections

  • 151 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1⋯N1i 0.927 (19) 2.10 (2) 3.0112 (18) 169 (2)
Symmetry code: (i) -x, -y, -z+1.

Data collection: SMART-NT (Bruker, 1998[Bruker (1998). SMART-NT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The racemic compound (rac)-(rel-1R,2R,4S)-Spiro[bicyclo[2.2.1] heptane-2,3'-indol]-2'-amine (I) is an intermediate in the synthesis of a model oxindole prepared during the development of methodology aimed at the total synthesis of the complex spiro-oxindole alkaloid gelsemine (Fleming et al., 1986). The solid state packing of the title compound involves forming centrosymmetric hydrogen-bonded pairs of molecules, generated by interactions from the syn H1 of the amine to the N1 lone pair of the oxindole backbone (See Fig 2). Formation of dimeric pairs is seen in related oxindole compounds (Lemmerer & Michael, 2010). The anti H of the amine group is not involved in any hydrogen bonding interactions.

Related literature top

For the synthesis, see: Fleming et al. (1986). For related compounds, see: Lemmerer & Michael (2010).

Experimental top

The compound was prepared as described previously (Fleming et al., 1986). Crystals of (I) were grown by slow evaporation at ambient conditions of a hexane–chloroform solution (1:1 v/v).

Refinement top

The C-bound H atoms were geometrically placed (C—H bond lengths of 0.95 (aromatic CH), 0.99 (methylene CH2) and 1.00 (methine CH) Å) and refined as riding with Uiso(H) = 1.2Ueq(C). The N-bound H atoms were located in the difference map and coordinates refined freely, with Uiso(H) = 1.5Ueq(N).

Computing details top

Data collection: SMART-NT (Bruker, 1998); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I) showing the atomic numbering scheme. Displacement ellipsoids are shown at the 50% probability level.
[Figure 2] Fig. 2. Packing diagram of (I). Intermolecular N—H···N hydrogen bonds are shown as dashed red lines forming dimers. Note that the anti H2 is not used in any hydrogen bonding interactions.
rac-(rel-1R,2R,4S)- Spiro[bicyclo[2.2.1]heptane-2,3'-indol]-2'-amine top
Crystal data top
C14H16N2F(000) = 912
Mr = 212.29Dx = 1.252 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 876 reflections
a = 19.2145 (14) Åθ = 2.9–25.5°
b = 11.3371 (8) ŵ = 0.08 mm1
c = 10.3399 (7) ÅT = 173 K
V = 2252.4 (3) Å3Needle, colourless
Z = 80.4 × 0.12 × 0.08 mm
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
2728 independent reflections
Radiation source: sealed tube1842 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.078
ω scansθmax = 28.0°, θmin = 2.1°
Absorption correction: integration
(XPREP; Bruker, 1999)
h = 2225
Tmin = 0.980, Tmax = 0.994k = 1414
16382 measured reflectionsl = 1313
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.046 w = 1/[σ2(Fo2) + (0.0594P)2 + 0.0604P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.118(Δ/σ)max = 0.005
S = 1.04Δρmax = 0.22 e Å3
2728 reflectionsΔρmin = 0.20 e Å3
151 parameters
Crystal data top
C14H16N2V = 2252.4 (3) Å3
Mr = 212.29Z = 8
Orthorhombic, PbcnMo Kα radiation
a = 19.2145 (14) ŵ = 0.08 mm1
b = 11.3371 (8) ÅT = 173 K
c = 10.3399 (7) Å0.4 × 0.12 × 0.08 mm
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
2728 independent reflections
Absorption correction: integration
(XPREP; Bruker, 1999)
1842 reflections with I > 2σ(I)
Tmin = 0.980, Tmax = 0.994Rint = 0.078
16382 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.118H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.22 e Å3
2728 reflectionsΔρmin = 0.20 e Å3
151 parameters
Special details top

Experimental. Numerical integration absorption corrections based on indexed crystal faces were applied using the XPREP routine (Bruker, 1999)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C20.08033 (7)0.08297 (13)0.39207 (14)0.0269 (3)
C30.12640 (7)0.16703 (11)0.31300 (13)0.0221 (3)
C40.11622 (7)0.27794 (12)0.39302 (13)0.0239 (3)
C50.13484 (8)0.39471 (13)0.37348 (14)0.0299 (3)
H50.160.4170.29830.036*
C60.11627 (8)0.47945 (14)0.46537 (16)0.0394 (4)
H60.12890.55970.45270.047*
C70.07970 (9)0.44686 (16)0.57446 (17)0.0484 (5)
H70.06760.50510.63660.058*
C80.06029 (9)0.33061 (16)0.59495 (18)0.0481 (5)
H80.03560.30860.67080.058*
C90.07762 (7)0.24683 (14)0.50236 (14)0.0311 (3)
C100.20345 (7)0.11810 (12)0.30821 (13)0.0250 (3)
H100.21830.07430.38740.03*
C110.25299 (7)0.21793 (13)0.26686 (14)0.0287 (3)
H11A0.30220.19270.27270.034*
H11B0.24620.28920.32080.034*
C120.23141 (8)0.24110 (13)0.12412 (14)0.0302 (3)
H12A0.2110.32080.1140.036*
H12B0.27180.23330.06520.036*
C130.17676 (7)0.14452 (12)0.09730 (14)0.0286 (3)
H130.17150.12320.0040.034*
C140.10853 (7)0.17663 (12)0.16523 (13)0.0263 (3)
H14A0.0710.12090.14140.032*
H14B0.09380.25770.14260.032*
C150.20324 (8)0.04395 (12)0.18327 (14)0.0312 (4)
H15A0.25030.01630.15840.037*
H15B0.17050.02340.18730.037*
N10.05733 (6)0.12635 (12)0.50174 (12)0.0341 (3)
N20.06590 (7)0.02770 (11)0.35451 (14)0.0334 (3)
H10.0310 (10)0.0677 (15)0.3982 (17)0.05*
H20.0746 (9)0.0498 (16)0.2725 (18)0.05*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C20.0181 (6)0.0322 (8)0.0303 (8)0.0025 (6)0.0042 (6)0.0085 (6)
C30.0195 (6)0.0246 (7)0.0223 (7)0.0020 (5)0.0009 (5)0.0028 (5)
C40.0185 (6)0.0306 (7)0.0226 (7)0.0003 (5)0.0014 (5)0.0012 (6)
C50.0304 (8)0.0306 (7)0.0287 (8)0.0010 (6)0.0003 (6)0.0016 (6)
C60.0383 (9)0.0367 (9)0.0432 (10)0.0013 (7)0.0016 (7)0.0111 (7)
C70.0422 (10)0.0553 (11)0.0476 (11)0.0032 (8)0.0076 (8)0.0249 (9)
C80.0388 (10)0.0679 (12)0.0375 (10)0.0101 (9)0.0170 (8)0.0137 (9)
C90.0223 (7)0.0430 (8)0.0278 (8)0.0042 (6)0.0026 (6)0.0007 (6)
C100.0197 (6)0.0281 (7)0.0272 (8)0.0004 (6)0.0008 (6)0.0045 (6)
C110.0222 (7)0.0357 (8)0.0282 (8)0.0035 (6)0.0017 (6)0.0012 (6)
C120.0306 (8)0.0347 (8)0.0254 (8)0.0075 (6)0.0058 (6)0.0014 (6)
C130.0330 (8)0.0318 (8)0.0211 (7)0.0055 (6)0.0002 (6)0.0038 (6)
C140.0271 (7)0.0274 (7)0.0243 (7)0.0032 (6)0.0048 (6)0.0015 (6)
C150.0269 (7)0.0273 (7)0.0394 (9)0.0012 (6)0.0052 (7)0.0028 (6)
N10.0267 (6)0.0434 (7)0.0321 (7)0.0086 (6)0.0057 (5)0.0052 (6)
N20.0302 (7)0.0309 (7)0.0390 (8)0.0092 (5)0.0000 (6)0.0082 (6)
Geometric parameters (Å, º) top
C2—N11.3126 (19)C10—C151.5413 (19)
C2—N21.3424 (19)C10—H101
C2—C31.5362 (18)C11—C121.555 (2)
C3—C41.5178 (19)C11—H11A0.99
C3—C141.5698 (18)C11—H11B0.99
C3—C101.5819 (19)C12—C131.5423 (19)
C4—C51.386 (2)C12—H12A0.99
C4—C91.3974 (19)C12—H12B0.99
C5—C61.398 (2)C13—C141.531 (2)
C5—H50.95C13—C151.533 (2)
C6—C71.379 (2)C13—H131
C6—H60.95C14—H14A0.99
C7—C81.386 (2)C14—H14B0.99
C7—H70.95C15—H15A0.99
C8—C91.389 (2)C15—H15B0.99
C8—H80.95N2—H10.927 (19)
C9—N11.420 (2)N2—H20.900 (18)
C10—C111.5394 (19)
N1—C2—N2122.04 (13)C10—C11—H11A111.2
N1—C2—C3114.92 (12)C12—C11—H11A111.2
N2—C2—C3123.02 (13)C10—C11—H11B111.2
C4—C3—C298.60 (11)C12—C11—H11B111.2
C4—C3—C14116.42 (11)H11A—C11—H11B109.1
C2—C3—C14115.78 (11)C13—C12—C11103.43 (11)
C4—C3—C10115.35 (10)C13—C12—H12A111.1
C2—C3—C10109.78 (10)C11—C12—H12A111.1
C14—C3—C10101.45 (10)C13—C12—H12B111.1
C5—C4—C9119.74 (13)C11—C12—H12B111.1
C5—C4—C3132.72 (12)H12A—C12—H12B109
C9—C4—C3107.47 (12)C14—C13—C15101.24 (11)
C4—C5—C6119.44 (14)C14—C13—C12109.37 (11)
C4—C5—H5120.3C15—C13—C12101.41 (12)
C6—C5—H5120.3C14—C13—H13114.4
C7—C6—C5120.13 (15)C15—C13—H13114.4
C7—C6—H6119.9C12—C13—H13114.4
C5—C6—H6119.9C13—C14—C3104.05 (11)
C6—C7—C8121.12 (15)C13—C14—H14A110.9
C6—C7—H7119.4C3—C14—H14A110.9
C8—C7—H7119.4C13—C14—H14B110.9
C7—C8—C9118.71 (16)C3—C14—H14B110.9
C7—C8—H8120.6H14A—C14—H14B109
C9—C8—H8120.6C13—C15—C1094.67 (10)
C8—C9—C4120.81 (14)C13—C15—H15A112.8
C8—C9—N1126.50 (14)C10—C15—H15A112.8
C4—C9—N1112.63 (13)C13—C15—H15B112.8
C11—C10—C1599.78 (11)C10—C15—H15B112.8
C11—C10—C3109.24 (11)H15A—C15—H15B110.3
C15—C10—C3102.41 (10)C2—N1—C9105.77 (11)
C11—C10—H10114.6C2—N2—H1117.8 (11)
C15—C10—H10114.6C2—N2—H2119.7 (12)
C3—C10—H10114.6H1—N2—H2117.2 (16)
C10—C11—C12102.88 (11)
N1—C2—C3—C48.15 (14)C2—C3—C10—C11162.78 (11)
N2—C2—C3—C4173.58 (13)C14—C3—C10—C1174.23 (13)
N1—C2—C3—C14133.10 (13)C4—C3—C10—C15157.66 (11)
N2—C2—C3—C1448.64 (18)C2—C3—C10—C1592.08 (12)
N1—C2—C3—C10112.82 (13)C14—C3—C10—C1530.90 (12)
N2—C2—C3—C1065.45 (16)C15—C10—C11—C1239.45 (13)
C2—C3—C4—C5170.93 (15)C3—C10—C11—C1267.48 (13)
C14—C3—C4—C546.4 (2)C10—C11—C12—C134.84 (14)
C10—C3—C4—C572.31 (19)C11—C12—C13—C1474.58 (14)
C2—C3—C4—C96.05 (13)C11—C12—C13—C1531.79 (14)
C14—C3—C4—C9130.55 (12)C15—C13—C14—C339.32 (13)
C10—C3—C4—C9110.72 (13)C12—C13—C14—C367.16 (14)
C9—C4—C5—C61.7 (2)C4—C3—C14—C13121.15 (12)
C3—C4—C5—C6178.34 (14)C2—C3—C14—C13123.67 (12)
C4—C5—C6—C70.0 (2)C10—C3—C14—C134.90 (13)
C5—C6—C7—C80.4 (3)C14—C13—C15—C1057.33 (12)
C6—C7—C8—C90.8 (3)C12—C13—C15—C1055.32 (12)
C7—C8—C9—C42.5 (3)C11—C10—C15—C1358.27 (12)
C7—C8—C9—N1174.52 (15)C3—C10—C15—C1354.09 (12)
C5—C4—C9—C82.9 (2)N2—C2—N1—C9174.97 (13)
C3—C4—C9—C8179.63 (14)C3—C2—N1—C96.75 (16)
C5—C4—C9—N1174.45 (12)C8—C9—N1—C2174.96 (16)
C3—C4—C9—N12.99 (16)C4—C9—N1—C22.23 (16)
C4—C3—C10—C1152.53 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1···N1i0.927 (19)2.10 (2)3.0112 (18)169 (2)
Symmetry code: (i) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC14H16N2
Mr212.29
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)173
a, b, c (Å)19.2145 (14), 11.3371 (8), 10.3399 (7)
V3)2252.4 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.4 × 0.12 × 0.08
Data collection
DiffractometerBruker SMART 1K CCD area-detector
diffractometer
Absorption correctionIntegration
(XPREP; Bruker, 1999)
Tmin, Tmax0.980, 0.994
No. of measured, independent and
observed [I > 2σ(I)] reflections
16382, 2728, 1842
Rint0.078
(sin θ/λ)max1)0.660
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.118, 1.04
No. of reflections2728
No. of parameters151
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.22, 0.20

Computer programs: SMART-NT (Bruker, 1998), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 1999), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1···N1i0.927 (19)2.10 (2)3.0112 (18)169 (2)
Symmetry code: (i) x, y, z+1.
 

Acknowledgements

This material is based upon work supported financially by the National Research Foundation, Pretoria (GUN 2053652). This work was also supported by the University of the Witwatersrand, which is thanked for providing the required infrastructure.

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (1998). SMART-NT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFleming, I., Loreto, M. A., Wallace, I. H. M. & Michael, J. P. (1986). J. Chem. Soc. Perkin Trans. 1, pp. 349–359.  CrossRef Web of Science Google Scholar
First citationLemmerer, A. & Michael, J. P. (2010). S. Afr. J. Chem. 63, 186–191.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds