organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 2| February 2011| Pages o352-o353

(2E)-3-(3-Bromo-4-meth­­oxy­phen­yl)-1-(pyridin-2-yl)prop-2-en-1-one

aDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, bDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, cDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India, and dDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India
*Correspondence e-mail: jjasinski@keene.edu

(Received 31 December 2010; accepted 5 January 2011; online 12 January 2011)

The mean planes of the benzene and pyridine rings in the title compound, C15H12BrNO2, are nearly coplanar, subtending an angle of 2.8 (8)°. The prop-2-en-1-one group is also in the plane of these rings with an N—C—C—O torsion angle of 179.6 (3)°. A weak C—H⋯Br inter­molecular inter­action contributes to the crystal packing, creating a chain-like structure along the a axis.

Related literature

For the pharmacological activity of chalcones, see: Dhar (1981[Dhar, D. N. (1981). The Chemistry of Chalcones and Related Compounds. New York: John Wiley.]); Dimmock et al. (1999[Dimmock, J. R., Elias, D. W., Beazely, M. A. & Kandepu, N. M. (1999). Curr. Med. Chem. 6, 1125-1149.]); Satyanarayana et al. (2004[Satyanarayana, M., Tiwari, P., Tripathi, B. K., Srivastava, A. K. & Pratap, R. (2004). Bioorg. Med. Chem. 12, 883-889.]). For their ability to block voltage-dependent potassium channels, see: Yarishkin et al. (2008[Yarishkin, O. V. (2008). Bioorg. Med. Chem. Lett. 18, 137-140.]). For their applications as organic non-linear optical materials due to their SHG conversion efficiency, see: Sarojini et al. (2006[Sarojini, B. K., Narayana, B., Ashalatha, B. V., Indira, J. & Lobo, K. G. (2006). J. Cryst. Growth, 295, 54-59.]) and excellent blue light transmittance and good crystallization ability, see: Goto et al. (1991[Goto, Y., Hayashi, A., Kimura, Y. & Nakayama, M. (1991). J. Cryst. Growth, 108, 688-698.]); Indira et al. (2002[Indira, J., Karat, P. P. & Sarojini, B. K. (2002). J. Cryst. Growth, 242, 209-214.]); Uchida et al. (1998[Uchida, T., Kozawa, K., Sakai, T., Aoki, M., Yoguchi, H., Abduryim, A. & Watanabe, Y. (1998). Mol. Cryst. Liq. Cryst. 315, 135-140.]). For the use of chalcones in the synthesis of various biodynamic heterocyclic compounds such as cyclo­hexenone and pyrazoline derivatives, see: Ashalatha et al. (2009[Ashalatha, B. V., Narayana, B. & Vijaya Raj, K. K. (2009). Phosphorus Sulfur Silicon, 184, 1904-1919.]); Sreevidya et al. (2010[Sreevidya, T. V., Narayana, B. & Yathirajan, H. S. (2010). Cent. Eur. J. Chem. 8, 171-181.]); Samshuddin et al. (2010[Samshuddin, S., Narayana, B., Yathirajan, H. S., Safwan, A. P. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o1279-o1280.]); Fun et al. (2010a[Fun, H.-K., Hemamalini, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010a). Acta Cryst. E66, o582-o583.],b[Fun, H.-K., Hemamalini, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010b). Acta Cryst. E66, o864-o865.]); Jasinski et al. (2010a[Jasinski, J. P., Guild, C. J., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010a). Acta Cryst. E66, o1948-o1949.],b[Jasinski, J. P., Pek, A. E., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010b). Acta Cryst. E66, o1950-o1951.]). For the potential use of these compounds or chalcone-rich plant extracts as drugs or food preservatives, see: Di Carlo et al. (1999[Di Carlo, G., Mascolo, N., Izzo, A. A. & Capasso, F. (1999). Life Sci. 65, 337-353.]). For related structures, see: Bibila Mayaya Bisseyou et al. (2007[Bibila Mayaya Bisseyou, Y., Soro, A. P., Sissouma, D., Giorgi, M. & Ebby (2007). Acta Cryst. E63, o4758-o4759.]); Liu et al. (2005[Liu, J.-B., Dai, H., Tao, W.-F., Jin, Z. & Fang, J.-X. (2005). Acta Cryst. E61, o3599-o3601.]).

[Scheme 1]

Experimental

Crystal data
  • C15H12BrNO2

  • Mr = 318.17

  • Monoclinic, C 2/c

  • a = 26.3402 (13) Å

  • b = 3.8906 (2) Å

  • c = 27.5826 (17) Å

  • β = 113.892 (5)°

  • V = 2584.4 (2) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 4.31 mm−1

  • T = 123 K

  • 0.49 × 0.21 × 0.16 mm

Data collection
  • Oxford Diffraction Xcalibur Ruby Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.535, Tmax = 1.000

  • 3978 measured reflections

  • 2556 independent reflections

  • 2431 reflections with I > 2σ(I)

  • Rint = 0.014

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.115

  • S = 1.08

  • 2556 reflections

  • 173 parameters

  • H-atom parameters constrained

  • Δρmax = 0.85 e Å−3

  • Δρmin = −0.64 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3A⋯Br1i 0.95 3.04 3.870 (3) 146
Symmetry code: (i) [x+{\script{1\over 2}}, y+{\script{1\over 2}}, z].

Data collection: CrysAlis PRO (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Chalcones constitute an important family of substances belonging to flavonoids, a large group of natural and synthetic products with interesting physicochemical properties, biological activity and structural characteristics. Chalcones are highly reactive substances of varied nature. They have been reported to possess many interesting pharmacological activities (Dhar, 1981) including anti-inflammatory, antimicrobial, antifungal, antioxidant, cytotoxic, antitumor and anticancer activities (Dimmock et al., 1999; Satyanarayana et al., 2004). Some chalcones demonstrated the ability to block voltage-dependent potassium channels (Yarishkin et al., 2008). Chalcones are also finding application as organic nonlinear optical materials (NLO) for their SHG conversion efficiency (Sarojini et al., 2006). Among several organic compounds reported which have NLO properties, chalcone derivatives are a recognized material because of their excellent blue light transmittance and good crystallization ability (Goto et al.,1991; Uchida et al.,1998; Indira et al., 2002). The basic skeleton of chalcones which possess α,β-unsaturated carbonyl group is useful as the starting material for the synthesis of various biodynamic heterocyclic compounds such as cyclohexenone derivatives and pyrazoline derivatives (Ashalatha et al., 2009; Sreevidya et al., 2010; Samshuddin et al., 2010; Fun et al., 2010a,b; Jasinski et al., 2010a,b). The radical quenching properties of the phenolic groups present in many chalcones have raised interest in using these compounds or chalcone rich plant extracts as drugs or food preservatives (Di Carlo et al., 1999). The crystal structures of some chalcones derived from acetyl pyridine viz., (Z)-3-(2,6-dichlorophenyl)-1-(pyridin-3-yl)-2- (1H-1,2,4-triazol-1-yl)prop-2-en-1-one (Liu et al., 2005), 3-(3-chlorophenyl)-1-(2-methylimidazo[1,2-a]pyridin-3-yl)prop-2-en-1-one (Bibila Mayaya Bisseyou et al., 2007) have been reported. In continuation of our studies on chalcones and their derivatives, the title compound (I) was prepared and its crystal structure is reported.

The mean planes of the benzene and pyridine rings in the title compound, C15H12BrNO2, are nearly planar being separated by only 2.8 (8)° (Fig. 2). The prop-2-en-1-one group is also in the plane of these rings with a N1-C1-C6-O1 torsion angle of 179.6 (3)°. A weak C—H···Br intermolecular interaction (Table 1) contributes to crystal packing creating a 2-D network structure along [101].(Fig. 3).

Related literature top

For the pharmacological activity of chalcones, see: Dhar (1981); Dimmock et al. (1999); Satyanarayana et al. (2004). For their ability to block voltage-dependent potassium channels, see: Yarishkin et al. (2008). For their applications as organic non-linear optical materials due to their SHG conversion efficiency, see: Sarojini et al. (2006) and excellent blue light transmittance and good crystallization ability, see: Goto et al. (1991); Indira et al. (2002); Uchida et al. (1998). For the use of chalcones in the synthesis of various biodynamic heterocyclic compounds such as cyclohexenone and pyrazoline derivatives, see: Ashalatha et al. (2009); Sreevidya et al. (2010); Samshuddin et al. (2010); Fun et al. (2010a,b); Jasinski et al. (2010a,b). For the potential use of these compounds or chalcone-rich plant extracts as drugs or food preservatives, see: Di Carlo et al. (1999). For related structures, see: Bibila Mayaya Bisseyou et al. (2007); Liu et al. (2005).

Experimental top

To a mixture of 2-acetyl pyridine (1.21 g, 0.01 mol) and 3-bromo-4-methoxybenzaldehyde (2.15 g, 0.01 mol) in 30 ml e thanol, 10 ml of 10% sodium hydroxide solution was added and stirred at 5–10°C for 3 h (Fig. 1). The precipitate formed was collected by filtration and purified by recrystallization from ethanol. The single-crystal was grown from acetonitrile by slow evaporation method and yield of the compound was 82%. (m.p. 428 K). Analytical data: Found (Cald): C %: 56.58(56.62); H%: 3.78 (3.80); N%: 4.37 (4.40).

Refinement top

All of the H atoms were placed in their calculated positions and then refined using the riding model with Atom—H lengths of 0.95Å (CH), or 0.98Å (CH3). Isotropic displacement parameters for these atoms were set to 1.18–1.20 (CH) or 1.49 (CH3) times Ueq of the parent atom.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell refinement: CrysAlis PRO (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. REaction scheme for C15H12BrNO2.
[Figure 2] Fig. 2. Molecular structure of the title compound showing the atom labeling scheme and 50% probability displacement ellipsoids.
[Figure 3] Fig. 3. Packing diagram of the title compound viewed down the b axis. Dashed lines indicate weak C—H···Br intermolecular hydrogen bond interactions creating a 2-D network structure along [101].
(2E)-3-(3-Bromo-4-methoxyphenyl)-1-(pyridin-2-yl)prop-2-en-1-one top
Crystal data top
C15H12BrNO2F(000) = 1280
Mr = 318.17Dx = 1.635 Mg m3
Monoclinic, C2/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -C 2ycCell parameters from 3510 reflections
a = 26.3402 (13) Åθ = 4.7–74.0°
b = 3.8906 (2) ŵ = 4.31 mm1
c = 27.5826 (17) ÅT = 123 K
β = 113.892 (5)°Needle, colorless
V = 2584.4 (2) Å30.49 × 0.21 × 0.16 mm
Z = 8
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini
diffractometer
2556 independent reflections
Radiation source: Enhance (Cu) X-ray Source2431 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.014
Detector resolution: 10.5081 pixels mm-1θmax = 74.1°, θmin = 6.0°
ω scansh = 2932
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
k = 42
Tmin = 0.535, Tmax = 1.000l = 3433
3978 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0704P)2 + 6.6225P]
where P = (Fo2 + 2Fc2)/3
2556 reflections(Δ/σ)max < 0.001
173 parametersΔρmax = 0.85 e Å3
0 restraintsΔρmin = 0.64 e Å3
Crystal data top
C15H12BrNO2V = 2584.4 (2) Å3
Mr = 318.17Z = 8
Monoclinic, C2/cCu Kα radiation
a = 26.3402 (13) ŵ = 4.31 mm1
b = 3.8906 (2) ÅT = 123 K
c = 27.5826 (17) Å0.49 × 0.21 × 0.16 mm
β = 113.892 (5)°
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini
diffractometer
2556 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
2431 reflections with I > 2σ(I)
Tmin = 0.535, Tmax = 1.000Rint = 0.014
3978 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.115H-atom parameters constrained
S = 1.08Δρmax = 0.85 e Å3
2556 reflectionsΔρmin = 0.64 e Å3
173 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.046034 (12)0.06121 (9)0.063358 (11)0.03852 (15)
O10.36895 (11)0.4707 (8)0.17800 (10)0.0507 (6)
O20.04309 (8)0.3262 (7)0.16281 (8)0.0431 (5)
N10.30803 (11)0.0395 (8)0.05431 (11)0.0410 (6)
C10.34866 (11)0.1894 (9)0.09571 (12)0.0359 (6)
C20.40303 (12)0.2175 (8)0.10013 (13)0.0382 (6)
H2A0.43080.32510.13000.046*
C30.41559 (13)0.0837 (9)0.05953 (15)0.0441 (8)
H3A0.45230.09560.06140.053*
C40.37382 (15)0.0664 (9)0.01663 (15)0.0451 (8)
H4A0.38120.15690.01190.054*
C50.32078 (15)0.0833 (9)0.01567 (14)0.0442 (8)
H5A0.29220.18750.01400.053*
C60.33420 (13)0.3330 (10)0.13914 (12)0.0420 (7)
C70.27542 (13)0.3026 (9)0.13151 (12)0.0410 (7)
H7A0.25030.17470.10230.049*
C80.25712 (14)0.4531 (9)0.16526 (13)0.0404 (7)
H8A0.28330.58570.19310.048*
C90.20072 (13)0.4324 (9)0.16324 (12)0.0389 (7)
C100.15685 (12)0.2790 (9)0.12093 (11)0.0359 (6)
H10A0.16280.19090.09150.043*
C110.10531 (11)0.2558 (7)0.12193 (11)0.0311 (6)
C120.09521 (12)0.3743 (8)0.16536 (11)0.0335 (6)
C130.13844 (13)0.5282 (9)0.20707 (13)0.0374 (7)
H13A0.13270.61350.23670.045*
C140.19004 (14)0.5571 (9)0.20544 (13)0.0395 (7)
H14A0.21920.66600.23410.047*
C150.03317 (15)0.4373 (11)0.20775 (14)0.0489 (9)
H15A0.00490.37840.20240.073*
H15B0.03830.68680.21180.073*
H15C0.05940.32270.23980.073*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0377 (2)0.0436 (2)0.0325 (2)0.00132 (12)0.01247 (15)0.00231 (12)
O10.0427 (13)0.0683 (16)0.0394 (13)0.0095 (12)0.0149 (11)0.0008 (11)
O20.0317 (10)0.0681 (15)0.0339 (10)0.0021 (11)0.0177 (8)0.0024 (11)
N10.0317 (13)0.0494 (16)0.0400 (14)0.0043 (11)0.0124 (11)0.0067 (12)
C10.0283 (13)0.0413 (16)0.0366 (14)0.0025 (12)0.0116 (11)0.0114 (13)
C20.0291 (13)0.0392 (16)0.0450 (16)0.0025 (12)0.0136 (12)0.0083 (13)
C30.0343 (16)0.0416 (19)0.060 (2)0.0050 (13)0.0231 (15)0.0099 (15)
C40.0501 (19)0.0388 (18)0.0502 (19)0.0078 (14)0.0241 (16)0.0077 (14)
C50.0418 (17)0.0439 (19)0.0430 (17)0.0038 (13)0.0130 (14)0.0025 (14)
C60.0341 (14)0.0554 (19)0.0385 (16)0.0013 (14)0.0168 (13)0.0130 (15)
C70.0378 (15)0.0466 (18)0.0381 (15)0.0029 (14)0.0149 (12)0.0003 (14)
C80.0409 (16)0.0433 (18)0.0346 (15)0.0030 (13)0.0130 (13)0.0018 (13)
C90.0340 (15)0.0511 (19)0.0322 (15)0.0061 (13)0.0141 (12)0.0104 (13)
C100.0342 (13)0.0466 (17)0.0288 (13)0.0082 (13)0.0147 (11)0.0069 (12)
C110.0319 (13)0.0315 (14)0.0289 (12)0.0025 (11)0.0113 (10)0.0037 (11)
C120.0301 (13)0.0391 (15)0.0325 (14)0.0051 (12)0.0140 (11)0.0040 (12)
C130.0385 (16)0.0416 (16)0.0326 (14)0.0069 (13)0.0149 (13)0.0001 (12)
C140.0354 (15)0.0464 (18)0.0322 (15)0.0004 (13)0.0092 (12)0.0028 (13)
C150.0409 (17)0.074 (3)0.0398 (17)0.0117 (16)0.0243 (15)0.0033 (16)
Geometric parameters (Å, º) top
Br1—C111.892 (3)C7—C81.344 (5)
O1—C61.216 (4)C7—H7A0.9500
O2—C121.359 (3)C8—C91.466 (4)
O2—C151.433 (4)C8—H8A0.9500
N1—C51.329 (5)C9—C141.391 (5)
N1—C11.341 (4)C9—C101.400 (5)
C1—C21.391 (4)C10—C111.372 (4)
C1—C61.504 (5)C10—H10A0.9500
C2—C31.391 (5)C11—C121.406 (4)
C2—H2A0.9500C12—C131.385 (4)
C3—C41.377 (5)C13—C141.383 (5)
C3—H3A0.9500C13—H13A0.9500
C4—C51.388 (5)C14—H14A0.9500
C4—H4A0.9500C15—H15A0.9800
C5—H5A0.9500C15—H15B0.9800
C6—C71.480 (4)C15—H15C0.9800
C12—O2—C15116.6 (3)C9—C8—H8A116.8
C5—N1—C1117.7 (3)C14—C9—C10117.9 (3)
N1—C1—C2123.1 (3)C14—C9—C8119.6 (3)
N1—C1—C6117.9 (3)C10—C9—C8122.4 (3)
C2—C1—C6119.0 (3)C11—C10—C9120.0 (3)
C3—C2—C1118.2 (3)C11—C10—H10A120.0
C3—C2—H2A120.9C9—C10—H10A120.0
C1—C2—H2A120.9C10—C11—C12121.7 (3)
C4—C3—C2118.9 (3)C10—C11—Br1119.4 (2)
C4—C3—H3A120.6C12—C11—Br1118.9 (2)
C2—C3—H3A120.6O2—C12—C13125.2 (3)
C3—C4—C5118.9 (3)O2—C12—C11116.5 (3)
C3—C4—H4A120.5C13—C12—C11118.3 (3)
C5—C4—H4A120.5C14—C13—C12119.8 (3)
N1—C5—C4123.2 (3)C14—C13—H13A120.1
N1—C5—H5A118.4C12—C13—H13A120.1
C4—C5—H5A118.4C13—C14—C9122.2 (3)
O1—C6—C7122.1 (3)C13—C14—H14A118.9
O1—C6—C1121.5 (3)C9—C14—H14A118.9
C7—C6—C1116.4 (3)O2—C15—H15A109.5
C8—C7—C6121.0 (3)O2—C15—H15B109.5
C8—C7—H7A119.5H15A—C15—H15B109.5
C6—C7—H7A119.5O2—C15—H15C109.5
C7—C8—C9126.3 (3)H15A—C15—H15C109.5
C7—C8—H8A116.8H15B—C15—H15C109.5
C5—N1—C1—C20.8 (5)C7—C8—C9—C107.5 (5)
C5—N1—C1—C6179.2 (3)C14—C9—C10—C110.1 (5)
N1—C1—C2—C30.1 (5)C8—C9—C10—C11177.7 (3)
C6—C1—C2—C3179.9 (3)C9—C10—C11—C121.8 (5)
C1—C2—C3—C40.8 (5)C9—C10—C11—Br1178.0 (2)
C2—C3—C4—C50.9 (5)C15—O2—C12—C131.6 (5)
C1—N1—C5—C40.7 (5)C15—O2—C12—C11178.1 (3)
C3—C4—C5—N10.1 (5)C10—C11—C12—O2177.6 (3)
N1—C1—C6—O1179.6 (3)Br1—C11—C12—O22.7 (4)
C2—C1—C6—O10.4 (5)C10—C11—C12—C132.2 (5)
N1—C1—C6—C71.4 (4)Br1—C11—C12—C13177.6 (2)
C2—C1—C6—C7178.6 (3)O2—C12—C13—C14178.9 (3)
O1—C6—C7—C85.8 (6)C11—C12—C13—C140.9 (5)
C1—C6—C7—C8173.2 (3)C12—C13—C14—C90.8 (5)
C6—C7—C8—C9177.7 (3)C10—C9—C14—C131.2 (5)
C7—C8—C9—C14170.1 (3)C8—C9—C14—C13176.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···Br1i0.953.043.870 (3)146
Symmetry code: (i) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC15H12BrNO2
Mr318.17
Crystal system, space groupMonoclinic, C2/c
Temperature (K)123
a, b, c (Å)26.3402 (13), 3.8906 (2), 27.5826 (17)
β (°) 113.892 (5)
V3)2584.4 (2)
Z8
Radiation typeCu Kα
µ (mm1)4.31
Crystal size (mm)0.49 × 0.21 × 0.16
Data collection
DiffractometerOxford Diffraction Xcalibur Ruby Gemini
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2007)
Tmin, Tmax0.535, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
3978, 2556, 2431
Rint0.014
(sin θ/λ)max1)0.624
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.115, 1.08
No. of reflections2556
No. of parameters173
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.85, 0.64

Computer programs: CrysAlis PRO (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···Br1i0.953.043.870 (3)146
Symmetry code: (i) x+1/2, y+1/2, z.
 

Acknowledgements

SS and BN thank Mangalore University and the UGC SAP for financial assistance for the purchase of chemicals. HSY thanks the UOM for sabbatical leave. RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase an X-ray diffractometer.

References

First citationAshalatha, B. V., Narayana, B. & Vijaya Raj, K. K. (2009). Phosphorus Sulfur Silicon, 184, 1904–1919.  Web of Science CrossRef CAS Google Scholar
First citationBibila Mayaya Bisseyou, Y., Soro, A. P., Sissouma, D., Giorgi, M. & Ebby (2007). Acta Cryst. E63, o4758–o4759.  Google Scholar
First citationDhar, D. N. (1981). The Chemistry of Chalcones and Related Compounds. New York: John Wiley.  Google Scholar
First citationDi Carlo, G., Mascolo, N., Izzo, A. A. & Capasso, F. (1999). Life Sci. 65, 337–353.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDimmock, J. R., Elias, D. W., Beazely, M. A. & Kandepu, N. M. (1999). Curr. Med. Chem. 6, 1125–1149.  Web of Science PubMed CAS Google Scholar
First citationFun, H.-K., Hemamalini, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010a). Acta Cryst. E66, o582–o583.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Hemamalini, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010b). Acta Cryst. E66, o864–o865.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGoto, Y., Hayashi, A., Kimura, Y. & Nakayama, M. (1991). J. Cryst. Growth, 108, 688–698.  CrossRef CAS Web of Science Google Scholar
First citationIndira, J., Karat, P. P. & Sarojini, B. K. (2002). J. Cryst. Growth, 242, 209–214.  Web of Science CrossRef CAS Google Scholar
First citationJasinski, J. P., Guild, C. J., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010a). Acta Cryst. E66, o1948–o1949.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationJasinski, J. P., Pek, A. E., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010b). Acta Cryst. E66, o1950–o1951.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, J.-B., Dai, H., Tao, W.-F., Jin, Z. & Fang, J.-X. (2005). Acta Cryst. E61, o3599–o3601.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSamshuddin, S., Narayana, B., Yathirajan, H. S., Safwan, A. P. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o1279–o1280.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSarojini, B. K., Narayana, B., Ashalatha, B. V., Indira, J. & Lobo, K. G. (2006). J. Cryst. Growth, 295, 54–59.  Web of Science CrossRef CAS Google Scholar
First citationSatyanarayana, M., Tiwari, P., Tripathi, B. K., Srivastava, A. K. & Pratap, R. (2004). Bioorg. Med. Chem. 12, 883–889.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSreevidya, T. V., Narayana, B. & Yathirajan, H. S. (2010). Cent. Eur. J. Chem. 8, 171–181.  Web of Science CSD CrossRef Google Scholar
First citationUchida, T., Kozawa, K., Sakai, T., Aoki, M., Yoguchi, H., Abduryim, A. & Watanabe, Y. (1998). Mol. Cryst. Liq. Cryst. 315, 135–140.  Web of Science CrossRef Google Scholar
First citationYarishkin, O. V. (2008). Bioorg. Med. Chem. Lett. 18, 137–140.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 2| February 2011| Pages o352-o353
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds