organic compounds
(2E)-3-(3-Bromo-4-methoxyphenyl)-1-(pyridin-2-yl)prop-2-en-1-one
aDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, bDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, cDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India, and dDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India
*Correspondence e-mail: jjasinski@keene.edu
The mean planes of the benzene and pyridine rings in the title compound, C15H12BrNO2, are nearly coplanar, subtending an angle of 2.8 (8)°. The prop-2-en-1-one group is also in the plane of these rings with an N—C—C—O torsion angle of 179.6 (3)°. A weak C—H⋯Br intermolecular interaction contributes to the crystal packing, creating a chain-like structure along the a axis.
Related literature
For the pharmacological activity of ); Dimmock et al. (1999); Satyanarayana et al. (2004). For their ability to block voltage-dependent potassium channels, see: Yarishkin et al. (2008). For their applications as organic non-linear optical materials due to their SHG conversion efficiency, see: Sarojini et al. (2006) and excellent blue light transmittance and good crystallization ability, see: Goto et al. (1991); Indira et al. (2002); Uchida et al. (1998). For the use of in the synthesis of various biodynamic such as cyclohexenone and pyrazoline derivatives, see: Ashalatha et al. (2009); Sreevidya et al. (2010); Samshuddin et al. (2010); Fun et al. (2010a,b); Jasinski et al. (2010a,b). For the potential use of these compounds or chalcone-rich plant extracts as drugs or food preservatives, see: Di Carlo et al. (1999). For related structures, see: Bibila Mayaya Bisseyou et al. (2007); Liu et al. (2005).
see: Dhar (1981Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell CrysAlis PRO; data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536811000353/ng5098sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811000353/ng5098Isup2.hkl
To a mixture of 2-acetyl pyridine (1.21 g, 0.01 mol) and 3-bromo-4-methoxybenzaldehyde (2.15 g, 0.01 mol) in 30 ml e thanol, 10 ml of 10% sodium hydroxide solution was added and stirred at 5–10°C for 3 h (Fig. 1). The precipitate formed was collected by filtration and purified by recrystallization from ethanol. The single-crystal was grown from acetonitrile by slow evaporation method and yield of the compound was 82%. (m.p. 428 K). Analytical data: Found (Cald): C %: 56.58(56.62); H%: 3.78 (3.80); N%: 4.37 (4.40).
All of the H atoms were placed in their calculated positions and then refined using the riding model with Atom—H lengths of 0.95Å (CH), or 0.98Å (CH3). Isotropic displacement parameters for these atoms were set to 1.18–1.20 (CH) or 1.49 (CH3) times Ueq of the parent atom.
Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell
CrysAlis PRO (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C15H12BrNO2 | F(000) = 1280 |
Mr = 318.17 | Dx = 1.635 Mg m−3 |
Monoclinic, C2/c | Cu Kα radiation, λ = 1.54178 Å |
Hall symbol: -C 2yc | Cell parameters from 3510 reflections |
a = 26.3402 (13) Å | θ = 4.7–74.0° |
b = 3.8906 (2) Å | µ = 4.31 mm−1 |
c = 27.5826 (17) Å | T = 123 K |
β = 113.892 (5)° | Needle, colorless |
V = 2584.4 (2) Å3 | 0.49 × 0.21 × 0.16 mm |
Z = 8 |
Oxford Diffraction Xcalibur Ruby Gemini diffractometer | 2556 independent reflections |
Radiation source: Enhance (Cu) X-ray Source | 2431 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.014 |
Detector resolution: 10.5081 pixels mm-1 | θmax = 74.1°, θmin = 6.0° |
ω scans | h = −29→32 |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007) | k = −4→2 |
Tmin = 0.535, Tmax = 1.000 | l = −34→33 |
3978 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.040 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.115 | H-atom parameters constrained |
S = 1.08 | w = 1/[σ2(Fo2) + (0.0704P)2 + 6.6225P] where P = (Fo2 + 2Fc2)/3 |
2556 reflections | (Δ/σ)max < 0.001 |
173 parameters | Δρmax = 0.85 e Å−3 |
0 restraints | Δρmin = −0.64 e Å−3 |
C15H12BrNO2 | V = 2584.4 (2) Å3 |
Mr = 318.17 | Z = 8 |
Monoclinic, C2/c | Cu Kα radiation |
a = 26.3402 (13) Å | µ = 4.31 mm−1 |
b = 3.8906 (2) Å | T = 123 K |
c = 27.5826 (17) Å | 0.49 × 0.21 × 0.16 mm |
β = 113.892 (5)° |
Oxford Diffraction Xcalibur Ruby Gemini diffractometer | 2556 independent reflections |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007) | 2431 reflections with I > 2σ(I) |
Tmin = 0.535, Tmax = 1.000 | Rint = 0.014 |
3978 measured reflections |
R[F2 > 2σ(F2)] = 0.040 | 0 restraints |
wR(F2) = 0.115 | H-atom parameters constrained |
S = 1.08 | Δρmax = 0.85 e Å−3 |
2556 reflections | Δρmin = −0.64 e Å−3 |
173 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.046034 (12) | 0.06121 (9) | 0.063358 (11) | 0.03852 (15) | |
O1 | 0.36895 (11) | 0.4707 (8) | 0.17800 (10) | 0.0507 (6) | |
O2 | 0.04309 (8) | 0.3262 (7) | 0.16281 (8) | 0.0431 (5) | |
N1 | 0.30803 (11) | 0.0395 (8) | 0.05431 (11) | 0.0410 (6) | |
C1 | 0.34866 (11) | 0.1894 (9) | 0.09571 (12) | 0.0359 (6) | |
C2 | 0.40303 (12) | 0.2175 (8) | 0.10013 (13) | 0.0382 (6) | |
H2A | 0.4308 | 0.3251 | 0.1300 | 0.046* | |
C3 | 0.41559 (13) | 0.0837 (9) | 0.05953 (15) | 0.0441 (8) | |
H3A | 0.4523 | 0.0956 | 0.0614 | 0.053* | |
C4 | 0.37382 (15) | −0.0664 (9) | 0.01663 (15) | 0.0451 (8) | |
H4A | 0.3812 | −0.1569 | −0.0119 | 0.054* | |
C5 | 0.32078 (15) | −0.0833 (9) | 0.01567 (14) | 0.0442 (8) | |
H5A | 0.2922 | −0.1875 | −0.0140 | 0.053* | |
C6 | 0.33420 (13) | 0.3330 (10) | 0.13914 (12) | 0.0420 (7) | |
C7 | 0.27542 (13) | 0.3026 (9) | 0.13151 (12) | 0.0410 (7) | |
H7A | 0.2503 | 0.1747 | 0.1023 | 0.049* | |
C8 | 0.25712 (14) | 0.4531 (9) | 0.16526 (13) | 0.0404 (7) | |
H8A | 0.2833 | 0.5857 | 0.1931 | 0.048* | |
C9 | 0.20072 (13) | 0.4324 (9) | 0.16324 (12) | 0.0389 (7) | |
C10 | 0.15685 (12) | 0.2790 (9) | 0.12093 (11) | 0.0359 (6) | |
H10A | 0.1628 | 0.1909 | 0.0915 | 0.043* | |
C11 | 0.10531 (11) | 0.2558 (7) | 0.12193 (11) | 0.0311 (6) | |
C12 | 0.09521 (12) | 0.3743 (8) | 0.16536 (11) | 0.0335 (6) | |
C13 | 0.13844 (13) | 0.5282 (9) | 0.20707 (13) | 0.0374 (7) | |
H13A | 0.1327 | 0.6135 | 0.2367 | 0.045* | |
C14 | 0.19004 (14) | 0.5571 (9) | 0.20544 (13) | 0.0395 (7) | |
H14A | 0.2192 | 0.6660 | 0.2341 | 0.047* | |
C15 | 0.03317 (15) | 0.4373 (11) | 0.20775 (14) | 0.0489 (9) | |
H15A | −0.0049 | 0.3784 | 0.2024 | 0.073* | |
H15B | 0.0383 | 0.6868 | 0.2118 | 0.073* | |
H15C | 0.0594 | 0.3227 | 0.2398 | 0.073* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.0377 (2) | 0.0436 (2) | 0.0325 (2) | −0.00132 (12) | 0.01247 (15) | −0.00231 (12) |
O1 | 0.0427 (13) | 0.0683 (16) | 0.0394 (13) | −0.0095 (12) | 0.0149 (11) | −0.0008 (11) |
O2 | 0.0317 (10) | 0.0681 (15) | 0.0339 (10) | 0.0021 (11) | 0.0177 (8) | −0.0024 (11) |
N1 | 0.0317 (13) | 0.0494 (16) | 0.0400 (14) | −0.0043 (11) | 0.0124 (11) | 0.0067 (12) |
C1 | 0.0283 (13) | 0.0413 (16) | 0.0366 (14) | −0.0025 (12) | 0.0116 (11) | 0.0114 (13) |
C2 | 0.0291 (13) | 0.0392 (16) | 0.0450 (16) | −0.0025 (12) | 0.0136 (12) | 0.0083 (13) |
C3 | 0.0343 (16) | 0.0416 (19) | 0.060 (2) | 0.0050 (13) | 0.0231 (15) | 0.0099 (15) |
C4 | 0.0501 (19) | 0.0388 (18) | 0.0502 (19) | 0.0078 (14) | 0.0241 (16) | 0.0077 (14) |
C5 | 0.0418 (17) | 0.0439 (19) | 0.0430 (17) | −0.0038 (13) | 0.0130 (14) | 0.0025 (14) |
C6 | 0.0341 (14) | 0.0554 (19) | 0.0385 (16) | 0.0013 (14) | 0.0168 (13) | 0.0130 (15) |
C7 | 0.0378 (15) | 0.0466 (18) | 0.0381 (15) | −0.0029 (14) | 0.0149 (12) | −0.0003 (14) |
C8 | 0.0409 (16) | 0.0433 (18) | 0.0346 (15) | −0.0030 (13) | 0.0130 (13) | 0.0018 (13) |
C9 | 0.0340 (15) | 0.0511 (19) | 0.0322 (15) | 0.0061 (13) | 0.0141 (12) | 0.0104 (13) |
C10 | 0.0342 (13) | 0.0466 (17) | 0.0288 (13) | 0.0082 (13) | 0.0147 (11) | 0.0069 (12) |
C11 | 0.0319 (13) | 0.0315 (14) | 0.0289 (12) | 0.0025 (11) | 0.0113 (10) | 0.0037 (11) |
C12 | 0.0301 (13) | 0.0391 (15) | 0.0325 (14) | 0.0051 (12) | 0.0140 (11) | 0.0040 (12) |
C13 | 0.0385 (16) | 0.0416 (16) | 0.0326 (14) | 0.0069 (13) | 0.0149 (13) | 0.0001 (12) |
C14 | 0.0354 (15) | 0.0464 (18) | 0.0322 (15) | 0.0004 (13) | 0.0092 (12) | 0.0028 (13) |
C15 | 0.0409 (17) | 0.074 (3) | 0.0398 (17) | 0.0117 (16) | 0.0243 (15) | 0.0033 (16) |
Br1—C11 | 1.892 (3) | C7—C8 | 1.344 (5) |
O1—C6 | 1.216 (4) | C7—H7A | 0.9500 |
O2—C12 | 1.359 (3) | C8—C9 | 1.466 (4) |
O2—C15 | 1.433 (4) | C8—H8A | 0.9500 |
N1—C5 | 1.329 (5) | C9—C14 | 1.391 (5) |
N1—C1 | 1.341 (4) | C9—C10 | 1.400 (5) |
C1—C2 | 1.391 (4) | C10—C11 | 1.372 (4) |
C1—C6 | 1.504 (5) | C10—H10A | 0.9500 |
C2—C3 | 1.391 (5) | C11—C12 | 1.406 (4) |
C2—H2A | 0.9500 | C12—C13 | 1.385 (4) |
C3—C4 | 1.377 (5) | C13—C14 | 1.383 (5) |
C3—H3A | 0.9500 | C13—H13A | 0.9500 |
C4—C5 | 1.388 (5) | C14—H14A | 0.9500 |
C4—H4A | 0.9500 | C15—H15A | 0.9800 |
C5—H5A | 0.9500 | C15—H15B | 0.9800 |
C6—C7 | 1.480 (4) | C15—H15C | 0.9800 |
C12—O2—C15 | 116.6 (3) | C9—C8—H8A | 116.8 |
C5—N1—C1 | 117.7 (3) | C14—C9—C10 | 117.9 (3) |
N1—C1—C2 | 123.1 (3) | C14—C9—C8 | 119.6 (3) |
N1—C1—C6 | 117.9 (3) | C10—C9—C8 | 122.4 (3) |
C2—C1—C6 | 119.0 (3) | C11—C10—C9 | 120.0 (3) |
C3—C2—C1 | 118.2 (3) | C11—C10—H10A | 120.0 |
C3—C2—H2A | 120.9 | C9—C10—H10A | 120.0 |
C1—C2—H2A | 120.9 | C10—C11—C12 | 121.7 (3) |
C4—C3—C2 | 118.9 (3) | C10—C11—Br1 | 119.4 (2) |
C4—C3—H3A | 120.6 | C12—C11—Br1 | 118.9 (2) |
C2—C3—H3A | 120.6 | O2—C12—C13 | 125.2 (3) |
C3—C4—C5 | 118.9 (3) | O2—C12—C11 | 116.5 (3) |
C3—C4—H4A | 120.5 | C13—C12—C11 | 118.3 (3) |
C5—C4—H4A | 120.5 | C14—C13—C12 | 119.8 (3) |
N1—C5—C4 | 123.2 (3) | C14—C13—H13A | 120.1 |
N1—C5—H5A | 118.4 | C12—C13—H13A | 120.1 |
C4—C5—H5A | 118.4 | C13—C14—C9 | 122.2 (3) |
O1—C6—C7 | 122.1 (3) | C13—C14—H14A | 118.9 |
O1—C6—C1 | 121.5 (3) | C9—C14—H14A | 118.9 |
C7—C6—C1 | 116.4 (3) | O2—C15—H15A | 109.5 |
C8—C7—C6 | 121.0 (3) | O2—C15—H15B | 109.5 |
C8—C7—H7A | 119.5 | H15A—C15—H15B | 109.5 |
C6—C7—H7A | 119.5 | O2—C15—H15C | 109.5 |
C7—C8—C9 | 126.3 (3) | H15A—C15—H15C | 109.5 |
C7—C8—H8A | 116.8 | H15B—C15—H15C | 109.5 |
C5—N1—C1—C2 | −0.8 (5) | C7—C8—C9—C10 | −7.5 (5) |
C5—N1—C1—C6 | 179.2 (3) | C14—C9—C10—C11 | 0.1 (5) |
N1—C1—C2—C3 | 0.1 (5) | C8—C9—C10—C11 | 177.7 (3) |
C6—C1—C2—C3 | −179.9 (3) | C9—C10—C11—C12 | −1.8 (5) |
C1—C2—C3—C4 | 0.8 (5) | C9—C10—C11—Br1 | 178.0 (2) |
C2—C3—C4—C5 | −0.9 (5) | C15—O2—C12—C13 | −1.6 (5) |
C1—N1—C5—C4 | 0.7 (5) | C15—O2—C12—C11 | 178.1 (3) |
C3—C4—C5—N1 | 0.1 (5) | C10—C11—C12—O2 | −177.6 (3) |
N1—C1—C6—O1 | 179.6 (3) | Br1—C11—C12—O2 | 2.7 (4) |
C2—C1—C6—O1 | −0.4 (5) | C10—C11—C12—C13 | 2.2 (5) |
N1—C1—C6—C7 | −1.4 (4) | Br1—C11—C12—C13 | −177.6 (2) |
C2—C1—C6—C7 | 178.6 (3) | O2—C12—C13—C14 | 178.9 (3) |
O1—C6—C7—C8 | 5.8 (6) | C11—C12—C13—C14 | −0.9 (5) |
C1—C6—C7—C8 | −173.2 (3) | C12—C13—C14—C9 | −0.8 (5) |
C6—C7—C8—C9 | −177.7 (3) | C10—C9—C14—C13 | 1.2 (5) |
C7—C8—C9—C14 | 170.1 (3) | C8—C9—C14—C13 | −176.5 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3A···Br1i | 0.95 | 3.04 | 3.870 (3) | 146 |
Symmetry code: (i) x+1/2, y+1/2, z. |
Experimental details
Crystal data | |
Chemical formula | C15H12BrNO2 |
Mr | 318.17 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 123 |
a, b, c (Å) | 26.3402 (13), 3.8906 (2), 27.5826 (17) |
β (°) | 113.892 (5) |
V (Å3) | 2584.4 (2) |
Z | 8 |
Radiation type | Cu Kα |
µ (mm−1) | 4.31 |
Crystal size (mm) | 0.49 × 0.21 × 0.16 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur Ruby Gemini diffractometer |
Absorption correction | Multi-scan (CrysAlis RED; Oxford Diffraction, 2007) |
Tmin, Tmax | 0.535, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3978, 2556, 2431 |
Rint | 0.014 |
(sin θ/λ)max (Å−1) | 0.624 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.040, 0.115, 1.08 |
No. of reflections | 2556 |
No. of parameters | 173 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.85, −0.64 |
Computer programs: CrysAlis PRO (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3A···Br1i | 0.95 | 3.04 | 3.870 (3) | 146 |
Symmetry code: (i) x+1/2, y+1/2, z. |
Acknowledgements
SS and BN thank Mangalore University and the UGC SAP for financial assistance for the purchase of chemicals. HSY thanks the UOM for sabbatical leave. RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase an X-ray diffractometer.
References
Ashalatha, B. V., Narayana, B. & Vijaya Raj, K. K. (2009). Phosphorus Sulfur Silicon, 184, 1904–1919. Web of Science CrossRef CAS Google Scholar
Bibila Mayaya Bisseyou, Y., Soro, A. P., Sissouma, D., Giorgi, M. & Ebby (2007). Acta Cryst. E63, o4758–o4759. Google Scholar
Dhar, D. N. (1981). The Chemistry of Chalcones and Related Compounds. New York: John Wiley. Google Scholar
Di Carlo, G., Mascolo, N., Izzo, A. A. & Capasso, F. (1999). Life Sci. 65, 337–353. Web of Science CrossRef PubMed CAS Google Scholar
Dimmock, J. R., Elias, D. W., Beazely, M. A. & Kandepu, N. M. (1999). Curr. Med. Chem. 6, 1125–1149. Web of Science PubMed CAS Google Scholar
Fun, H.-K., Hemamalini, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010a). Acta Cryst. E66, o582–o583. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Fun, H.-K., Hemamalini, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010b). Acta Cryst. E66, o864–o865. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Goto, Y., Hayashi, A., Kimura, Y. & Nakayama, M. (1991). J. Cryst. Growth, 108, 688–698. CrossRef CAS Web of Science Google Scholar
Indira, J., Karat, P. P. & Sarojini, B. K. (2002). J. Cryst. Growth, 242, 209–214. Web of Science CrossRef CAS Google Scholar
Jasinski, J. P., Guild, C. J., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010a). Acta Cryst. E66, o1948–o1949. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Jasinski, J. P., Pek, A. E., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010b). Acta Cryst. E66, o1950–o1951. Web of Science CSD CrossRef IUCr Journals Google Scholar
Liu, J.-B., Dai, H., Tao, W.-F., Jin, Z. & Fang, J.-X. (2005). Acta Cryst. E61, o3599–o3601. Web of Science CSD CrossRef IUCr Journals Google Scholar
Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England. Google Scholar
Samshuddin, S., Narayana, B., Yathirajan, H. S., Safwan, A. P. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o1279–o1280. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Sarojini, B. K., Narayana, B., Ashalatha, B. V., Indira, J. & Lobo, K. G. (2006). J. Cryst. Growth, 295, 54–59. Web of Science CrossRef CAS Google Scholar
Satyanarayana, M., Tiwari, P., Tripathi, B. K., Srivastava, A. K. & Pratap, R. (2004). Bioorg. Med. Chem. 12, 883–889. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sreevidya, T. V., Narayana, B. & Yathirajan, H. S. (2010). Cent. Eur. J. Chem. 8, 171–181. Web of Science CSD CrossRef Google Scholar
Uchida, T., Kozawa, K., Sakai, T., Aoki, M., Yoguchi, H., Abduryim, A. & Watanabe, Y. (1998). Mol. Cryst. Liq. Cryst. 315, 135–140. Web of Science CrossRef Google Scholar
Yarishkin, O. V. (2008). Bioorg. Med. Chem. Lett. 18, 137–140. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Chalcones constitute an important family of substances belonging to flavonoids, a large group of natural and synthetic products with interesting physicochemical properties, biological activity and structural characteristics. Chalcones are highly reactive substances of varied nature. They have been reported to possess many interesting pharmacological activities (Dhar, 1981) including anti-inflammatory, antimicrobial, antifungal, antioxidant, cytotoxic, antitumor and anticancer activities (Dimmock et al., 1999; Satyanarayana et al., 2004). Some chalcones demonstrated the ability to block voltage-dependent potassium channels (Yarishkin et al., 2008). Chalcones are also finding application as organic nonlinear optical materials (NLO) for their SHG conversion efficiency (Sarojini et al., 2006). Among several organic compounds reported which have NLO properties, chalcone derivatives are a recognized material because of their excellent blue light transmittance and good crystallization ability (Goto et al.,1991; Uchida et al.,1998; Indira et al., 2002). The basic skeleton of chalcones which possess α,β-unsaturated carbonyl group is useful as the starting material for the synthesis of various biodynamic heterocyclic compounds such as cyclohexenone derivatives and pyrazoline derivatives (Ashalatha et al., 2009; Sreevidya et al., 2010; Samshuddin et al., 2010; Fun et al., 2010a,b; Jasinski et al., 2010a,b). The radical quenching properties of the phenolic groups present in many chalcones have raised interest in using these compounds or chalcone rich plant extracts as drugs or food preservatives (Di Carlo et al., 1999). The crystal structures of some chalcones derived from acetyl pyridine viz., (Z)-3-(2,6-dichlorophenyl)-1-(pyridin-3-yl)-2- (1H-1,2,4-triazol-1-yl)prop-2-en-1-one (Liu et al., 2005), 3-(3-chlorophenyl)-1-(2-methylimidazo[1,2-a]pyridin-3-yl)prop-2-en-1-one (Bibila Mayaya Bisseyou et al., 2007) have been reported. In continuation of our studies on chalcones and their derivatives, the title compound (I) was prepared and its crystal structure is reported.
The mean planes of the benzene and pyridine rings in the title compound, C15H12BrNO2, are nearly planar being separated by only 2.8 (8)° (Fig. 2). The prop-2-en-1-one group is also in the plane of these rings with a N1-C1-C6-O1 torsion angle of 179.6 (3)°. A weak C—H···Br intermolecular interaction (Table 1) contributes to crystal packing creating a 2-D network structure along [101].(Fig. 3).