metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 2| February 2011| Pages m280-m281

Tri­aqua­(1,10-phenanthroline-κ2N,N′)(sulfato-κO)zinc(II)

aCollege of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154007, People's Republic of China
*Correspondence e-mail: liuh_2008@yahoo.cn

(Received 19 January 2011; accepted 24 January 2011; online 29 January 2011)

The Zn(II) atom in the title compound, [Zn(SO4)(C12H8N2)(H2O)3], is coordinated by one O atom from a sulfate dianion, two N atoms from a 1,10-phenanthroline mol­ecule and three water O atoms in an octa­hedral geometry. An intra­molecular O—H⋯O hydrogen bond occurs. Inter­molecular O—H⋯O hydrogen bonds generate a layer structure parallel to (001). There are weak C—H⋯O inter­actions within the layers.

Related literature

For related structures, see: An et al. (2007[An, Z., Wu, Y.-L., Lin, F. & Zhu, L. (2007). Acta Cryst. E63, m477-m478.]); Dietz et al. (2009[Dietz, C., Seidel, R. W. & Oppel, I. M. (2009). Z. Kristallogr. New Cryst. Struct. 224, 509-511.]); Harvey et al. (2000[Harvey, M., Baggio, S., Mombrú, A. & Baggio, R. (2000). Acta Cryst. C56, 771-774.]); Hu et al. (2009[Hu, X., Guo, J. X., Liu, C., Zen, H., Wang, Y. J. & Du, W. J. (2009). Inorg. Chim. Acta, 362, 3421-3426.]); Zheng et al. (2002[Zheng, Y. Q., Sun, J. & Lin, J. L. (2002). Z. Kristallogr. New Cryst. Struct. 217, 189-190.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(SO4)(C12H8N2)(H2O)3]

  • Mr = 395.71

  • Orthorhombic, P 21 21 21

  • a = 8.0011 (4) Å

  • b = 9.6006 (4) Å

  • c = 19.1606 (9) Å

  • V = 1471.83 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.85 mm−1

  • T = 296 K

  • 0.25 × 0.16 × 0.14 mm

Data collection
  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.710, Tmax = 0.785

  • 7397 measured reflections

  • 2793 independent reflections

  • 2667 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.021

  • wR(F2) = 0.050

  • S = 1.01

  • 2793 reflections

  • 208 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.36 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1165 Friedel pairs

  • Flack parameter: 0.005 (9)

Table 1
Selected bond lengths (Å)

Zn—O7 2.0874 (16)
Zn—O5 2.1128 (15)
Zn—O6 2.1175 (16)
Zn—O1 2.1431 (15)
Zn—N2 2.1442 (19)
Zn—N1 2.1605 (19)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H51⋯O2i 0.87 1.79 2.655 (2) 174
O5—H52⋯O4ii 0.87 1.91 2.775 (2) 172
O6—H61⋯O1ii 0.91 1.93 2.809 (2) 161
O6—H62⋯O3 0.87 1.86 2.688 (2) 158
O7—H71⋯O3iii 0.96 1.85 2.769 (3) 160
O7—H72⋯O4i 0.83 1.97 2.797 (2) 173
C1—H1⋯O3iii 0.93 2.51 3.416 (3) 165
Symmetry codes: (i) x-1, y, z; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2003[Bruker (2003). APEX2. Bruker AXS Inc. Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Berndt, 1999[Brandenburg, K. & Berndt, M. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The design and synthesis of 1,10-phenanthroline (phen) and sulfato coordination compounds have drawn considerable attention in the last decade. For the 0D structures of phen and sulfato ligand based transition-metal complexes, see: Zheng et al. (2002); An et al. (2007); Harvey et al. (2000). For the chian structures, see: Dietz et al. (2009); Hu et al. (2009). Among these compounds, the zinc(II) complexes were reported by Harvey et al. (2000) and Hu et al. (2009). We herein report a new phen and sulfato coordinated zinc(II) complex, which presents similar coordiantion style for zinc atom of that reported by Harvey et al. (2000).

The title compound crystallizes in chiral P212121 space group with three twofold axizes coexisting along a, b and c axies respectively, which is firstly found among the known phen and sulfato ligand based transition-metal complexes. As shown in Fig. 1, the Zn atoms are each surrounded by two N atoms from one phen ligand, four O atoms from three water molecules and one sulfato group to form distorted octahedra. The distances of Zn—N are 2.1591 (19) Å and 2.1449 (19) Å, respectively. The distances of Zn—O are in the range of 2.0881 (17) Å to 2.1443 (15) Å. The complex molecule displays a strong intramolecular hydrogen bond between water O(6) and sulfato O(3) atoms with d(O6···O3) = 2.687 Å. The intermolecular O—H···O hydrogen bonds exist between water molecules and sulfato O atoms and favor the formation of two-dimensional layered supramolecular network along [0 0 1] direction (Fig. 2). There are also weak C—H···O interactions between phen and sulfato O atoms to consolidate the two-dimensional framework. Different to the known phen and sulfato ligand based complexes, the neighboring phen ligands in the title compound do not exist the transparent ππ stacking interactions. This result indicates that solventothermal synthetic procedure may restrain the formation of ππ stacking interactions between neighboring conjugated ligands.

Related literature top

For related structures, see: An et al. (2007); Dietz et al. (2009); Harvey et al. (2000); Hu et al. (2009); Zheng et al. (2002).

Experimental top

A mixture of ZnSO4 (0.0719 g, 0.25 mmol) and 1,10-phenanthroline (0.0496 g, 0.25 mmol) was dissolved in 8 ml 60% (V:V) ethanol solution and stirred for about an hour. Then it was transferred and sealed in a 15 ml Teflon-lined bomb which was heated at 100 °C for 5 days and cooled to room temperature. Colorless block crystals were collected. Yield: ca. 25% based on Zn. Elementalanalysis (%): Calcd for C12H14N2O7SZn: C, 36.42; H, 3.57; N, 7.08; Zn, 16.53. Found: C, 36.04; H, 3.68; N, 7.02; Zn, 16.39.

Refinement top

The disagreeable reflections 0 4 1 and 2 0 0 have been omitted and there are 1116 Friedel pairs in the refinement. H atoms on phen ligand were added theoreticlly with C—H distance of 0.93 Å. H atoms of water molecules were located from difference Fourier maps and then fixed to O atoms. All H atoms were allocated displacement parameters related to those of their parent atoms [Uiso(H) = 1.2 Ueq (C or O)].

Computing details top

Data collection: APEX2 (Bruker, 2003); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Berndt, 1999); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The coordiantion feature of the title compound. Dispalcement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A view of two-dimensional layered structures of the title compound (color codes: Zn, cyan; S, yellow; O, red; N, blue; C, grey.). H atoms are omitted for clarity.
Triaqua(1,10-phenanthroline-κ2N,N')(sulfato- κO)zinc(II) top
Crystal data top
[Zn(SO4)(C12H8N2)(H2O)3]F(000) = 808
Mr = 395.71Dx = 1.786 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 1025 reflections
a = 8.0011 (4) Åθ = 1.5–26.5°
b = 9.6006 (4) ŵ = 1.85 mm1
c = 19.1606 (9) ÅT = 296 K
V = 1471.83 (12) Å3Block, colourless
Z = 40.25 × 0.16 × 0.14 mm
Data collection top
Bruker APEXII
diffractometer
2793 independent reflections
Radiation source: fine-focus sealed tube2667 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ω and ϕ scansθmax = 26.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.710, Tmax = 0.785k = 1111
7397 measured reflectionsl = 2223
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.021H-atom parameters constrained
wR(F2) = 0.050 w = 1/[σ2(Fo2) + (0.0161P)2 + 0.005P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
2793 reflectionsΔρmax = 0.29 e Å3
208 parametersΔρmin = 0.36 e Å3
0 restraintsAbsolute structure: Flack (1983), 1165 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.005 (9)
Crystal data top
[Zn(SO4)(C12H8N2)(H2O)3]V = 1471.83 (12) Å3
Mr = 395.71Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.0011 (4) ŵ = 1.85 mm1
b = 9.6006 (4) ÅT = 296 K
c = 19.1606 (9) Å0.25 × 0.16 × 0.14 mm
Data collection top
Bruker APEXII
diffractometer
2793 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2667 reflections with I > 2σ(I)
Tmin = 0.710, Tmax = 0.785Rint = 0.025
7397 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.021H-atom parameters constrained
wR(F2) = 0.050Δρmax = 0.29 e Å3
S = 1.01Δρmin = 0.36 e Å3
2793 reflectionsAbsolute structure: Flack (1983), 1165 Friedel pairs
208 parametersAbsolute structure parameter: 0.005 (9)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn0.35962 (3)0.46528 (2)0.682343 (13)0.02381 (7)
S0.75438 (7)0.43014 (5)0.72471 (3)0.02418 (13)
O10.59078 (18)0.36372 (14)0.70689 (8)0.0256 (4)
O20.8188 (2)0.50361 (18)0.66363 (10)0.0400 (5)
O30.7288 (2)0.52839 (19)0.78257 (9)0.0405 (4)
O40.8701 (2)0.31908 (16)0.74536 (10)0.0368 (4)
O50.13662 (19)0.58142 (15)0.67227 (9)0.0360 (4)
H510.03450.55160.67190.043*
H520.12590.65780.69610.043*
O60.3974 (2)0.57293 (15)0.77750 (9)0.0323 (4)
H610.37750.66430.78690.039*
H620.50030.55790.79080.039*
O70.2180 (2)0.31186 (16)0.73196 (10)0.0371 (4)
H710.23850.21400.73870.044*
H720.11560.31840.73920.044*
N10.4592 (2)0.62126 (19)0.61251 (10)0.0264 (4)
N20.3537 (3)0.35890 (18)0.58398 (10)0.0291 (4)
C10.3124 (3)0.2282 (3)0.57089 (15)0.0384 (6)
H10.27980.17200.60800.046*
C20.3153 (4)0.1707 (3)0.50423 (16)0.0489 (8)
H20.28820.07750.49750.059*
C30.3584 (4)0.2526 (3)0.44882 (16)0.0491 (7)
H30.35860.21590.40390.059*
C40.4539 (4)0.4834 (4)0.40547 (14)0.0534 (8)
H40.45500.45190.35960.064*
C50.5013 (4)0.6158 (4)0.41983 (16)0.0560 (8)
H50.53330.67400.38340.067*
C60.5501 (4)0.8055 (3)0.50634 (16)0.0513 (8)
H60.57990.86780.47130.062*
C70.5510 (4)0.8461 (3)0.57495 (17)0.0478 (7)
H70.58080.93660.58700.057*
C80.5069 (3)0.7504 (3)0.62626 (15)0.0356 (6)
H80.51120.77860.67270.043*
C90.4024 (3)0.3920 (3)0.45999 (14)0.0385 (6)
C100.5032 (4)0.6680 (3)0.48954 (14)0.0401 (6)
C110.4028 (3)0.4397 (2)0.52967 (12)0.0270 (5)
C120.4559 (3)0.5801 (2)0.54475 (13)0.0274 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn0.02190 (13)0.02351 (11)0.02601 (13)0.00085 (10)0.00003 (11)0.00258 (11)
S0.0178 (3)0.0195 (2)0.0353 (3)0.00060 (19)0.0031 (2)0.0023 (2)
O10.0160 (7)0.0222 (7)0.0387 (10)0.0020 (6)0.0036 (7)0.0028 (6)
O20.0267 (9)0.0472 (11)0.0462 (11)0.0069 (7)0.0022 (7)0.0116 (8)
O30.0367 (9)0.0395 (9)0.0453 (11)0.0022 (9)0.0069 (8)0.0196 (9)
O40.0234 (8)0.0299 (8)0.0570 (11)0.0054 (7)0.0058 (9)0.0058 (7)
O50.0207 (8)0.0286 (7)0.0589 (11)0.0011 (7)0.0020 (9)0.0013 (8)
O60.0331 (9)0.0277 (8)0.0361 (9)0.0088 (6)0.0016 (7)0.0025 (7)
O70.0239 (9)0.0271 (8)0.0601 (12)0.0002 (7)0.0102 (8)0.0125 (8)
N10.0217 (10)0.0288 (9)0.0288 (11)0.0013 (8)0.0015 (8)0.0004 (8)
N20.0267 (10)0.0287 (8)0.0317 (10)0.0010 (9)0.0033 (10)0.0012 (8)
C10.0392 (16)0.0324 (12)0.0436 (16)0.0071 (11)0.0047 (12)0.0014 (11)
C20.0497 (18)0.0393 (14)0.0578 (19)0.0062 (13)0.0099 (14)0.0176 (13)
C30.0487 (17)0.0583 (16)0.0402 (16)0.0022 (15)0.0058 (15)0.0209 (14)
C40.0595 (18)0.076 (2)0.0244 (14)0.0044 (17)0.0069 (12)0.0032 (14)
C50.068 (2)0.069 (2)0.0307 (16)0.0089 (17)0.0116 (15)0.0113 (15)
C60.0566 (19)0.0457 (16)0.0515 (19)0.0135 (14)0.0086 (15)0.0187 (14)
C70.0550 (18)0.0332 (13)0.0553 (19)0.0153 (13)0.0078 (15)0.0037 (13)
C80.0347 (14)0.0338 (12)0.0383 (15)0.0065 (11)0.0018 (12)0.0044 (11)
C90.0332 (15)0.0476 (14)0.0347 (14)0.0019 (11)0.0005 (11)0.0067 (12)
C100.0385 (15)0.0482 (15)0.0338 (15)0.0037 (13)0.0085 (12)0.0071 (12)
C110.0206 (11)0.0342 (12)0.0262 (12)0.0019 (9)0.0003 (9)0.0021 (9)
C120.0221 (12)0.0324 (11)0.0277 (12)0.0007 (9)0.0014 (10)0.0009 (10)
Geometric parameters (Å, º) top
Zn—O72.0874 (16)C1—C21.392 (4)
Zn—O52.1128 (15)C1—H10.9300
Zn—O62.1175 (16)C2—C31.365 (4)
Zn—O12.1431 (15)C2—H20.9300
Zn—N22.1442 (19)C3—C91.400 (4)
Zn—N12.1605 (19)C3—H30.9300
S—O21.4605 (18)C4—C51.355 (5)
S—O41.4663 (16)C4—C91.425 (4)
S—O31.4698 (18)C4—H40.9300
S—O11.4955 (15)C5—C101.427 (4)
O5—H510.8655C5—H50.9300
O5—H520.8678C6—C71.371 (4)
O6—H610.9094C6—C101.409 (4)
O6—H620.8738C6—H60.9300
O7—H710.9628C7—C81.392 (4)
O7—H720.8331C7—H70.9300
N1—C81.324 (3)C8—H80.9300
N1—C121.357 (3)C9—C111.412 (3)
N2—C11.322 (3)C10—C121.405 (3)
N2—C111.356 (3)C11—C121.442 (3)
O7—Zn—O587.46 (6)N2—C1—C2123.1 (3)
O7—Zn—O691.71 (7)N2—C1—H1118.4
O5—Zn—O686.66 (6)C2—C1—H1118.4
O7—Zn—O192.72 (6)C3—C2—C1119.3 (2)
O5—Zn—O1171.49 (6)C3—C2—H2120.3
O6—Zn—O184.83 (6)C1—C2—H2120.3
O7—Zn—N292.99 (7)C2—C3—C9119.7 (3)
O5—Zn—N298.77 (7)C2—C3—H3120.2
O6—Zn—N2172.97 (7)C9—C3—H3120.2
O1—Zn—N289.73 (7)C5—C4—C9120.7 (3)
O7—Zn—N1166.26 (7)C5—C4—H4119.7
O5—Zn—N183.64 (6)C9—C4—H4119.7
O6—Zn—N198.18 (7)C4—C5—C10121.5 (3)
O1—Zn—N197.64 (6)C4—C5—H5119.2
N2—Zn—N178.11 (7)C10—C5—H5119.2
O2—S—O4110.15 (10)C7—C6—C10119.2 (3)
O2—S—O3110.09 (11)C7—C6—H6120.4
O4—S—O3110.55 (11)C10—C6—H6120.4
O2—S—O1109.39 (10)C6—C7—C8119.2 (3)
O4—S—O1107.69 (9)C6—C7—H7120.4
O3—S—O1108.91 (10)C8—C7—H7120.4
S—O1—Zn127.69 (8)N1—C8—C7123.5 (3)
Zn—O5—H51128.6N1—C8—H8118.3
Zn—O5—H52118.8C7—C8—H8118.3
H51—O5—H52101.0C3—C9—C11117.1 (2)
Zn—O6—H61128.0C3—C9—C4123.3 (3)
Zn—O6—H62107.7C11—C9—C4119.5 (2)
H61—O6—H62105.5C12—C10—C6117.5 (2)
Zn—O7—H71131.1C12—C10—C5119.4 (3)
Zn—O7—H72123.8C6—C10—C5123.1 (3)
H71—O7—H72102.6N2—C11—C9122.6 (2)
C8—N1—C12118.0 (2)N2—C11—C12117.8 (2)
C8—N1—Zn129.22 (18)C9—C11—C12119.6 (2)
C12—N1—Zn112.53 (14)N1—C12—C10122.7 (2)
C1—N2—C11118.0 (2)N1—C12—C11118.0 (2)
C1—N2—Zn128.65 (18)C10—C12—C11119.3 (2)
C11—N2—Zn113.30 (14)
O2—S—O1—Zn66.81 (14)C12—N1—C8—C71.1 (4)
O4—S—O1—Zn173.47 (11)Zn—N1—C8—C7172.2 (2)
O3—S—O1—Zn53.56 (15)C6—C7—C8—N11.8 (5)
O7—Zn—O1—S144.44 (12)C2—C3—C9—C111.3 (4)
O6—Zn—O1—S52.97 (12)C2—C3—C9—C4178.0 (3)
N2—Zn—O1—S122.58 (13)C5—C4—C9—C3177.4 (3)
N1—Zn—O1—S44.62 (13)C5—C4—C9—C110.8 (4)
O7—Zn—N1—C8127.7 (3)C7—C6—C10—C121.4 (4)
O5—Zn—N1—C877.8 (2)C7—C6—C10—C5178.9 (3)
O6—Zn—N1—C87.9 (2)C4—C5—C10—C120.4 (5)
O1—Zn—N1—C893.7 (2)C4—C5—C10—C6179.3 (3)
N2—Zn—N1—C8178.2 (2)C1—N2—C11—C93.6 (3)
O7—Zn—N1—C1245.9 (4)Zn—N2—C11—C9177.59 (18)
O5—Zn—N1—C1295.77 (15)C1—N2—C11—C12176.9 (2)
O6—Zn—N1—C12178.55 (15)Zn—N2—C11—C121.9 (3)
O1—Zn—N1—C1292.71 (15)C3—C9—C11—N23.9 (4)
N2—Zn—N1—C124.61 (15)C4—C9—C11—N2179.3 (2)
O7—Zn—N2—C115.4 (2)C3—C9—C11—C12176.6 (2)
O5—Zn—N2—C1103.3 (2)C4—C9—C11—C120.2 (4)
O1—Zn—N2—C177.3 (2)C8—N1—C12—C101.0 (3)
N1—Zn—N2—C1175.2 (2)Zn—N1—C12—C10175.37 (19)
O7—Zn—N2—C11165.96 (15)C8—N1—C12—C11179.6 (2)
O5—Zn—N2—C1178.08 (16)Zn—N1—C12—C115.2 (2)
O1—Zn—N2—C11101.33 (16)C6—C10—C12—N12.2 (4)
N1—Zn—N2—C113.46 (15)C5—C10—C12—N1178.1 (3)
C11—N2—C1—C20.7 (4)C6—C10—C12—C11178.4 (3)
Zn—N2—C1—C2179.3 (2)C5—C10—C12—C111.3 (4)
N2—C1—C2—C31.8 (5)N2—C11—C12—N12.3 (3)
C1—C2—C3—C91.4 (5)C9—C11—C12—N1178.2 (2)
C9—C4—C5—C100.7 (5)N2—C11—C12—C10178.2 (2)
C10—C6—C7—C80.4 (5)C9—C11—C12—C101.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H51···O2i0.871.792.655 (2)174
O5—H52···O4ii0.871.912.775 (2)172
O6—H61···O1ii0.911.932.809 (2)161
O6—H62···O30.871.862.688 (2)158
O7—H71···O3iii0.961.852.769 (3)160
O7—H72···O4i0.831.972.797 (2)173
C1—H1···O3iii0.932.513.416 (3)165
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1/2, z+3/2; (iii) x+1, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[Zn(SO4)(C12H8N2)(H2O)3]
Mr395.71
Crystal system, space groupOrthorhombic, P212121
Temperature (K)296
a, b, c (Å)8.0011 (4), 9.6006 (4), 19.1606 (9)
V3)1471.83 (12)
Z4
Radiation typeMo Kα
µ (mm1)1.85
Crystal size (mm)0.25 × 0.16 × 0.14
Data collection
DiffractometerBruker APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.710, 0.785
No. of measured, independent and
observed [I > 2σ(I)] reflections
7397, 2793, 2667
Rint0.025
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.050, 1.01
No. of reflections2793
No. of parameters208
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.36
Absolute structureFlack (1983), 1165 Friedel pairs
Absolute structure parameter0.005 (9)

Computer programs: APEX2 (Bruker, 2003), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Berndt, 1999).

Selected bond lengths (Å) top
Zn—O72.0874 (16)Zn—O12.1431 (15)
Zn—O52.1128 (15)Zn—N22.1442 (19)
Zn—O62.1175 (16)Zn—N12.1605 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H51···O2i0.871.792.655 (2)174
O5—H52···O4ii0.871.912.775 (2)172
O6—H61···O1ii0.911.932.809 (2)161
O6—H62···O30.871.862.688 (2)158
O7—H71···O3iii0.961.852.769 (3)160
O7—H72···O4i0.831.972.797 (2)173
C1—H1···O3iii0.932.513.416 (3)165
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1/2, z+3/2; (iii) x+1, y1/2, z+3/2.
 

Acknowledgements

The project was supported by the Natural Science Foundation of Heilongjiang Province (No. B200917 and B200901), the Education Office Foundation of Heilongjiang Province (No. 11551484), the Foundation of Jiamusi University (No. Szj2008–017), the Sci. & Tech. Project of Heilongjiang Province (2009 G1099–00) and the Doctoral Foundation of Material Science Key Dicipline of Jiamusi University (No. E08050207).

References

First citationAn, Z., Wu, Y.-L., Lin, F. & Zhu, L. (2007). Acta Cryst. E63, m477–m478.  CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. & Berndt, M. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2001). SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). APEX2. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationDietz, C., Seidel, R. W. & Oppel, I. M. (2009). Z. Kristallogr. New Cryst. Struct. 224, 509–511.  CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHarvey, M., Baggio, S., Mombrú, A. & Baggio, R. (2000). Acta Cryst. C56, 771–774.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationHu, X., Guo, J. X., Liu, C., Zen, H., Wang, Y. J. & Du, W. J. (2009). Inorg. Chim. Acta, 362, 3421–3426.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZheng, Y. Q., Sun, J. & Lin, J. L. (2002). Z. Kristallogr. New Cryst. Struct. 217, 189–190.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 2| February 2011| Pages m280-m281
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds