organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Bromo-2-{[(pyridin-3-ylmeth­yl)imino]­meth­yl}phenol

aSchool of Applied Chemical Engineering, The Research Institute of Catalysis, Chonnam National University, Gwangju 500-757, Republic of Korea
*Correspondence e-mail: hakwang@chonnam.ac.kr

(Received 22 January 2011; accepted 23 January 2011; online 29 January 2011)

The title compound, C13H11BrN2O, is a polydentate Schiff base and reveals intra­molecular O—H⋯N hydrogen bonding between the hy­droxy O atom and the imino N atom. The dihedral angle between the aromatic ring and the pyridyl ring is 71.7 (1)°. In the crystal, the mol­ecules are stacked in columns along the c axis and several inter­molecular ππ inter­actions are present between the six-membered rings, with a shortest centroid–centroid distance of 3.707 (2) Å.

Related literature

For the crystal structure of 4-bromo-2-{[(pyridin-2-ylmethyl)imino]methyl}phenol, see: Zhang et al. (2003[Zhang, Y., Khoo, L. E. & Ng, S. W. (2003). Acta Cryst. E59, o1496-o1497.]).

[Scheme 1]

Experimental

Crystal data
  • C13H11BrN2O

  • Mr = 291.15

  • Monoclinic, P 21 /c

  • a = 14.0947 (19) Å

  • b = 6.0994 (8) Å

  • c = 14.0373 (19) Å

  • β = 103.704 (3)°

  • V = 1172.4 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.49 mm−1

  • T = 200 K

  • 0.30 × 0.22 × 0.14 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.833, Tmax = 1.000

  • 8297 measured reflections

  • 2906 independent reflections

  • 1859 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.099

  • S = 1.13

  • 2906 reflections

  • 158 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.84 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.96 (5) 1.80 (5) 2.616 (5) 141 (5)

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound, C13H11BrN2O, is a polydentate Schiff base (Fig. 1), which can act as a monobasic bi- or tridentate ligand, that is, the NO or N2O donor atoms can coordinate to a metal ion or metal ions. The compound crystallized in the monoclinic space group P21/c, whereas the previously reported analogous compound 4-bromo-2-{[(pyridin-2-ylmethyl)imino]methyl}phenol crystallized in the triclinic space group P1 (Zhang et al., 2003).

The Schiff base reveals intramolecular O—H···N hydrogen bonding between the hydroxy O atom and the imino N atom with d(O···N) = 2.616 (5) Å forming a nearly planar six-membered ring (Fig. 2, Table 1). The O1—H1 bond length is somewhat long, but the zwitterionic possibility can be excludued. The dihedral angle between the benzene ring and the pyridine ring is 71.7 (1)°. The N1—C7/8 bond lengths and the C7—N1—C8 bond angle indicate that the imino N1 atom is sp2-hybridized [d(N1C7) = 1.271 (5) Å and d(N1—C8) = 1.468 (5) Å; <C7—N1—C8 = 117.6 (4)°]. In the crystal structure, the molecules are stacked in columns along the c axis and several intermolecular π-π interactions are present between the six-membered rings, with a shortest centroid-centroid distance of 3.707 (2) Å.

Related literature top

For the crystal structure of 4-bromo-2-{[(pyridin-2-ylmethyl)imino]methyl}phenol, see: Zhang et al. (2003).

Experimental top

3-(Aminomethyl)pyridine (1.0751 g, 9.942 mmol) and 5-bromosalicylaldehyde (1.9988 g, 9.943 mmol) in EtOH (20 ml) were stirred for 2 h at room temperature. After add of pentane (50 ml) to the solution, the formed precipitate at -85 °C was then separated by filtration, washed with pentane, and dried at 50 °C, to give a gold-yellow powder (2.7240 g). Crystals suitable were obtained by slow evaporation from a CH3CN solution.

Refinement top

H atoms were positioned geometrically and allowed to ride on their respective parent atoms [C—H = 0.95 Å (CH) or 0.99 Å (CH2) and Uiso(H) = 1.2Ueq(C)]. The hydroxy H atom was located from Fourier difference maps and refined isotropically [O—H = 0.96 (5) Å].

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. View of the unit-cell contents of the title compound. Hydrogen-bond interactions are drawn with dashed lines.
4-Bromo-2-{[(pyridin-3-ylmethyl)imino]methyl}phenol top
Crystal data top
C13H11BrN2OF(000) = 584
Mr = 291.15Dx = 1.649 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3009 reflections
a = 14.0947 (19) Åθ = 3.0–27.0°
b = 6.0994 (8) ŵ = 3.49 mm1
c = 14.0373 (19) ÅT = 200 K
β = 103.704 (3)°Block, yellow
V = 1172.4 (3) Å30.30 × 0.22 × 0.14 mm
Z = 4
Data collection top
Bruker SMART 1000 CCD
diffractometer
2906 independent reflections
Radiation source: fine-focus sealed tube1859 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ϕ and ω scansθmax = 28.3°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1817
Tmin = 0.833, Tmax = 1.000k = 88
8297 measured reflectionsl = 1318
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H atoms treated by a mixture of independent and constrained refinement
S = 1.13 w = 1/[σ2(Fo2) + (0.0134P)2 + 2.5694P]
where P = (Fo2 + 2Fc2)/3
2906 reflections(Δ/σ)max < 0.001
158 parametersΔρmax = 0.53 e Å3
0 restraintsΔρmin = 0.84 e Å3
Crystal data top
C13H11BrN2OV = 1172.4 (3) Å3
Mr = 291.15Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.0947 (19) ŵ = 3.49 mm1
b = 6.0994 (8) ÅT = 200 K
c = 14.0373 (19) Å0.30 × 0.22 × 0.14 mm
β = 103.704 (3)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
2906 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1859 reflections with I > 2σ(I)
Tmin = 0.833, Tmax = 1.000Rint = 0.037
8297 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.099H atoms treated by a mixture of independent and constrained refinement
S = 1.13Δρmax = 0.53 e Å3
2906 reflectionsΔρmin = 0.84 e Å3
158 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.76468 (3)0.70338 (8)0.44621 (4)0.04693 (16)
O10.3873 (2)0.1972 (5)0.3696 (2)0.0395 (7)
H10.332 (4)0.283 (9)0.338 (4)0.081 (18)*
N10.3004 (2)0.5487 (6)0.2840 (2)0.0353 (8)
N20.0887 (2)0.9342 (6)0.4172 (3)0.0416 (9)
C10.4726 (3)0.5284 (6)0.3484 (3)0.0267 (8)
C20.4714 (3)0.3123 (6)0.3834 (3)0.0281 (8)
C30.5585 (3)0.2149 (7)0.4341 (3)0.0338 (9)
H30.55780.06870.45740.041*
C40.6450 (3)0.3279 (7)0.4507 (3)0.0338 (9)
H40.70380.26060.48550.041*
C50.6462 (3)0.5405 (7)0.4164 (3)0.0307 (9)
C60.5623 (3)0.6397 (7)0.3654 (3)0.0307 (9)
H60.56490.78450.34130.037*
C70.3835 (3)0.6408 (7)0.2984 (3)0.0307 (9)
H70.38760.78670.27610.037*
C80.2146 (3)0.6772 (8)0.2349 (3)0.0412 (10)
H8A0.18050.60190.17400.049*
H8B0.23580.82310.21690.049*
C90.1454 (2)0.7050 (7)0.3019 (3)0.0317 (8)
C100.1465 (3)0.8949 (7)0.3555 (3)0.0391 (10)
H100.19151.00610.34830.047*
C110.0261 (3)0.7758 (7)0.4251 (3)0.0378 (10)
H110.01640.79950.46750.045*
C120.0194 (3)0.5796 (7)0.3754 (3)0.0385 (10)
H120.02610.47090.38420.046*
C130.0800 (3)0.5436 (7)0.3127 (3)0.0373 (10)
H130.07660.40980.27740.045*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0307 (2)0.0546 (3)0.0530 (3)0.0087 (2)0.00510 (18)0.0004 (2)
O10.0347 (15)0.0333 (16)0.0524 (19)0.0090 (13)0.0140 (14)0.0004 (15)
N10.0286 (16)0.043 (2)0.0354 (19)0.0039 (15)0.0092 (15)0.0030 (16)
N20.0347 (18)0.046 (2)0.047 (2)0.0025 (16)0.0159 (17)0.0081 (18)
C10.0302 (19)0.027 (2)0.0246 (19)0.0023 (15)0.0093 (16)0.0021 (15)
C20.0327 (19)0.030 (2)0.0245 (19)0.0043 (17)0.0121 (16)0.0047 (17)
C30.041 (2)0.033 (2)0.032 (2)0.0032 (18)0.0174 (18)0.0026 (18)
C40.035 (2)0.040 (3)0.028 (2)0.0048 (18)0.0087 (17)0.0010 (18)
C50.0261 (18)0.038 (2)0.030 (2)0.0020 (16)0.0106 (16)0.0028 (17)
C60.035 (2)0.031 (2)0.028 (2)0.0013 (16)0.0114 (17)0.0003 (16)
C70.035 (2)0.033 (2)0.026 (2)0.0058 (17)0.0119 (17)0.0034 (16)
C80.031 (2)0.057 (3)0.035 (2)0.010 (2)0.0053 (18)0.002 (2)
C90.0216 (17)0.040 (2)0.031 (2)0.0056 (17)0.0015 (15)0.0001 (19)
C100.029 (2)0.042 (3)0.046 (3)0.0068 (18)0.0092 (19)0.004 (2)
C110.0271 (19)0.050 (3)0.038 (2)0.0008 (19)0.0098 (17)0.001 (2)
C120.034 (2)0.042 (3)0.041 (2)0.0079 (19)0.0106 (19)0.006 (2)
C130.039 (2)0.036 (2)0.033 (2)0.0008 (19)0.0008 (18)0.0017 (18)
Geometric parameters (Å, º) top
Br1—C51.903 (4)C5—C61.369 (5)
O1—C21.352 (4)C6—H60.9500
O1—H10.96 (5)C7—H70.9500
N1—C71.271 (5)C8—C91.517 (5)
N1—C81.468 (5)C8—H8A0.9900
N2—C111.331 (5)C8—H8B0.9900
N2—C101.344 (5)C9—C101.379 (6)
C1—C61.406 (5)C9—C131.381 (5)
C1—C21.408 (5)C10—H100.9500
C1—C71.456 (5)C11—C121.377 (6)
C2—C31.397 (5)C11—H110.9500
C3—C41.372 (5)C12—C131.382 (6)
C3—H30.9500C12—H120.9500
C4—C51.384 (5)C13—H130.9500
C4—H40.9500
C2—O1—H1112 (3)C1—C7—H7119.2
C7—N1—C8117.6 (4)N1—C8—C9110.4 (3)
C11—N2—C10116.1 (4)N1—C8—H8A109.6
C6—C1—C2118.5 (3)C9—C8—H8A109.6
C6—C1—C7119.5 (3)N1—C8—H8B109.6
C2—C1—C7121.9 (3)C9—C8—H8B109.6
O1—C2—C3119.1 (4)H8A—C8—H8B108.1
O1—C2—C1121.2 (3)C10—C9—C13117.4 (4)
C3—C2—C1119.6 (3)C10—C9—C8120.4 (4)
C4—C3—C2120.7 (4)C13—C9—C8122.2 (4)
C4—C3—H3119.6N2—C10—C9124.8 (4)
C2—C3—H3119.6N2—C10—H10117.6
C3—C4—C5119.7 (4)C9—C10—H10117.6
C3—C4—H4120.2N2—C11—C12123.8 (4)
C5—C4—H4120.2N2—C11—H11118.1
C6—C5—C4121.0 (4)C12—C11—H11118.1
C6—C5—Br1119.2 (3)C11—C12—C13118.8 (4)
C4—C5—Br1119.7 (3)C11—C12—H12120.6
C5—C6—C1120.4 (4)C13—C12—H12120.6
C5—C6—H6119.8C9—C13—C12119.1 (4)
C1—C6—H6119.8C9—C13—H13120.5
N1—C7—C1121.7 (4)C12—C13—H13120.5
N1—C7—H7119.2
C6—C1—C2—O1179.8 (3)C6—C1—C7—N1178.0 (4)
C7—C1—C2—O11.8 (5)C2—C1—C7—N10.0 (5)
C6—C1—C2—C30.4 (5)C7—N1—C8—C9118.3 (4)
C7—C1—C2—C3177.6 (3)N1—C8—C9—C1098.1 (5)
O1—C2—C3—C4179.0 (3)N1—C8—C9—C1381.3 (5)
C1—C2—C3—C40.4 (5)C11—N2—C10—C90.4 (6)
C2—C3—C4—C50.3 (6)C13—C9—C10—N20.1 (6)
C3—C4—C5—C60.6 (6)C8—C9—C10—N2179.5 (4)
C3—C4—C5—Br1176.2 (3)C10—N2—C11—C120.8 (6)
C4—C5—C6—C11.3 (6)N2—C11—C12—C130.7 (6)
Br1—C5—C6—C1175.5 (3)C10—C9—C13—C120.2 (6)
C2—C1—C6—C51.2 (5)C8—C9—C13—C12179.6 (4)
C7—C1—C6—C5176.8 (3)C11—C12—C13—C90.2 (6)
C8—N1—C7—C1178.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.96 (5)1.80 (5)2.616 (5)141 (5)

Experimental details

Crystal data
Chemical formulaC13H11BrN2O
Mr291.15
Crystal system, space groupMonoclinic, P21/c
Temperature (K)200
a, b, c (Å)14.0947 (19), 6.0994 (8), 14.0373 (19)
β (°) 103.704 (3)
V3)1172.4 (3)
Z4
Radiation typeMo Kα
µ (mm1)3.49
Crystal size (mm)0.30 × 0.22 × 0.14
Data collection
DiffractometerBruker SMART 1000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.833, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
8297, 2906, 1859
Rint0.037
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.099, 1.13
No. of reflections2906
No. of parameters158
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.53, 0.84

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.96 (5)1.80 (5)2.616 (5)141 (5)
 

Acknowledgements

This work was supported by the Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2010–0029626). The author thanks the KBSI, Jeonju Center, for the electron microscope analyses.

References

First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, Y., Khoo, L. E. & Ng, S. W. (2003). Acta Cryst. E59, o1496–o1497.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds