metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 2| February 2011| Pages m141-m142

Poly[μ-(1,3-dihy­dr­oxy­propan-2-olato)-potassium]

aSaskatchewan Structural Sciences Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5C9, and bDepartment of Food and Bioresources, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5A8
*Correspondence e-mail: gabriele.schatte@usask.ca

(Received 22 November 2010; accepted 17 December 2010; online 8 January 2011)

The asymmetric unit of the title compound, [K(C3H7O3)]n or K[H2gl]n, common name potassium glycerolate, contains half the K+ cation and half of the glycerolate anion. The other half of the anion is generated through a mirror plane passing through the K atom, and a C, an H and an O atom of the glycerolate ligand. The K+ ion is coordinated by the O atoms of the OH groups, leading to a six-membered chelate ring that adopts a very distorted boat conformation. The negatively charged O atom of the glycerolate anion, [H2gl], is found in the flagpole position and forms an ionic bond with the K+ ion. The O atoms of the hydroxo groups are coordinated to two K+ ions, whereas the negatively charged O atom is bonded to one K+ ion. The K+ ion is coordinated by three other symmetry-related monodentate H2gl ligands, so that each H2gl ligand is bonded to two K+ ions, and the potassium has a seven-coordinate environment. The H2gl ligands are connected via a strong O—H⋯O hydrogen bond and, together with the K⋯O inter­connections, form polymeric sheets which propagate in the directions of the a and b axes.

Related literature

For syntheses of mono potassium glyceroxide, see: Forcrand (1887[Forcrand, R. (1887). C. R. Hebd. Seances Acad. Sci. 104, 114-116.]). For syntheses and characterization of potassium alkoxides and aryl­oxides, see: Weiss et al. (1968[Weiss, E., Alsdorf, A., Kühr, H. & Grützmacher, H.-F. (1968). Chem. Ber. 101, 3777-3786.]); Brooker et al. (1991[Brooker, S., Edelmann, F. T., Kottke, T., Roesky, H. W., Sheldrick, G. M., Stalke, D. & Whitmire, K. H. (1991). J. Chem. Soc. Chem. Commun. pp. 144-146.]); Kennedy et al. (2001[Kennedy, A. R., MacLellan, J. G. & Mulvey, R. E. (2001). Angew. Chem. Int. Ed. 40, 3245-3247.]). For the crystal structure of poly[μ-2,3-dihy­droxy­propan-1-olato-sodium], see: Schatte et al. (2010[Schatte, G., Shen, J., Reaney, M. & Sammynaiken, R. (2010). Acta Cryst. E66, m634-m635.]) and for related crystal structures of transition metal mono glyceroxides, see: Rath et al. (1998[Rath, S. P., Rajak, K. K., Mondal, S. & Chakravorty, A. (1998). J. Chem. Soc. Dalton Trans. pp. 2097-2101.]).

[Scheme 1]

Experimental

Crystal data
  • [K(C3H7O3)]

  • Mr = 130.19

  • Monoclinic, C 2/m

  • a = 7.5514 (4) Å

  • b = 7.2632 (4) Å

  • c = 9.0675 (5) Å

  • β = 93.422 (2)°

  • V = 496.44 (5) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 8.53 mm−1

  • T = 173 K

  • 0.11 × 0.08 × 0.08 mm

Data collection
  • Bruker Proteum R SMART 6000 three-circle diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.454, Tmax = 0.549

  • 1526 measured reflections

  • 436 independent reflections

  • 433 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.103

  • S = 1.17

  • 436 reflections

  • 41 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.61 e Å−3

Table 1
Selected interatomic distances (Å)

K1—O2 2.690 (2)
K1⋯O1 2.7726 (16)
K1⋯O1i 2.7726 (16)
K1⋯O1ii 2.8160 (15)
K1⋯O1iii 2.8160 (15)
K1⋯O1iv 2.8576 (15)
K1⋯O1v 2.8576 (15)
Symmetry codes: (i) x, -y+1, z; (ii) -x, y, -z; (iii) -x, -y+1, -z; (iv) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z]; (v) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2vi 0.84 (3) 1.68 (3) 2.5229 (19) 177 (3)
Symmetry code: (vi) [x-{\script{1\over 2}}, y-{\script{1\over 2}}, z].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR2002 (Burla et al., 2003[Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: CAMERON (Watkin et al., 1993[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1993). CAMERON. Chemical Crystallography Laboratory, Oxford, England.]) and XP in SHELXTL-NT (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

We have shown that alkali metal glycerolates, although known as alkali metal glyceroxide, can be used as efficient catalysts in trans-esterification reactions to produce biodiesel. Earlier syntheses of the mono alkali glycerolate, [M(C3H7O3)]n (referred to as M[H2gl], M= Na, K), involved the reaction of excess alkali metal dissolved in ethanol with glycerol (Forcrand, 1887). We found that adding glycerol to a hot alkali hydroxide solution under agitation is the preferred synthesis for mono alkali glyceroxides (Schatte et al., 2010).

Recently, we have reported the crystal structure of poly[µ-2,3-dihydroxypropan-1-olato-sodium], the until now only known crystal structure of mono alkali glyceroxide. The crystal structure of [K(C3H7O3)]n (I) was determined as part of our continuing research on catalysts which can be used in the production of biodiesel.

The monodentate H2gl- ligand coordinates to the potassium atom via the hydroxo groups leading to 6-membered chelating ring with a very distorted boat conformation, Fig. 1. The negatively charged O atom, which is attached to the secondary carbon atom of the H2gl- ion, is found in the flagpole position and forms an ionic bond with the potassium cation. This structure is in contrast to the sodium analogue, where the H2gl- ligand is coordinated to the sodium atom by one oxo- and one hydroxo group forming a non-planar 5-membered ring and the hydroxo group attached to primary carbon atom of the glycerol is deprotonated. In the related structure of the vanadium-H2gl complex, however, the hydroxo group attached to secondary carbon atom is deprotonated as well (Rath et al., 1998).

Each H2gl- ligand is bonded to two potassium cations. Each potassium cation is connected via K···O bonds ranging from 2.690 (2) to 2.8576 (15) Å to three symmetry related H2gl- ligands and is 7-coordinated. In addition, five longer and much weaker K···O interactions ranging from 3.211 (2) to 4.0451 (16) are observed (sum of the van der Waals radii, 4.3 Å; Table 1). The observed intra- and inter-molecular K···O bond distances are elongated in comparison to the related bond distances reported for potassium phenolate complexes (Brooker et al., 1991) and potassium alkoxides (Weiss et al., 1968; Kennedy, et al., 2001).

The H2gl- ligands are connected via one strong intermolecular O—H···O hydrogen bond interaction (Table 2 and Fig. 2). Both, the K···O and O—H···O interconnections are responsible for the formation of polymeric sheets which extend indefinitely in the directions of the a and b axes (Fig. 2).

Related literature top

For syntheses of mono potassium glyceroxide, see: Forcrand (1887). For syntheses and characterization of potassium alkoxides and aryloxides, see: Weiss et al. (1968); Brooker et al. (1991); Kennedy et al. (2001). For the crystal structure of poly[µ-2,3-dihydroxypropan-1-olato-sodium], see: Schatte et al. (2010) and for related crystal structures of transition metal mono glyceroxides, see: Rath et al. (1998).

Experimental top

A potassium hydroxide solution (336 g, 50%) was freshly prepared by dissolving potassium hydroxide pellets (168 g, 3 mol) in water (168 g). Glycerol (92 g, 1 mol) was slowly added into the hot potassium hydroxide solution under agitation. The mixture was allowed to stand and to cool down to room temperature. Colourless crystals of Poly[µ-2,3-dihydroxypropan-1-olato-potassium] started to form after six days. The crystals are only stable in a very basic solution at ambient temperatures and are less stable than those of the sodium analogue. A suitable single-crystal was quickly coated with oil, collected onto the aperture of a mounted MiTeGen MicromountTM (diameter of the aperture: 100 microns) and as quickly as possible transferred to the cold stream of the X-ray diffractometer. The crystals tend to dissolve upon eposure to the oil at ambient temperatures for more than one minute.

Refinement top

The C-bound H atoms were geometrically placed (C–H = 0.98–1.00 Å) and refined as riding with Uiso(H) = 1.2Ueq(parent atom). The hydrogen atoms of the hydroxo groups were located in the difference Fourier map and were allowed to refine freely.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CAMERON (Watkin et al., 1993) and XP in SHELXTL-NT (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure showing the labelling scheme. Non-hydrogen atoms are represented by displacement ellipsoids at the 30% probability level. Symmetry code: (i) x, -y + 1, z.
[Figure 2] Fig. 2. Partial packing diagram of one of the two parallel polymeric sheets observed within the unit cell showing the intra- and inter-molecular K···O and intermolecular O(H)···O contacts (dashed lines). Hydrogen atoms have been omitted for clarity. Symmetry codes: (i) x, -y + 1, z; (ii) -x, y, -z; (iii) -x, -y + 1, -z; (iv) -x + 1/2, y + 1/2, -z; (v) -x + 1/2, -y + 1/2, -z; (vi) -x + 1, y, -z; (vii) -x + 1/2, y - 1/2, -z; (viii) x + 1/2, y + 1/2, z; (ix) x + 1/2, -y + 1/2, z; (x) -x + 1, -y + 1, -z; (xi) x - 1/2, y - 1/2, z; (xii) x - 1/2, -y + 1/2, z; (xiii) x - 1/2, y + 1/2, z; (xiv) x + 3/2, -y + 3/2, z; (xv) x + 1/2, y - 1/2, z; (xvi) x + 1/2, -y + 3/2, z; (xvii) -x + 1/2, -y + 3/2, -z.
Poly[µ-(1,3-dihydroxypropan-2-olato)-potassium] top
Crystal data top
[K(C3H7O3)]F(000) = 272
Mr = 130.19Dx = 1.742 Mg m3
Monoclinic, C2/mCu Kα radiation, λ = 1.54184 Å
Hall symbol: -C 2yCell parameters from 1381 reflections
a = 7.5514 (4) Åθ = 4.9–64.3°
b = 7.2632 (4) ŵ = 8.53 mm1
c = 9.0675 (5) ÅT = 173 K
β = 93.422 (2)°Plate, colourless
V = 496.44 (5) Å30.11 × 0.08 × 0.08 mm
Z = 4
Data collection top
Bruker Proteum R SMART 6000 three-circle
diffractometer
436 independent reflections
Radiation source: fine-focus rotating anode433 reflections with I > 2σ(I)
Montel200 multilayer graded optics monochromatorRint = 0.034
Detector resolution: 9 pixels mm-1θmax = 65.0°, θmin = 4.9°
ϕ and ω scansh = 86
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
k = 88
Tmin = 0.454, Tmax = 0.549l = 1010
1526 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H atoms treated by a mixture of independent and constrained refinement
S = 1.17 w = 1/[σ2(Fo2) + (0.0682P)2 + 0.2643P]
where P = (Fo2 + 2Fc2)/3
436 reflections(Δ/σ)max < 0.001
41 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.61 e Å3
Crystal data top
[K(C3H7O3)]V = 496.44 (5) Å3
Mr = 130.19Z = 4
Monoclinic, C2/mCu Kα radiation
a = 7.5514 (4) ŵ = 8.53 mm1
b = 7.2632 (4) ÅT = 173 K
c = 9.0675 (5) Å0.11 × 0.08 × 0.08 mm
β = 93.422 (2)°
Data collection top
Bruker Proteum R SMART 6000 three-circle
diffractometer
436 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
433 reflections with I > 2σ(I)
Tmin = 0.454, Tmax = 0.549Rint = 0.034
1526 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.103H atoms treated by a mixture of independent and constrained refinement
S = 1.17Δρmax = 0.38 e Å3
436 reflectionsΔρmin = 0.61 e Å3
41 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
K10.20681 (7)0.50000.05926 (6)0.0275 (4)
O10.08625 (19)0.2924 (2)0.17095 (15)0.0281 (5)
H10.025 (4)0.196 (5)0.182 (3)0.051 (9)*
O20.4099 (3)0.50000.1948 (2)0.0256 (6)
C10.1812 (3)0.3246 (3)0.3086 (2)0.0289 (6)
H1A0.26040.21860.33180.035*
H1B0.09580.33290.38710.035*
C20.2919 (4)0.50000.3097 (3)0.0265 (7)
H20.36650.50000.40460.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
K10.0261 (5)0.0302 (5)0.0258 (5)0.0000.0015 (3)0.000
O10.0288 (8)0.0286 (9)0.0264 (9)0.0043 (6)0.0036 (6)0.0016 (6)
O20.0232 (11)0.0250 (11)0.0286 (11)0.0000.0012 (9)0.000
C10.0284 (11)0.0332 (12)0.0249 (10)0.0003 (9)0.0008 (8)0.0027 (8)
C20.0257 (15)0.0324 (15)0.0209 (14)0.0000.0018 (11)0.000
Geometric parameters (Å, º) top
K1—O22.690 (2)C1—H1A0.9900
O1—C11.421 (3)C1—H1B0.9900
O1—H10.84 (3)C2—C1i1.523 (3)
O2—C21.411 (4)C2—H21.0000
C1—C21.523 (3)
K1···O12.7726 (16)K1···O2iv3.9176 (8)
K1···O1i2.7726 (16)K1···O2vii3.9176 (8)
K1···O1ii2.8160 (15)K1···O1viii4.0451 (16)
K1···O1iii2.8160 (15)K1···O1ix4.0451 (16)
K1···O1iv2.8576 (15)O1···K1iii2.8160 (15)
K1···O1v2.8576 (15)O1···K1v2.8576 (15)
K1···O2vi3.211 (2)O2···K1x3.211 (2)
O2—K1—O1i63.34 (5)O1iv—K1—O2vi48.69 (3)
O2—K1—O163.34 (5)O1v—K1—O2vi48.69 (3)
O1i—K1—O165.90 (6)C1—O1—K1113.60 (12)
O2—K1—O1ii134.71 (5)C1—O1—K1iii124.89 (12)
O1i—K1—O1ii106.01 (4)K1—O1—K1iii73.99 (4)
O1—K1—O1ii72.13 (5)C1—O1—K1v100.13 (11)
O2—K1—O1iii134.71 (5)K1—O1—K1v85.77 (4)
O1i—K1—O1iii72.13 (5)K1iii—O1—K1v134.84 (5)
O1—K1—O1iii106.01 (4)C2—O2—K1106.22 (15)
O1ii—K1—O1iii64.76 (7)C2—O2—K1x154.98 (16)
O2—K1—O1iv90.44 (4)K1—O2—K1x98.80 (6)
O1i—K1—O1iv94.23 (4)O1—C1—C2113.05 (19)
O1—K1—O1iv151.90 (3)O1—C1—K1v55.63 (9)
O1ii—K1—O1iv134.84 (5)C2—C1—K1v115.16 (14)
O1iii—K1—O1iv84.79 (2)O1—C1—H1A109.0
O2—K1—O1v90.44 (4)C2—C1—H1A109.0
O1i—K1—O1v151.90 (3)O1—C1—H1B109.0
O1—K1—O1v94.23 (4)C2—C1—H1B109.0
O1ii—K1—O1v84.79 (2)H1A—C1—H1B107.8
O1iii—K1—O1v134.84 (5)O2—C2—C1111.45 (15)
O1iv—K1—O1v95.99 (6)O2—C2—C1i111.45 (15)
O2—K1—O2vi81.20 (6)C1—C2—C1i113.5 (2)
O1i—K1—O2vi129.21 (4)O2—C2—H2106.7
O1—K1—O2vi129.21 (4)C1—C2—H2106.7
O1ii—K1—O2vi124.70 (4)C1i—C2—H2106.7
O1iii—K1—O2vi124.70 (4)
O2—K1—O1—C110.85 (12)O1iv—K1—O2—C2132.00 (3)
O1i—K1—O1—C160.15 (13)O1v—K1—O2—C2132.00 (3)
O1ii—K1—O1—C1177.64 (12)O2vi—K1—O2—C2180.0
O1iii—K1—O1—C1121.60 (13)K1iii—K1—O2—C20.0
O1iv—K1—O1—C111.93 (18)C1v—K1—O2—C2130.44 (4)
O1v—K1—O1—C199.22 (12)C1iv—K1—O2—C2130.44 (4)
O2vi—K1—O1—C161.77 (13)O1i—K1—O2—K1x142.51 (4)
O2—K1—O1—K1iii132.45 (5)O1—K1—O2—K1x142.51 (4)
O1i—K1—O1—K1iii61.45 (4)O1ii—K1—O2—K1x131.09 (6)
O1ii—K1—O1—K1iii56.04 (5)O1iii—K1—O2—K1x131.09 (6)
O1iii—K1—O1—K1iii0.0O1iv—K1—O2—K1x48.00 (3)
O1iv—K1—O1—K1iii109.68 (7)O1v—K1—O2—K1x48.00 (3)
O1v—K1—O1—K1iii139.18 (5)O2vi—K1—O2—K1x0.0
O2vi—K1—O1—K1iii176.63 (4)K1—O1—C1—C215.8 (2)
O2—K1—O1—K1v88.36 (4)K1iii—O1—C1—C270.6 (2)
O1i—K1—O1—K1v159.37 (2)K1v—O1—C1—C2105.59 (16)
O1ii—K1—O1—K1v83.14 (3)K1—O1—C1—K1v89.79 (8)
O1iii—K1—O1—K1v139.18 (5)K1iii—O1—C1—K1v176.23 (14)
O1iv—K1—O1—K1v111.14 (11)K1—O2—C2—C163.95 (18)
O1v—K1—O1—K1v0.0K1x—O2—C2—C1116.05 (18)
O2vi—K1—O1—K1v37.45 (6)K1—O2—C2—C1i63.95 (18)
O1i—K1—O2—C237.49 (4)K1x—O2—C2—C1i116.05 (18)
O1—K1—O2—C237.49 (4)K1x—O2—C2—K1180.0
O1ii—K1—O2—C248.91 (6)O1—C1—C2—O255.6 (2)
O1iii—K1—O2—C248.91 (6)O1—C1—C2—C1i71.2 (3)
Symmetry codes: (i) x, y+1, z; (ii) x, y, z; (iii) x, y+1, z; (iv) x+1/2, y+1/2, z; (v) x+1/2, y+1/2, z; (vi) x+1, y, z; (vii) x+1/2, y1/2, z; (viii) x+1/2, y+1/2, z; (ix) x+1/2, y+1/2, z; (x) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2xi0.84 (3)1.68 (3)2.5229 (19)177 (3)
Symmetry code: (xi) x1/2, y1/2, z.

Experimental details

Crystal data
Chemical formula[K(C3H7O3)]
Mr130.19
Crystal system, space groupMonoclinic, C2/m
Temperature (K)173
a, b, c (Å)7.5514 (4), 7.2632 (4), 9.0675 (5)
β (°) 93.422 (2)
V3)496.44 (5)
Z4
Radiation typeCu Kα
µ (mm1)8.53
Crystal size (mm)0.11 × 0.08 × 0.08
Data collection
DiffractometerBruker Proteum R SMART 6000 three-circle
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.454, 0.549
No. of measured, independent and
observed [I > 2σ(I)] reflections
1526, 436, 433
Rint0.034
(sin θ/λ)max1)0.588
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.103, 1.17
No. of reflections436
No. of parameters41
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.38, 0.61

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2008), SIR2002 (Burla et al., 2003), SHELXL97 (Sheldrick, 2008), CAMERON (Watkin et al., 1993) and XP in SHELXTL-NT (Sheldrick, 2008), publCIF (Westrip, 2010).

Selected interatomic distances (Å) top
K1—O22.690 (2)
K1···O12.7726 (16)K1···O1iii2.8160 (15)
K1···O1i2.7726 (16)K1···O1iv2.8576 (15)
K1···O1ii2.8160 (15)K1···O1v2.8576 (15)
Symmetry codes: (i) x, y+1, z; (ii) x, y, z; (iii) x, y+1, z; (iv) x+1/2, y+1/2, z; (v) x+1/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2vi0.84 (3)1.68 (3)2.5229 (19)177 (3)
Symmetry code: (vi) x1/2, y1/2, z.
 

Acknowledgements

Funding for this research was contributed by the Agriculture Development Fund (ADF), administered by Saskatchewan Agriculture (SMA) and National Sciences and Engineering Research Council (NSERC).

References

First citationBrooker, S., Edelmann, F. T., Kottke, T., Roesky, H. W., Sheldrick, G. M., Stalke, D. & Whitmire, K. H. (1991). J. Chem. Soc. Chem. Commun. pp. 144–146.  CrossRef Web of Science Google Scholar
First citationBruker (2008). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2009). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.  CrossRef IUCr Journals Google Scholar
First citationForcrand, R. (1887). C. R. Hebd. Seances Acad. Sci. 104, 114–116.  Google Scholar
First citationKennedy, A. R., MacLellan, J. G. & Mulvey, R. E. (2001). Angew. Chem. Int. Ed. 40, 3245–3247.  CrossRef CAS Google Scholar
First citationRath, S. P., Rajak, K. K., Mondal, S. & Chakravorty, A. (1998). J. Chem. Soc. Dalton Trans. pp. 2097–2101.  Web of Science CSD CrossRef Google Scholar
First citationSchatte, G., Shen, J., Reaney, M. & Sammynaiken, R. (2010). Acta Cryst. E66, m634–m635.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1993). CAMERON. Chemical Crystallography Laboratory, Oxford, England.  Google Scholar
First citationWeiss, E., Alsdorf, A., Kühr, H. & Grützmacher, H.-F. (1968). Chem. Ber. 101, 3777–3786.  CrossRef CAS Web of Science Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 2| February 2011| Pages m141-m142
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds